
Fast Local Thickness

Vedrana Andersen Dahl and Anders Bjorholm Dahl
Technical University of Denmark

{vand, abda}@dtu.dk

Abstract

We propose a fast algorithm for the computation of lo-
cal thickness in 2D and 3D. Compared to the conventional
algorithm, our fast algorithm yields local thickness in just
a fraction of the time. In our algorithm, we first compute
the distance field of the object and then iteratively dilate
the selected parts of the distance field. In every iteration,
we employ small structuring elements, which makes our ap-
proach fast. Our algorithm is implemented in Python and
is freely available as a pip-installable module. Besides giv-
ing a detailed description of our method, we test our imple-
mentation on 2D images and 3D volumes. In 2D, we com-
pute the ground truth using the conventional local thickness
methods, where the distance field is dilated with increas-
ingly larger circular structuring elements. We use this as a
reference to evaluate the quality of our results. In 3D, we
have no ground truth since it would be too time-consuming
to compute. Instead, we compare our results with the golden
standard method provided by BoneJ. In both 2D and 3D, we
compare with another Python-based approach from Pore-
Spy. Our algorithm performs equally well or better than
other approaches, but significantly faster.

1. Introduction
Contemporary high-resolution 3D microscopy scanners

typically produce volumes containing 20483 voxels, or even
40963 voxels. With volumes containing billions of voxels,
even the simplest processing methods may be computation-
ally demanding. This is especially pronounced when pro-
cessing involves using a kernel that also grows cubically in
size. And processing large images often requires the use of
large kernels. For this reason, efficient 3D analysis requires
re-visiting processing algorithms. In this paper, we consider
the computation of the local thickness.

For an object in 3D, the local thickness at any point of
the object is defined as the radius of the largest sphere which
fits inside the object and contains the point, see Fig. 1. De-
spite this simple definition, computing local thickness us-
ing a direct implementation of the definition is computa-

Figure 1. Left: An example of an object in 3D for which we can
compute local thickness. Right: A few spheres of different radii
that can be fitted inside the object depending on its local thickness.
Every point inside, say, the orange sphere, has a local thickness
that is equal to or greater than the radius of the sphere.

tionally demanding, and for large volumetric data computa-
tionally infeasible. The time complexity of the conventional
local thickness algorithm is such that if it takes 1 second to
process a volume of size 5123, processing a 20483 volume
takes 4.5 hours and a 40963 volume takes 24 days to pro-
cess.

Local thickness is an often sought-after post-processing
algorithm. In particular, when analyzing the microstructure
of trabecular bone from volumetric data, computing the lo-
cal thickness is an essential processing step. BoneJ [5], a
plugin for bone image analysis in ImageJ [13], has estab-
lished itself as the gold standard for local thickness com-
putation, thanks to an accurate and efficient algorithm [6].
This is practical for the ImageJ community but difficult
to incorporate into a Python-based analysis pipeline. In
Python, one option is to use the PoreSpy package [7] which
comes with a large number of predefined routines including
an approximation of the local thickness.

Contribution We propose an algorithm for computing lo-
cal thickness, which is accurate and fast. Our algorithm
utilizes two approximations for more efficient computation.
First, the dilation with a sphere of a large radius is approx-

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

4336



imated with consecutive dilations with a sphere of radius
one. This results in a dilation not being perfectly spherical,
but polygonal (polyhedral). Second (and optional), we use
a scaled approach, where the local thickness is computed
for a downscaled image, then upscaled, and corrected.

Our algorithm is implemented as a pip-installable Python
module. The module, localthickness, has lightweight
dependencies: apart from the NumPy module the only other
dependence is edt module for a fast computation of Eu-
clidean distance transform.

We tested the performance of our algorithm and com-
pared it against BoneJ and PoreSpy algorithms in terms of
accuracy and run time.

2. Related work

Computation of local thickness is central for assessing
bone microstructure from X-ray microtomographic (µCT)
images. Hildebrand and Rüegsegger [8] were the first to
propose an algorithm for local thickness, and local thick-
ness has since found a place in guidelines for evaluating
bone microstructure [2] and numerous other applications
[3, 4]. The use of local thickness has propagated to other
organic structures [12], medical image analysis [14], den-
tistry [15], and the development of medical and dental scan-
ners [10]. In quantitative X-ray computed tomography [16],
local thickness is mentioned as a general tool and used in
areas such as 3D printing [11] and advanced materials re-
search [1].

A gold standard for computing local thickness is the al-
gorithm [6] included in BoneJ [5]. This algorithm avoids
morphological filtering of the whole object. Instead, it com-
putes a distance ridge of the object, to identify voxels that
are to be dilated. The dilation is performed by computing
pairwise distances between ridge voxels and volume vox-
els. This leaves a small discrepancy on the surface of the
object, which requires cleanup. The BoneJ algorithm gives
very accurate results, and the computation is fast.

The algorithm in PoreSpy [7] computes the local thick-
ness for a number of discrete values chosen beforehand. For
each value, a dilation is computed using linear filtering fol-
lowed by thresholding, where the filtering itself is done in
the Fourier domain. The result of PoreSpy, as well as the
run time, is strongly influenced by the number of chosen
values so the user can find a compromise between accuracy
and speed.

3. Conventional algorithm for local thickness

For an object in 3D, the local thickness at any point of
the object is defined as the radius of the largest sphere that
fits within the object and contains the point.

In other words, for an object A ⊂ R3 and a point x ∈ A,

the local thickness is given by

t(x) = max{r ∈ R : x ∈ S(c, r) ⊆ A, c ∈ R3} , (1)

where S(c, r) is a closed ball centered at c with radius r. It
is common to extend t by saying that t(x) = 0 for x outside
A.

In a naive implementation of this definition, calculating
the local thickness for every point x would involve consid-
ering various points c and a range of radii r.

A more efficient algorithm, which we denote conven-
tional algorithm for local thickness, is based on the compu-
tation of the distance field and dilation with spherical struc-
turing elements of different radii. In this section, we show
how the definition of local thickness Eq. 1 may be expressed
in terms of a distance field and dilation.

A distance field is defined as

d(x) = max{r ∈ R : S(x, r) ⊆ A} . (2)

Consider now a grayscale super-level of d

dr(x) =

{
d(x) r ≤ d(x)

0 elsewhere (3)

and a grayscale dilation dr ⊕Sr, where Sr is a ball with ra-
dius r. Because of the properties of dilation, distance field,
super-level, and local thickness, we know that

(dr ⊕ Sr)(x) ≤ t(x), for every r ∈ R (4)

and we also know that

if r = t(x), then (dr ⊕ Sr)(x) = t(x) . (5)

Therefore, we can conclude that

t = max{dr ⊕ Sr, r ∈ R} . (6)

This formulation of local thickness is more operative
than Eq. 1 as it only involves considering different values of
r. In practice, this is achieved by looping over discretized
radii r ∈ {1, . . . ,floor(max(d)}. When using standard
packages for distance field and grayscale dilation, the lo-
cal thickness may be computed for all voxels in the image
with just a few lines of code.

Alg. 1 is a direct implementation of Eq. 6. In the algo-
rithm, we expect the distance transform to be computed, so
the algorithm takes a distance field as input. In the pseudo-
code, we use square brackets to denote boolean (logical)
indexing into the array, so a[b] denotes elements of a
where b has values True. The intermediate super-levels
are stored in the variable df originally used for the distance
field.

4337



Algorithm 1 Conventional local thickness
1: function CONVENTIONAL(df)
2: out ← df
3: for r = 1 to floor(max(df)) do
4: df[df < r] ← 0
5: temp ← df ⊕ s(r)
6: change ← temp > out
7: out[change] ← temp[change]

8: return out

3.1. Variants of the conventional algorithm

In Alg. 1, lines 6 and 7 result with out being reassigned
to an element-wise maximum of out and temp. Therefore,
if using an element-wise maximum, the variable change
does not need to be introduced. Furthermore, the condition
temp > out in line 6 may be replaced with the equiva-
lent condition temp > 0. Lastly, another variant of the
algorithm inverts the order of dilations, such that it starts
with the largest r. In that case, dilation needs to operate on
an increasing number of elements from df in each iteration,
so re-assignment in line 4 needs to be modified accordingly.

A lot of intermediate computation in Alg. 1 is not used
in the final result, being overwritten by a larger value. The
voxels that, via dilation, contribute to the final result are on
the ridge of the distance field. It is therefore safe to remove
all the (or some) non-ridge voxels from the distance field
and apply Alg. 1. This may be advantageous if dilation is
implemented such that it runs faster on sparse arrays.1

3.2. Time complexity of the conventional algorithm

Consider a 3D object occupying a cube as in Fig. 1. De-
note the side length of the cube as X and the largest local
thickness of the object as S. If the structure is imaged such
that the length X is divided into x pixels, the thickness of
the object in pixels is s = S

X x. The conventional computa-
tion of local thickness includes a loop
for r = 1 to s do

df ⊕ s(r)

The computation time complexity of dilation is linear with
respect to the number of voxels to be processed, in this case,
x3, and the size of the structuring element, here r3. That is,
dilation takes O(x3r3) per iteration. On the other hand, the
number of iterations s grows linearly with x. Therefore, the
time complexity of the loop is

O(x3)

O(x)∑
r=1

O(r3) = O(x3)O(x4) = O(x7) .

1As mentioned, the local thickness algorithm in BoneJ does not dilate
using structuring elements but computes pairwise distances between voxels
and ridge points. Therefore, they benefit from removing non-ridge points.

Volume size
x3 5123 10243 20483 40963

Conventional
O(x7)

1 sec 2 min 4.5 h 24 days

Table 1. The expected increase in processing time for conventional
local thickness, assuming that it takes 1 sec to process the smallest
volume.

This leads to a rapid increase in processing time as volume
size grows, see Tab. 1.

4. Fast local thickness

In the conventional algorithm, the dilation always oper-
ates on one super-level (subset) of the distance field, and the
radius of the spherical structuring element is increasing in
each iteration. However, by utilizing the property of the dis-
tance field, and the commutativity of dilation, it is possible
to formulate an algorithm that uses the sphere of radius 1 in
every iteration. To obtain the result as with the conventional
algorithm, the dilation operates on outcome of the previous
iteration. We denote this approach fast local thickness.

In the fast algorithm, instead of dilating with a sphere of
radius n, we use n consecutive dilations with a sphere of
radius 1. Furthermore, one iteration of dilation may oper-
ate on multiple super-levels simultaneously. However, we
need to keep track of how many times to dilate each super-
level. For this, we can use the fact that the distance between
consecutive level-sets of the distance field is 1.

See Alg. 2 for one variant of this approach. The algo-
rithm iteratively dilates the distance field with the sphere of
radius 1. However, only values larger than the current itera-
tion counter are updated. This means that a certain value of
the distance field, say a value d(x) = 5, will freely propa-
gate for 5 iterations, filling in the sphere of radius 5. Notice
that the points in the periphery of the sphere start with a pos-
itive value (due to the property of the distance field) and are
incremented by 1 in each iteration (due to the property of
the distance field and the dilation) until reaching the max-
imal value of 5. Once the sphere is filled in, the iteration
counter becomes larger than the values in the sphere, and no
further update is made. In the intersections of two spheres,
the values originating from the larger sphere will propagate
for a larger number of iterations, correctly overwriting the
smaller values.

In a continuous case, or in a 1D setting, the conventional
and the fast algorithm yield the same result. However, in
the discrete setting in 2D and 3D, due to the shape of the
discrete 1-sphere, a dilation with a large radius cannot be
achieved by many dilations with a 1-sphere.

Still, by carefully choosing the structural elements when

4338



computing dilation, we can achieve a result where consec-
utive dilations yield a polyhedron (polygon in 2D) well-
approximating a sphere. For this, we formulate the dilation
with a 1-sphere as a weighted sum of dilations with simple
structuring elements.

Algorithm 2 Fast local thickness
1: function FAST(df)
2: out ← df
3: for r = 0 to floor(max(df))-1 do
4: temp ← out ⊕ s(1) . Use

DilateOne
5: change ← out > r
6: out[change] ← temp[change]

7: return out

Algorithm 3 Dilate with s(1)
1: function DILATEONE(v)
2: selemi = selems for 2D or 3D
3: wi = weights for 2D or 3D
4: out ←

∑
iwi v ⊕ selemi

5: return out

4.1. Structuring elements

The structuring elements used for our algorithm have a
kernel size with a side length of 3, so we use the small-
est possible kernels. In 2D, the structuring elements are a
discrete disc and annuli of growing radii. In 3D, we use dis-
crete spheres and spherical shells. We make sure that the
central pixel (voxel) is always set to one. Algorithms for
producing structural elements are 4 and 5. Here s(r) is
a structuring element with ones in all pixels where the dis-
tance from the center of the pixel to the center of the kernel
is smaller or equal to r. The resulting structuring elements
can be seen in Fig. 2.

The weights wi determine the shape of the non-binary
discrete approximation of the circle. We weigh the structur-
ing elements by the inverse of their largest radius. So the
element involving(

√
3) is weighted proportional to 1/

√
3.

After normalizing the weights to sum to 1, we arrive at the
expressions in Alg. 4 and Alg. 5. Our results show that this
weighting yields a good approximation. Still, it is worth
noticing that this weighing is slightly arbitrary. It turns out
that weights affect the shape of the resulting approximation
in a non-trivial way [9], and the quality of the approxima-
tion is difficult to assess.

How the outcome of our iterative dilation compares with
dilation using a large structuring element can be seen in
Fig. 3 and Fig. 4.

Figure 2. Structuring elements for fast local thickness in 2D and
3D.

Algorithm 4 Selems and weights for 2D

1: selem1 = disk(1)
2: selem2 = disk(

√
2) - disk(1) +

disk(0)
3: w1 =

√
2

1+
√
2

4: w2 = 1
1+

√
2

Algorithm 5 Selems and weights for 3D
1: selem1 = s(1)
2: selem2 = s(

√
2) - s(1) + s(0)

3: selem3 = s(
√

3) - s(
√

2) + s(0)
4: w1 =

√
6√

6+
√
3+

√
2

5: w2 =
√
3√

6+
√
3+

√
2

6: w3 =
√
2√

6+
√
3+

√
2

Figure 3. Dilating one white pixel with a sphere of radius 10 pixels
(top line) and 50 pixels (bottom line). In the left column is the out-
come of our iterative dilation. In the middle column is the iterative
dilation thresholded with 0.5. The right column shows a discrete
disc, for comparison. For 10 pixels we overlay a circle with radius
of 10 pixels.

4.2. Variants of the fast algorithm

In Alg. 2, dilation in line 4 operates on out. However,
it would be enough to operate only where out is greater
than r, as the change may only occur there. Whether this
is advantageous depends on the implementation of dilation.

4339



Figure 4. Dilating one white voxel with a sphere of radius 10 pix-
els (top line) and 20 pixels (bottom line). In the left column is the
outcome of our iterative dilation, shown as isosurfaces with val-
ues 0.1, 0.5, and 0.9. In the middle column is the iterative dilation
thresholded at 0.5. The right column shows a discrete ball, for
comparison.

Furthermore, similar to the conventional algorithm, the fast
algorithm may be formulated such that it starts with the
largest r. Note also that the variable df is not used by the
algorithm, so dilations may operate directly on df, and a
new variable out does not need to be introduced.

4.3. Time complexity of the fast algorithm

Thanks to the constant size of the structuring element,
each iteration of our algorithm has the same time complex-
ity, that is O(x313) per iteration. The number of iterations
is proportional to the maximum thickness, and therefore we
obtain

O(x3)

O(x)∑
i=1

13 = O(x3)O(x) = O(x4) .

4.4. Scaled local thickness

In a continuous setting, shrinking the object by a factor,
say 2, would result in the local thickness being reduced ev-
erywhere by the same factor. In the discrete setting, this
can be utilized to speed up the computation: the volume is
downscaled prior to processing, and the result is upscaled,
and multiplied, after the processing. This strategy can be
used with any of the algorithms for computation of the lo-
cal thickness. The loss of accuracy when using scaling will
depend on the properties of the algorithm.

Our fast algorithm is suitable for scaling. Thanks to the
smooth and continuous output of the algorithm, scaling has
a modest effect on the result. Furthermore, for better accu-
racy, we perform a distance transform before scaling, and
we apply the final dilation step on the full-size volume.

4.5. Code

Python implementation of our fast local thick-
ness can be downloaded from the GitHub repository
https://github.com/vedranaa/local-thickness and the
module can also be installed using pip install
localthickness.

5. Results

We have experimentally investigated our method on 2D
and 3D images. In 2D, it is possible to compute a local
thickness using the conventional method for images that
contain up to several hundred columns or rows. Therefore
in 2D, we use the conventional method as the ground truth
in our comparison. In 3D, due to the growth in compu-
tational complexity with image size, it is only possible to
use the conventional method on tiny volumes. In both 2D
and 3D, we compare with PoreSpy [7], and we always use
25 thickness values, which is the default value of the Pore-
Spy algorithm. Since PoreSpy is also a Python package, we
could include a direct comparison of the run time. In 3D we
also compare our method to BoneJ [5]. BoneJ is designed
for 3D bone analysis and does not come with the option of
computing a 2D local thickness.

The results of one 2D experiment are in Fig. 5. With-
out the use of scaling, the run time of our method is similar
to that of PoreSpy, but in the scaled version (scale factor
of 0.5), there is a significant speed-up in computation time.
The histograms obtained from our methods are very similar
to the ground truth, whereas the discrete nature of PoreSpy
is clearly seen in the histogram. The same is seen in the
cumulative histograms, where both versions of our method
align with the ground truth. This is also shown in the differ-
ence maps, where our method has a slight tendency to over-
estimate the thickness, but has a significantly lower mean
absolute difference than PoreSpy. The same is evident from
the scatter plots, with points predominantly slightly below
the diagonal.

In 3D, we carried out an experiment on volumes of µCT
scans of human femur bones. We cropped out five samples
of 2503 voxels and made sure to cover a varying degree of
cortical and trabecular bone structure. The good contrast
between air and bone made it easy to binarize volumes us-
ing thresholding. In Fig. 6, we show the local thickness
computed for two of these volumes. For all volumes, we
computed both bone thickness and bone spacing. The thick-
ness is computed as the local thickness of the binary volume
representing the bone, and the spacing is computed as the
local thickness of the inverse binary volume. Computing
both the thickness and the spacing is a common practice in
bone analysis.

First, we focus on run time and compare our local thick-
ness algorithm to PoreSpy. However, we did not measure

4340



0 20 40 60
Radius

0.0

0.5

1.0

1.5

2.0

N
um

be
r

×104

0 20 40 60
Radius

0.0

0.5

1.0

1.5

2.0

N
um

be
r

×104

0 20 40 60
Radius

0.0

0.5

1.0

1.5

2.0

N
um

be
r

×104

0 20 40 60
Radius

0.0

0.5

1.0

1.5

2.0

N
um

be
r

×104

Conventional Fast (ours) Scaled 0.5 (ours) PoreSpy

Run time 186.2 s Run time 0.1424 s Run time 0.04352 s Run time 0.1666 s

Mean abs diff. 0.154 Mean abs diff. 0.164 Mean abs diff. 1.230

Figure 5. Qualitative and quantitative comparison of the 2D algorithms for computing the local thickness of a 5122 image. The top row
shows the local thickness computed using the conventional method (ground truth), our fast method without scaling, our method scaled with
a factor of 0.5, and PoreSpy. Colormap is the same as in the thickness histograms below. Further below are the thickness images with the
ground truth subtracted (red is positive, and blue negative), and a scatter plot of all the pixels in the images for a per-pixel comparison to
the ground truth. The scatter plot is included to see how values differ from ground truth, but note that for our method most pixels are at, or
close to, the diagonal. In the left bottom corner, we show the cumulative histogram of the four thickness computations.

the run-time for BoneJ, because it is an ImageJ [13] plugin
and we could not make a precise and fair comparison. Still,

computing the local thickness of a volume using BoneJ, is
not faster than using PoreSpy. The measured run times are

4341



Figure 6. Local thickness of 3D volumes of bone computed using our fast local thickness approach. The volumes are of size 2503, and the
thickness is expressed in voxels that are 58.1 µm in size.

shown in Fig. 7. When not using the scaling option, our
method is in most cases slower than PoreSpy, but a signif-
icant speedup is obtained when using the scaling option.
PoreSpy is almost constant in processing time because it
uses a fixed number of iterations. Our method is slower in
the presence of thicker structures because it needs more iter-
ations to cover these. This is well illustrated in the five vol-
umes we have tested, where the last volume, Vol. 5, mainly
contains fine trabecular structures, and therefore our algo-
rithm computes the local thickness very fast.

The gain in speed using the scaling option does not com-
promise the quality of the results obtained, which is shown
in Fig. 8. Here, we have calculated the mean, standard de-
viation, and maximum value for bone thickness and bone
spacing of the five volumes. These values are typically
extracted when analyzing bone volumes and are easily ex-
tracted using the BoneJ plugin. We compare our method to
BoneJ and PoreSpy. Similarly to what we saw in 2D, our
method tends to compute a mean thickness that is slightly
higher than BoneJ and PoreSpy, but all statistics are consis-
tent between the three versions of our method. We always
obtain the same ordering of the measures for the five vol-
umes, and therefore our method will be reliable for mea-
suring differences in structures, even when using a scale of
0.25. BoneJ gives results similar to our method, whereas
PoreSpy is slightly less consistent. Recall that PoreSpy uses
default 25 thickness values, and a better result could be ob-
tained with a higher setting, but it would compromise its run
time.

In Fig. 9, we show a cumulative histogram for one of
the five analyzed volumes. There is very little difference

Vo
l. 1

Vo
l. 2

Vo
l. 3

Vo
l. 4

Vo
l. 5

10

20

30

40

50

60

70

80

Run time (seconds)
Fast (ours)
Scaled 0.5 (ours)
Scaled 0.25 (ours)
PoreSpy

Figure 7. Run time for computing the 3D local thickness using
our method and PoreSpy on five 2503 volumes of trabecular and
cortical bone taken from a larger µCT scan of a human femur. The
five volumes have been chosen such that they have different-sized
bone thicknesses and spacing, where Vol. 1 has relatively thick
structures and Vol. 5 has predominately thin structures.

between the three versions of our method, and as also shown
in 2D, PoreSpy will give a discrete thickness computation.
While we do not show it in the paper, similar behavior is
seen for other test volumes.

4342



Bon
eJ

Fa
st 

(ou
rs)

Sca
led

 0.
5 (

ou
rs)

Sca
led

 0.
25

 (o
ur

s)

Po
re

Spy
0

10

20

30

40

50

60

70

Mean

Bon
eJ

Fa
st 

(ou
rs)

Sca
led

 0.
5 (

ou
rs)

Sca
led

 0.
25

 (o
ur

s)

Po
re

Spy
0

10

20

30

40

50
Standard deviation

Bon
eJ

Fa
st 

(ou
rs)

Sca
led

 0.
5 (

ou
rs)

Sca
led

 0.
25

 (o
ur

s)

Po
re

Spy
0

20

40

60

80

100

120

140

160
Maximum

Figure 8. Statistics extracted from the bone thickness and spacing.
Each line represents one of the five volumes, and values for bone
thickness are shown with dots, while bone spacing is shown with
diamonds. Shown are the mean, the standard deviation, and the
maximum value for bone thickness and spacing.

0 20 40 60 80 100
Radius

1

2

3

4

5

6

7

8

C
um

ul
at

iv
e 

nu
m

be
r

×106

BoneJ
Fast (ours)
Scaled 0.5 (ours)
Scaled 0.25 (ours)
PoreSpy

Figure 9. Cumulative histograms of the thickness computed on
one of the volumes used in our experiments.

We have also experimentally established the computa-
tional complexity of our fast local thickness algorithm, as
shown in Fig. 10. This experiment was carried out by com-
puting the local thickness using our fast local thickness ap-
proach and the conventional method. We used only vol-
umes small enough to be processed using the conventional
method. When increasing the size of the volume and plot-
ting the run time of the methods on a log-log scale, we can
estimate the computational complexity as the slope of the
line fitted to the results. The conventional method has a
slope of 7.03, which fits very well with its theoretical com-

40 85 180
Volume side length (voxels)

10 1

100

101

102

103

R
un

 ti
m

e 
(s

ec
on

ds
)

Conventional, slope 7.027
Fast (ours), slope 3.57

Figure 10. Computational time of fast local thickness compared
to the conventional method shown in a log-log plot. This confirms
that the computational complexity of the conventional method is
O(x7), whereas our method is O(x4).

plexity ofO(x7). Our fast local thickness obtains a slope of
3.57 which is slightly lower than the theoretical complexity
of O(x4).

6. Conclusion

We contribute with a new method to compute the local
thickness of structures in 2D or 3D, which is faster than ex-
isting alternatives and gives similar or better results. Our
method utilizes the fact that local thickness can be com-
puted by iteratively dilating a distance field using a few
small structuring elements. The advantage of our approach
is that the computed thickness is smooth, and gives a thick-
ness histogram that is very close to the ground truth ob-
tained using the conventional method. The computational
complexity of our method is O(x4) compared to O(x7)
for the conventional method. We have implemented our
method in Python and made it freely available as a pip-
installable module with minimal dependencies. This is a
good and simple alternative to existing methods and makes
it easy for the microscopy community to access an impor-
tant tool for the quantitative analysis of 3D structures.

7. Acknowledgements

This work was supported by a research grant (VIL50425)
from VILLUM FONDEN and the infrastructure for Quan-
titative AI-based Tomography (QUAITOM) supported by a
Novo Nordisk Foundation Data Science Programme (grant
number NNF21OC0069766).

4343



References
[1] Hyosung An, John W Smith, Bingqiang Ji, Stephen Cotty,

Shan Zhou, Lehan Yao, Falon C Kalutantirige, Wenxiang
Chen, Zihao Ou, Xiao Su, et al. Mechanism and perfor-
mance relevance of nanomorphogenesis in polyamide films
revealed by quantitative 3D imaging and machine learning.
Science Advances, 8(8):eabk1888, 2022. 2

[2] Mary L Bouxsein, Stephen K Boyd, Blaine A Christiansen,
Robert E Guldberg, Karl J Jepsen, and Ralph Müller. Guide-
lines for assessment of bone microstructure in rodents using
micro–computed tomography. Journal of bone and mineral
research, 25(7):1468–1486, 2010. 2

[3] Helen R Buie, Graeme M Campbell, R Joshua Klinck,
Joshua A MacNeil, and Steven K Boyd. Automatic segmen-
tation of cortical and trabecular compartments based on a
dual threshold technique for in vivo micro-CT bone analy-
sis. Bone, 41(4):505–515, 2007. 2

[4] David ML Cooper, Andrei L Turinsky, Christoph Wilhelm
Sensen, and Benedikt Hallgrı́msson. Quantitative 3D analy-
sis of the canal network in cortical bone by micro-computed
tomography. The Anatomical Record Part B: The New
Anatomist: An Official Publication of the American Asso-
ciation of Anatomists, 274(1):169–179, 2003. 2

[5] Michael Doube, Michał M Kłosowski, Ignacio Arganda-
Carreras, Fabrice P Cordelières, Robert P Dougherty,
Jonathan S Jackson, Benjamin Schmid, John R Hutchinson,
and Sandra J Shefelbine. BoneJ: free and extensible bone
image analysis in ImageJ. Bone, 47(6):1076–1079, 2010. 1,
2, 5

[6] Robert Dougherty and Karl-Heinz Kunzelmann. Computing
local thickness of 3D structures with ImageJ. Microscopy
and Microanalysis, 13(S02):1678–1679, 2007. 1, 2

[7] Jeff T Gostick, Zohaib A Khan, Thomas G Tranter,
Matthew DR Kok, Mehrez Agnaou, Mohammadamin
Sadeghi, and Rhodri Jervis. PoreSpy: A python toolkit for
quantitative analysis of porous media images. Journal of
Open Source Software, 4(37):1296, 2019. 1, 2, 5

[8] Tor Hildebrand and Peter Rüegsegger. A new method for
the model-independent assessment of thickness in three-
dimensional images. Journal of microscopy, 185(1):67–75,
1997. 2

[9] Patrick M Jensen, Camilla H Trinderup, Anders B Dahl,
and Vedrana A Dahl. Zonohedral approximation of spheri-
cal structuring element for volumetric morphology. In Im-
age Analysis: 21st Scandinavian Conference, SCIA 2019,
Norrköping, Sweden, June 11–13, 2019, Proceedings 21,
pages 128–139. Springer, 2019. 4

[10] Delphine Maret, Norbert Telmon, Ove A Peters, B Lepage,
J Treil, JM Inglèse, A Peyre, Jean-Luc Kahn, and Michel
Sixou. Effect of voxel size on the accuracy of 3D recon-
structions with cone beam CT. Dentomaxillofacial Radiol-
ogy, 41(8):649–655, 2012. 2

[11] David G Moore, Lorenzo Barbera, Kunal Masania, and
André R Studart. Three-dimensional printing of multicom-
ponent glasses using phase-separating resins. Nature mate-
rials, 19(2):212–217, 2020. 2

[12] D Müter, HO Sørensen, Jette Oddershede, KN Dalby, and
SLS Stipp. Microstructure and micromechanics of the heart
urchin test from X-ray tomography. Acta Biomaterialia,
23:21–26, 2015. 2

[13] WS Rasband. ImageJ: Image processing and analysis in Java.
Astrophysics Source Code Library, pages ascl–1206, 2012.
1, 6

[14] Punam K Saha, Robin Strand, and Gunilla Borgefors. Digital
topology and geometry in medical imaging: a survey. IEEE
Transactions on Medical Imaging, 34(9):1940–1964, 2015.
2

[15] Naoya Taniguchi, Shunsuke Fujibayashi, Mitsuru Takemoto,
Kiyoyuki Sasaki, Bungo Otsuki, Takashi Nakamura, Tomi-
haru Matsushita, Tadashi Kokubo, and Shuichi Matsuda. Ef-
fect of pore size on bone ingrowth into porous titanium im-
plants fabricated by additive manufacturing: an in vivo ex-
periment. Materials Science and Engineering: C, 59:690–
701, 2016. 2

[16] Philip J Withers, Charles Bouman, Simone Carmignato,
Veerle Cnudde, David Grimaldi, Charlotte K Hagen, Eric
Maire, Marena Manley, Anton Du Plessis, and Stuart R
Stock. X-ray computed tomography. Nature Reviews Meth-
ods Primers, 1(1):18, 2021. 2

4344


