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Abstract

Abnormalities in biological cell nuclei shapes are cor-
related with cell cycle stages, disease states, and various
external stimuli. There have been many deep learning ap-
proaches that are being used for nuclei segmentation and
analysis. In recent years, transformers have performed
better than CNN methods on many computer vision tasks.
One problem with many deep learning nuclei segmenta-
tion methods is acquiring large amounts of annotated nu-
clei data, which is generally expensive to obtain. In this
paper, we propose a Transformer and CNN hybrid ensem-
ble processing method with edge awareness for accurately
segmenting abnormally shaped nuclei. We call this method
Hybrid Edge Mask R-CNN (HER-CNN), which uses Mask
R-CNNs with the ResNet and the Swin-Transformer to seg-
ment abnormally shaped nuclei. We add an edge aware-
ness loss to the mask prediction step of the Mask R-CNN
to better distinguish the edge difference between the abnor-
mally shaped nuclei and typical oval nuclei. We describe
an ensemble processing strategy to combine or fuse indi-
vidual segmentations from the CNN and the Transformer.
We introduce the use of synthetic ground truth image gen-
eration to supplement the annotated training images due to
the limited amount of data. Our proposed method is com-
pared with other segmentation methods for segmenting ab-
normally shaped nuclei. We also include ablation studies to
show the effectiveness of the edge awareness loss and the
use of synthetic ground truth images.

1. Introduction

Quantitative analysis of nuclei morphology is important
for the understanding of cell architecture. While most nu-
clei typically have an elliptical shape, deviations from this
shape can arise in certain stages of the cell cycle, due to ex-
ternal stress, or in certain disease states. Some cell types
also normally have non-elliptical nuclei (e.g. multi-lobed

nuclei in neutrophils). Characterization of nuclei shapes,
therefore, yields important information for many applica-
tions such as determining cell cycle stage, measuring cel-
lular response to environmental stimuli, indicating genetic
instability, and cancer diagnostics [13]. Traditional analy-
sis of nuclei shapes requires manual assessment of a large
number of microscopy images, which is laborious and time-
consuming. Hence, image-based automated nuclei segmen-
tation has been widely used to assist the researcher in the
analysis of nuclei morphology.

Both traditional computer vision and Convolutional
Neural Networks (CNNs) have been used for automated
nuclei segmentation. One of the major challenges in tra-
ditional nuclei segmentation methods is that they usually
require manual parameter tuning and re-parameterization
for new cell types and datasets to achieve adequate per-
formance [23]. CNN-based instance segmentation meth-
ods have provided adequate results for general object seg-
mentation and are able to segment nuclei after training
on annotated nuclei images [24]. However, they fail to
provide precise boundaries for the nuclei when the con-
trast between foreground and background is low. To im-
prove this, other CNN approaches such as StarDist [39,44],
and Cellpose [41] are specially designed for segmenting
the nuclei in microscopy images. These methods have
been developed for elliptical nuclei segmentation while ap-
proaches for segmenting non-elliptical nuclei are lacking.
In recent years, Transformer-based methods have shown
performance, which exceeds that of competing methods,
across a wide spectrum in the area of computer vision
[10,29]. Transformer architectures are based on a self-
attention mechanism that learns the relationships between
elements of a sequence, which shows advantages in mod-
eling the long-range relation [26]. However, compared to
the CNN-based methods, transformer-based methods some-
times exhibit limitations in extracting detailed localization
information. Ensemble processing, where outputs of several
segmentation methods are combined or fused, has proven to
be useful in improving segmentation performance as well
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as robustness [16]. Another challenge in nuclei segmenta-
tion is the difficulty in obtaining a large number of ground
truth annotations. One way to address this problem is by
using data augmentation methods to create more training
samples [11,36,38,40].

In this paper, we describe a Transformer and CNN hy-
brid ensemble processing with edge awareness for abnor-
mally shaped nuclei segmentation, known as Hybrid Edge
Mask R-CNN (HER-CNN). This method is based on Mask
R-CNN models with CNN and Transformers architectures
for segmenting abnormally shaped nuclei. We propose to
add an edge awareness loss to the mask prediction step of
the Mask R-CNN to provide additional awareness of the ab-
normally shaped nuclei boundary. We describe a modified
Non-maximum-Suppression (NMS) to combine or fuse the
segmentations from the CNN and the Transformer meth-
ods. In addition, we use Generative Adversarial Networks
(GANS) to generate synthetic abnormally shaped nuclei im-
ages as ground truth to train HER-CNN together with the
limited amount of real annotated images. We demonstrate
that our method achieves better abnormally shaped nuclei
segmentation by comparing it to other widely used nuclei
segmentation methods. We also illustrate the effectiveness
of the edge awareness loss and the extra synthetic training
image by conducting ablation studies.

2. Related Work
2.1. Nuclei Segmentation

Nuclei segmentation is a vital part of cell analysis in
areas such as cell biology, drug discovery, functional ge-
nomics, and pathology [23]. Traditional computer vision
segmentation methods such as Otsu [18, 45], Watershed
[31,42], and active contours [1, 2] have been used in auto-
mated nuclei segmentation. Otsu [35] is a threshold-based
segmentation method, it automatically selects the appropri-
ate threshold by maximizing the variance between the ob-
ject and the background. Watershed [3] treats an image
as a terrain in which nuclei correspond to valleys in a to-
pographic landscape. Active contours [25] is an energy-
based segmentation method to move deformable contours
under the influence of forces to minimize an energy func-
tion, and therefore locate the object boundaries. One ma-
jor challenge of traditional nuclei segmentation methods
is that they usually require manual parameter tuning and
re-parameterization when segmenting nuclei with different
staining, scanner, lighting conditions, and magnifications
[20].

In recent years, nuclei segmentation is mainly performed
using modern machine learning approaches. Mask R-CNN
[21] is an instance segmentation network developed using
region-based convolutional neural networks. It performs
well after training using annotated ground truth images [24].

Since acquiring a large number of annotated training images
is not possible in many biomedical applications, U-Net [37]
is introduced for segmentation for various biomedical prob-
lems with very little training data. Furthermore, methods
such as StarDist [39, 44], Cellpose [41], DeepSynth [11],
3D Centroidnet [47], and NISNet3D [46] are specially de-
signed for segmenting the nuclei.

Vision transformers have demonstrated good perfor-
mance in general computer vision areas such as image clas-
sification [10], detection [4], and segmentation [50]. They
have also been used for biomedical image analysis and nu-
clei segmentation. In [7], a Swin-Transformer [29] is com-
bined with a U-Net [37] and it outperforms the CNN meth-
ods for segmenting tumors in CT scans. In [17], a ViT ar-
chitecture [10] is used to classify and segment the nuclei in
the histopathological images.

While many methods are available for segmenting nor-
mal elliptical nuclei, only a few studies [0, 19,49] focused
on segmenting the abnormally shaped nuclei.

2.2. Ensemble Methods

Ensemble methods, where outputs from several segmen-
tation methods are combined or fused have been used for
improving segmentation performance [16]. In [32,48], the
stacking of CNN architectures is used to improve the perfor-
mance of the classification of cancer tumors and nuclei seg-
mentation. Since CNN architectures are better at extracting
detailed localization information while Transformer archi-
tectures are better at modeling explicit long-range relations,
ensemble methods are frequently used to benefit from both
detailed high-resolution spatial information from CNNs and
the global context encoded by Transformers. In [30], a
cross-teaching between CNN and Transformer is introduced
for medical image segmentation.

2.3. Synthetic Ground Truth Image Generation

Lacking ground truth labeled images is a common chal-
lenge of deep learning-based methods. One way to ad-
dress this problem is by using data augmentation methods
to create more training samples. Traditional data augmen-
tation methods utilize linear and non-linear transformations
including flipping, random cropping, color space transfor-
mations, and elastic deformations [5, 33]. However, these
augmentation methods do not work well when the training
data is limited and cannot solve the data imbalance prob-
lem within the dataset. With the development of Generative
Adversarial Networks (GANs), generating synthetic images
from GANSs for data augmentation is widely used for vari-
ous deep learning methods. GANSs have been used to gen-
erate synthetic CT scan images for training to improve the
classification of liver lesions [14]. An auxiliary classifier
based on a GAN is used for data augmentation of chest X-
ray images for improving Covid-19 detection [43]. The Sp-
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Figure 1. The block diagram of the proposed Hybrid Edge Mask R-CNN (HER-CNN) for abnormally shaped nuclei segmentation. The

training system is on the left and the inferencing system is on the right.
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Figure 2. The images of (a): a typical elliptical nucleus, (b) an
abnormally shaped nucleus with large differences in shape, (c) an
abnormally shaped nucleus which looks similar to elliptical shape
but with a small bump on its surface.

CycleGAN [11,15,47] is proposed to generate the synthetic
microscopy images with spatial constraints relative to the
nuclei location.

3. Proposed Method

The block diagram of our proposed abnormally shaped
nuclei segmentation system is shown in Figure 1. The sys-
tem includes (1) Synthetic ground truth image generation
for training, (2) Edge-aware Mask R-CNNs with ResNet
and Swin-Transformer architectures, trained with mixed
synthetic and real images, (3) Transformer and CNN seg-
mentation masks fusion done by a modified version of Non-
Maximum Suppression (NMS) with mask score averaging,
and (4) Final fused segmentation.

Our goal is to locate a specific cell condition, which we
are calling an unhealthy cell. Unhealthy cells include cells
that may be dying or stressed from external stimuli during
experiments. We desire to avoid fluorescent labeling of the
cell membrane, thus only the nuclei are being labeled. Ad-
ditionally, some cells are out of focus due to natural limi-
tations in cell positioning in the imaging system, as well as
limitations in the microscope. For these reasons, we choose
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Figure 3. The architecture of the SpCycleGAN [15].
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to segment unhealthy cells’ nuclei for counting and local-
ization. There is a wide range of differences between typ-
ical elliptical nuclei and abnormally shaped nuclei of the
unhealthy cells in our experimental dataset. While most of
the abnormally shaped nuclei have significant differences
from the typical elliptical nuclei, the most difficult abnor-
mally shaped nuclei are the ones that are elliptical in shape
with additional bumps and protrusions. This specific irreg-
ularity in nucleus shape can be caused by cell stress which
can lead to nuclei fragmentation and blebbing. Blebbing
of the plasma membrane is a morphological feature of cells
undergoing late stage apoptosis (cell death). A bleb is an
irregular bulge in the plasma membrane of a cell. Figure
2 shows the images of a typical elliptical nucleus and two
abnormally shaped nuclei. Our goal is to segment the ab-
normally shaped nuclei out of the typical elliptical nuclei.

3.1. Synthetic Ground Truth Image Generation

Since a specific shape of abnormal nuclei is challeng-
ing to segment and ground truth images for this specific
shape of abnormal nuclei are hard to obtain, using SpCy-
cleGAN [15], we generate synthetic images with annota-

4317



tions and use them as the ground truth images to add to
our training dataset. The synthetic ground truth image gen-
eration consists of synthetic binary map generation (used
as annotated segmentation mask), SpCycleGAN training,
and inferences (left side of Figure 1). To generate the syn-
thetic binary maps of this specific shape of abnormal nuclei,
we first generate elliptical nuclei, then generate a “circular
bump” on the generated nuclei, where the center of the cir-
cular bump is located on the contour of nuclei. The sizes
and the numbers of nuclei and bumps are randomly chosen
from ranges based on observing actual microscopy images.
We add constraints to make sure the generated nuclei are
not overlapping. We denote these synthetic binary maps as
I™, the original microscopy images as I°"%, and the gen-
erated synthetic microscopy images of nuclei as Y.

SpCycleGAN [15] is an extension of CycleGAN [51]
with spatial constraints added to the loss function. Cycle-
GAN combines two generators, where G translates a bi-
nary segmentation mask to a microscopy image, F' is for
reverse translation of GG, and two adversarial discriminators
D and D are learned to make the two domain transla-
tions indistinguishable. SpCycleGAN adds one more net-
work H for maintaining the spatial location between [™¢
and F(G(I™*)). The architecture of the SpCycleGAN is
shown in Figure 3, and the loss function of SpCycleGAN is
shown in Equation 1.

‘C(GaF7HaD17D2) = EGAN(G;D17I”LLL7IOM

)
+Laan(F, Do, I°7 T™) 0
+)\1£cycle(Ga F7 IOMa Ima)

)

+)\2£spatial (G7 H7 IOMa rme

Here Laoan is the adversarial loss, A1 and Ay are the
weight coefficients to control the loss balance between the
cycle consistency loss L.y and the spatial loss Lgpatial
proposed in SpCycleGAN. The spatial 1088 Lgpatiar 18 de-
fined in Equation 2.

Lipatial (G, H, 17, 1) = Epma[[[H(G(I™)) = 1™ 2]
2

Here || - ||2 is Lo is the norm. The addition of the spatial
loss is to ensure that the generated microscopy image has
the nuclei in the correct position according to the binary
segmentation map.

The SpCycleGAN is trained with unpaired real mi-
croscopy images I°"" and synthetic binary segmentation
maps I™®. It then generates synthetic microscopy images
of nuclei I°¥™ corresponding to the I™®. Therefore, I°Y™
can be used as annotated ground truth images for training
the abnormally shaped nuclei segmentation network.

Figure 4. The Swin-Transformer block [29].

3.2. CNN and Transformer Mask R-CNN

Mask R-CNN [21] is a two-stage instance segmentation
network. The first stage of Mask R-CNN uses a region pro-
posal network (RPN) to generate bounding boxes indicating
the potential objects, or we call them the regions of interest
(ROIs). Then, the second stage is used to classify and fur-
ther refine the bounding box of the object, finally provid-
ing the segmentation mask of the object inside the detected
bounding box. The architecture of the Mask R-CNN is the
feature pyramid network (FPN) [27]. FPN is designed to
have lateral connections between each layer of the bottom-
up and top-down convolutional layers to provide the pre-
dictions at multiple levels of the feature maps, thus main-
taining strong semantically meaningful features at various
resolution scales.

While the ResNet [22] is frequently used with Mask
R-CNN in numerous applications, we also combine the
Swin-Transformer [29] with Mask R-CNN to better capture
global information and improve performance. The Swin-
Transformer contains a patch partition module at the top,
which splits an input image into non-overlapping patches,
then a linear embedding layer is used to project the patches
into the designed dimension of the transformer. Multi-
ple stages are connected together after the linear embed-
ding layer, each with a patch merging module and a Swin-
Transformer block to perform hierarchical learning similar
to FPN. The Swin-Transformer block is illustrated in Figure
4, it consists of a LayerNorm (LN) layer before the regu-
lar or shifted window attention module (W-MSA/SW-MSA)
and each multi-layer perceptron module (MLP). There is a
residual connection after each module. The regular window
attention module (W-MSA) is designed to compute the self-
attention within local non-overlapped windows, therefore
reducing the computational complexity. The shifted win-
dow attention module (SW-MSA) is designed to compute
the self-attention across the windows, thus maintaining the
strong modeling power of the global information.

Assume that a 2D microscopy image I°"* with dimen-
sion H x W with D color channels is input into the Swin-
Transformer. The patch partition module will split the im-
age into P x P patches, where P is the patch size, and the
number of patches is N = % X %. The collection of these
patches will go through the linear embedding to project into
a2D matrix Z € RY*C where C is the designed dimension
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Figure 5. The block diagram of our proposed Edge-aware Mask R-CNN. The color indicates different operations, as shown in the legend.

of the transformer, and each row of Z is a patch embedding
vector. Then the 2D matrix Z is used as input into the Swin-
Transformer blocks. The computation is shown in Equation
3.

Z' =W — MSA(LN(Z!71)) + 2!~

Z! = MLP(LN(Z")) + Z

Zt = SW — MSA(LN(Z')) + Z

Zl+1 — MLP(LN(ZZ-‘rl)) + Zl+l

3)

Here Z! is the output of the (S)W-MSA module of block
I and Z! is the output of the MLP module of block I.

While Transformer architectures are better at modeling
explicit long-range relations, CNN architectures are bet-
ter at extracting detailed localization information. There-
fore, we use a Mask R-CNN with ResNet and a Mask R-
CNN with Swin-Transformer for abnormally shaped nuclei
segmentation and fuse the results to achieve better perfor-
mance.

3.3. Edge-aware Mask R-CNN

The main difference between abnormal nuclei and typi-
cal elliptical nuclei is the shape of the edge, which some-
times are hard to distinguish (described in Section 3). We
propose combining an additional edge loss L.qg. with
the existing Mask R-CNN to address this problem. The
block diagram of our proposed Edge-aware Mask R-CNN
is shown in Figure 5.

To estimate this additional edge loss Lqq., We threshold
the mask predictions of the Mask R-CNN ;s and the
corresponding ground truth mask labels gt,,4sx by O and
use an edge operator on the masks to obtain the correspond-
ing edge images Ycqge and gteqqe. We use the Laplacian

operator as our edge operator to extract the edges. Since
this edge loss L¢qgc is an additional edge awareness term in
the original mask loss L,,,sx of the Mask R-CNN, we use
the same category-specific binary cross-entropy (BCE) loss
used for the mask 10ss Ly qsi to find the L.q4. between the
gtedge and Yeqge. The final multi-task loss L is shown in
Equation 4.

L = Lgs + Lyox + Linask + )\Ledge “4)

Here the classification loss L.;s, bounding box regres-
sion loss Ly, and mask loss L, s are identical to Mask
R-CNN. We propose appending the edge loss L.qg4c as ad-
ditional edge awareness to the multi-task loss; and A is the
weight coefficient.

3.4. CNN and Transformer Ensemble Processing

To fuse the outputs from the CNN and the Trans-
former Mask R-CNNs, we use a modified version of Non-
Maximum Suppression (NMS) [34] with confidence score
averaging to combine the output segmentations from the in-
dividual Mask R-CNNs. We have M Mask R-CNNs, and
the ¢ — th Mask R-CNN’s output is denoted as Det] =
{Seg}, Probl'}, where Seg! is a segmentation mask and
Prob? is its corresponding confidence score, n is the in-
dex of a detected nucleus and ¢ € {1,..., M}. Our goal
is to generate a refined final segmentation Det™ based on
Det?. First, we find the Intersection over Union (IoU) of
the segmentation masks from each Mask R-CNN Seg!". We
then use Non-Maximum Suppression with a threshold of
T to construct the final segmentation mask Seg™. Unlike
the original NMS which uses the highest confidence score
to find the final confidence score of the mask, we use the
average confidence score to find the final confidence score
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Figure 6. Examples of (a): the cropped original microscopy image,
(b): the generated microscopy image of abnormally shaped nuclei,
and (c): its corresponding synthetic segmentation mask.

Prob™. This ensures that each Mask R-CNN’s output is
contributing to the final segmentation. Equation 5 shows
our modified NMS with mask score averaging.

Seg™ = NMS(Seg},T)

M
| n ®)
Prob" = i ;zo Prob;

Here NM S(-, 7) is the Non-Maximum Suppression [34]
with threshold IoU= 7.

4. Experimental Results
4.1. Datasets

We manually annotated abnormally shaped nuclei on 50
fluorescence microscopy images (Figure 7a). All the nu-
clei are from CHO-K1 cells stained with "Hoechst 33342
stain” (Note only the nuclei are stained and not the cell
membranes). The images were captured at 200ms expo-
sure with a DAPI filter cube on the microscope. The size of
each image is 2758 x2208 pixels. The images were divided
into 30, 5, and 15 images for training, validation, and test-
ing. For training HER-CNN, we used the SpCycleGAN to
generate synthetic ground truth images for the challenging
case of abnormally shaped nuclei (described in Section 3)
and combined them with the 30 real training images. Each
synthetic ground truth image is 256 X256 pixels. The train-
ing dataset of the Edge-aware Mask R-CNN with ResNet
consists of 300 synthetic ground truth images with 30 real
images, and the training dataset for the Edge-aware Mask
R-CNN with Swin-Transformer consists of 400 synthetic
ground truth images with the same 30 real images.

4.2. Experiments

SpCycleGAN training and inference. The training
of the SpCycleGAN requires unpaired original microscopy
images 1°"" and synthetic binary maps I™?**. We ran-
domly select 5 images with high nuclei density from the
training dataset and crop 200 256x256 image patches as
I°"* for training the SpCycleGAN. We then generate 200

Method AP50 AP75 mAP

U-Net [37] 4717 36.22 29.21
StarDist [44] 47.64 4134 3242
CellPose [41] 63.33 5597 44.67
MRCNN (ResNet) [21] 65.27 6341 51.38

Edge MRCNN (ResNet)+syn 73.74 72.87 58.77
Edge MRCNN (Swin)+syn 73.83 7136 5742
HER-CNN 76.07 75.04 61.35

Table 1. This table shows the performance metric of the instance-
based abnormally shaped nuclei segmentation using AP50, AP75,
and mAP as described in Section 4.3. For simplicity, Mask R-CNN
is written as "MRCNN”, Edge-aware Mask R-CNN is written as
”Edge MRCNN”, and methods trained with the extra synthetic
ground truth images are denoted as ”+syn”. The higher number
indicates better performance.

256 %256 synthetic binary maps as I™%** using the method
described in Section 3.1. The generated 200 binary maps
125k and 200 cropped image patches are used to train Sp-
CycleGAN. We then generate extra 500 256 X256 synthetic
binary maps and feed them into trained SpcyCleGAN to
generate synthetic abnormally shaped nuclei images. The
examples of the generated abnormally shaped nuclei images
are shown in Figure 6.

Hybrid Edge Mask R-CNN (HER-CNN) training and
inference. The block diagram of the training and inference
of Hybrid Edge Mask R-CNN is shown in Figure 1. In our
experiments, we train an Edge-aware Mask R-CNN with
ResNet-50 as the backbone architecture and an Edge-aware
Mask R-CNN with Swin-S as the backbone architecture.
Both architecture networks have been pre-trained on the
ImageNet [9] dataset and then trained with our data which
consists of real microscopy images and generated synthetic
ground truth images. Both the Edge-aware Mask R-CNNs
are trained on an NVIDIA RTX A5000 GPU with a batch
size of 8, the learning rate of the Edge-aware Mask R-CNN
with ResNet-50 is 5e 4 and it is trained for 200 epochs, the
learning rate of the Edge-aware Mask R-CNN with Swin-S
is 5e~7 and it is trained for 2000 epochs. The weight \ for
the Edge-aware loss Lgqq. is set to 0.2 for both models. The
IoU matching threshold for our modified NMS is set to 0.7.

4.3. Evaluation

To evaluate HER-CNN, we define that a segmentation
mask is considered as a true positive (TP) if the ground truth
mask and it have an Intersection over Union (IoU) score
greater than a given threshold. If a segmentation mask does
not have an IoU score greater than a given threshold with
any ground truth mask, it will be considered as a false posi-
tive (FP). A ground truth mask not being segmented will be
considered as a false negative (FN). Precision and Recall are
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(d) Edge MRCNN (ResNet)+syn

(e) Edge MRCNN (Swin)+syn

(f) HER-CNN

Figure 7. Examples of abnormally shaped nuclei segmentation for HER-CNN and comparison methods with ground truth annotation. The
confidence threshold for each method is set differently to perform better segmentation. The different nuclei instances are shown in different

colors.

.. _ TP _ TP
defined as Precision = TP1FP and Recall = TPLFN-

In order to have a generalized evaluation over a wide range
of confidence score thresholds and IoU thresholds, we adopt
the widely used Average Precision and the mean Average
Precision metrics. The Average Precision (AP) is defined
as the area under the Precision-Recall curve [8], which is
drawn by calculating Precision and Recall with a set of con-
fidence score thresholds from 0 to 1 with a 0.1 increment.
The mean Average Precision (mAP) is defined as the av-
erage of AP scores for a set of IoU thresholds. We choose
three commonly used thresholds for AP and mAP, which are
AP with IoU threshold at 0.5 (AP50), AP with IoU thresh-
old at 0.75 (AP75), and mAP with a set of IoU thresholds
from 0.5 to 0.95 with a 0.05 increment (mAP). AP50 is the
evaluation metric for the PASCAL VOC Object Detection
Challenges [ 12], AP75 is a stricter metric that is used for the
MS COCO Challenge [28], and mAP is the most general-
ized metric among these three and is used as the main eval-
uation metric for the MS COCO Challenge [28]. The evalu-
ation results of our proposed method with other comparison
methods are shown in Table 1. The comparison methods are
only trained with real microscopy images from our training
dataset. For the evaluation of U-Net segmentation, since it
is a semantic segmentation method, each closed contour on
the U-Net segmentation mask will be considered as an in-
stance. The abnormally shaped nuclei segmentation results

mAP Score

o 100 200 300 400 500
Number of sythetic images added to training set

—e—MRCNN(ResNet) MRCNN(Swin)

Figure 8. Mean Average Precision (mAP) as a function of the
numbers of generated microscopy images in the training set.

of HER-CNN and the comparison methods with ground
truth annotation are shown in Figure 7.

4.4. Ablation Study

The use of synthetic ground truth images in training .
In our proposed HER-CNN, in order to improve the abnor-
mally shaped nuclei segmentation, we synthetically gener-
ate microscopy images with abnormal nuclei that are diffi-
cult to segment as described in Section 3.1. These generated
images will be combined with real images to train the Edge-
aware Mask R-CNNs. Since the synthetically generated
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Method AP50 AP75 mAP

MRCNN 64.73 63.11 51.46
Edge MRCNN (A=0.1) 67.10 64.69 52.97
Edge MRCNN (A=0.2) 69.37 66.61 54.48
Edge MRCNN (A=0.3) 67.03 6643 52.94

Table 2. This table shows abnormally shaped segmentation perfor-
mance with MRCNN and Edge MRCNN with different weights on
edge loss using AP50, AP75, and mAP as described in Section 4.3.

images are not guaranteed to be an accurate representation
of the real images, the segmentation networks may learn
the errors in the synthetic images. Also, our generated mi-
croscopy images are only for one type of abnormal nuclei,
too many synthetic images in the training set may cause a
class imbalance issue between various shapes of the abnor-
mal nuclei. Therefore, we conducted an ablation study to
determine how many synthetic images should be combined
with the real images in the training data. We randomly split
the 500 generated synthetic abnormally shaped nuclei im-
ages (described in Section 4.2) into 5 batches each having
100, 200 300, 400, and 500 images. We then combine our
30 real training images with these 5 batches to create 5 train-
ing sets. We train Mask R-CNNs with ResNet-50 and with
Swin-S and evaluate them using the validation dataset (de-
scribed in Section 4.1), the results are shown in Figure 8.

As can be seen in Figure 8, both the CNN and Trans-
former Mask R-CNNs have performance gains after syn-
thetic ground truth microscopy images combined with the
real training dataset, which indicates the effectiveness of
the use of the synthetic training images. However, the per-
formance of both Mask R-CNNs starts to decrease as the
number of generated microscopy images in the training set
increases. This number is 300 for the Mask R-CNN with
ResNet-50, and 400 for the Mask R-CNN with Swin-S.
Therefore, in our experiments, we use 300 synthetic ground
truth images combined with real images to train the Edge-
aware Mask R-CNN with ResNet-50. We use 400 synthetic
ground truth images combined with real images to train the
Edge-aware Mask R-CNN with Swin-S.

The edge loss L., in the Edge-aware Mask R-CNN.
The edge loss L¢gge in our proposed method is designed to
add additional edge awareness to the original Mask R-CNN,
therefore it can better distinguish between the abnormally
shaped nuclei and the typical elliptical nuclei. However, if
the weight A of the edge loss Lcgge is too big, then this
loss will overwhelm the multi-task loss function described
in Section 3.3, resulting in inaccurate segmentation. For
this reason, we conducted an additional ablation study to
determine the proper weight A of the edge loss Lcqqe used
in our HER-CNN. We use real images to train the Edge-
aware Mask R-CNNs with different weights A\ and evaluate

the result using the validation data. For this experiment,
we only use ResNet-50 as the backbone architecture, since
both the CNN and Transformer Edge-aware Mask R-CNN
share the same multi-task prediction structure. The results
are shown in Table 2. With the proper weights for the addi-
tional edge loss to the Mask R-CNN, the Edge-aware Mask
R-CNN performs better than the original Mask R-CNN for
abnormally shaped nuclei. Furthermore, we can see when
A = 0.2, the Edge-aware Mask R-CNN performs the best
among other weight settings. Therefore, in our experiments,
we use A = 0.2 for HER-CNN.

4.5. Discussion

In Table 1, the original Mask R-CNN performs the best
among the four comparison methods, for this reason, we use
Mask R-CNN for HER-CNN. Although the CNN and the
Transformer Edge-aware Mask R-CNNs show similar per-
formance in Table 1, there are many differences in the actual
segmentation masks. Comparing Figure 7d and Figure 7e,
we can see that the false positives and the false negatives in
the two masks are different although they are trained with
similar data. Therefore, the ensemble processing in HER-
CNN improves the performance for abnormally shaped nu-
clei segmentation by fusing these two masks from CNN and
Transformer. HER-CNN was compared with other meth-
ods used for nuclei segmentation including U-Net, StarDist,
CellPose, and Mask R-CNN. The evaluation (Table 1) based
on the AP50, AP75, and mAP scores shows HER-CNN out-
performs other methods.

5. Conclusion and Future Work

In this paper, we described Hybrid Edge Mask R-
CNN (HER-CNN) that uses ensemble processing to fuse
the results from the Transformer and CNN Edge-aware
Mask R-CNNs for abnormally shaped nuclei segmentation.
The evaluations demonstrate HER-CNN outperforms other
CNN approaches for abnormally shaped nuclei segmenta-
tion. The ablation studies indicate the effectiveness of the
use of synthetic training images and the Edge-aware Mask
R-CNN. Note that using synthetic ground truth images,
HER-CNN can perform very well for abnormally shaped
nuclei segmentation with only 30 annotated images.

In the future, we will focus on improving the quality
of the synthetically generated ground truth images, which
could reduce the need for real annotated images. We will
also investigate semi-supervised and weakly-supervised
learning approaches, which would allow one to learn from
unlabelled images.
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