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Abstract

Microscopy is ubiquitous in biological research, and
with high content screening there is a need to analyze im-
ages at scale. High content screening often uses multichan-
nel, epifluorescence microscopy (multiplexing), and fluores-
cent images often exhibit channel mixing, or bleed-through
effects, which need to be corrected before subsequent analy-
sis (e.g. segmentation, feature extraction, etc). In this paper
we present Theia, an algorithm for bleed-through correc-
tion that requires little to no a priori information about the
source or content of the images (i.e. number of channels).
Theia uses a novel neural network architecture inspired by
Siamese Networks and Least Absolute Shrinkage and Se-
lection Operator (LASSO) regression to learn convolutional
filters that remove bleed-through. We use metrics for quan-
tifying bleed-through, and show Theia exhibits good capac-
ity for removing bleed-through on both synthetic and real
fluorescent images. Theia was benchmarked to demonstrate
scalability across diverse datasets with varying degrees of
bleed-through and numbers of channels. Since Theia learns
a set of convolutional kernels using popular neural network
frameworks, it can make use of GPU acceleration when
scaling to large datasets.

1. Introduction

Multiplexed fluorescent microscopy has enabled signif-
icant advances in biology and medicine, permitting spatial
localization of cellular structures. This technique produces
images with high signal-to-noise ratios, providing more ac-
curate visualizations of proteins, lipids, DNA, and other

biological molecules. Multiplexing enables one to visu-
alize the physical location of multiple molecules simulta-
neously (in separate channels), and is often used to show
where molecules might associate with each other. Differ-
ent molecules can be tagged with different fluorophores,
so overlapping fluorescence indicates interactions between
those molecules. However, images from such microscopes
exhibit bleed-through effects, where signal from one chan-
nel can be seen in adjacent channels [14].

Figure 1A shows excitation and emission spectra of dif-
ferent fluorophores. Bleed-through occurs when multi-
ple fluorophores have overlapping excitation and emission
spectra, permitting multiple fluorophores to be excited by
the same light and allowing multiple fluorophores to pass
through an emission filter. This results in multiple signals
being captured in a single image, where undesired signals
are said to be “bleeding through” the filter and become de-
tectable in the image. The three fluorophores shown demon-
strate a case where the spectra and their associated filters
have significant overlap with each other. In this case, when
excitation light is projected onto a sample, multiple fluo-
rophores are excited, although with different magnitudes,
causing bleed-through and producing overlapping signals
in captured images [23, 24]. Therefore, bleed through is
a function of spectral overlap, wide emission filters, and in-
tensity of overlapping signal.

Bleed-through can be mitigated, in part, by careful selec-
tion of fluorophores that have minimal overlap in their exci-
tation and emission spectra and by a careful selection of the
excitation and emission filters. However, this is not always
possible and even when it is, minuscule amounts of overlap
among the spectra can still cause significant bleed-through
between channels. Recent work found that bleed-through
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Figure 1. A visual explanation of bleed-through and overview
of Theia. Panel A shows the excitation spectra (dotted lines)
and the emission spectra (solid lines) of three fluorophores. The
three excitation filters are shown in the top row as three translu-
cent rectangles, and three emission filters are shown in the bot-
tom row. Light passes through one excitation filter, and light from
excited fluorophores passes through the corresponding emission
filter. Panel B gives an overview of how Theia performs bleed-
through correction. The first row shows how a multichannel image
is used by Theia to learn a set of image filters (convolutional ker-
nels) for each channel. The middle row shows how learned filters
are used to extract bleed-through signal from an image. The re-
sulting bleed-through signal is subtracted from the original signal
(bottom row).

levels as low as 2% are enough to contaminate results [11].
Bleed-through correction is an important early step in

workflows that analyze fluorescent signal in biomedical im-
ages. Examples include quantification of relative fluores-
cence intensity to assess changes in a signal within a region
of interest, segmentation of structures in different chan-
nels [18], and evaluation of the correlation among structures
from different channels. If not dealt with correctly, bleed-
through artifacts cause problems such as an increased false-
positive rate in classification and identification algorithms,
and artificial increases in the correlation between objects
that were targeted with different fluorophores.

Previous approaches to correct for bleed-through in flu-
orescent images have used various machine learning algo-
rithms, [11, 13, 22] ranging from clustering to generalized
linear models. These approaches often (1) require a priori
information about number of channels, (2) need informa-
tion/annotations on the content being imaged, (3) do not
account for spatial shifts in signal due to optical aberra-
tions, and/or (4) are not designed for scalability in high
throughput situations. These gaps can lead to time con-
suming configuration, the need for domain expertise that
are not always available, an inability to analyze large data,
extremely lengthy processing pipelines, and/or a less than
optimal bleed-through estimation.

In this manuscript, we introduce a simple, scalable, and
performant algorithm for bleed-through correction of multi-
channel images. We call this algorithm Theia, and it ad-
dresses the current gaps by: (1) requiring nominal a priori
knowledge of how the samples were collected, (2) accept-
ing arbitrary number of channels, (3) performing chunked
processing to operate on arbitrarily large images, and (4)
leveraging parallelized computation on GPUs for fast ex-
ecution. To help others use Theia, we have packaged the
algorithm for use in the following formats: a command-
line tool and Python package via GitHub1 and PyPI2, a
docker container3, and a plugin for the Web Image Process-
ing Pipelines (WIPP)4

2. Related Works
Algorithms for bleed-through correction are an active

area of research, and some state-of-the-art approaches are
presented in this section. Theia is benchmarked, in Sec-
tion 4, against those with an open-source implementation.

Least Absolute Shrinkage and Selection Operator

Generalized Linear Models (GLMs), and LASSO in par-
ticular, have long been used for bleed-through correction.
In [12], the authors used LASSO to find a sparse linear com-
bination of channels that removed the most bleed-through
from each channel of a large (42, 906× 29, 286 pixels) im-
age. The authors provide an open-source implementation
in Python, and while the method performs as expected, it
has a human-in-the-loop element in the requirement of a
manually annotated Region of Interest (RoI) in the image.
This RoI needs to contain background, auto-fluorescence,
and the fluorescence signal of interest; thus necessitating
careful manual inspection. Additionally, the proposed algo-

1https://github.com/polusai/theia
2https://pypi.org/project/theia-py/
3https : / / hub . docker . com / r / polusai / bleed -

through-estimation-plugin
4https : / / github . com / PolusAI / polus - plugins /

tree / master / regression / polus - bleed - through -
estimation-plugin
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rithm is computationally intensive and took approximately
6 hours on a 32-core CPU running at 3.10 GHz with 256
GB of RAM [12].

The requirements of careful manual annotation of RoIs
and the prohibitive computational cost render this model a
poor fit for large image datasets and applications where au-
tomation is desired. Further, an application of the vanilla
LASSO algorithm is susceptible to false-positives when the
same object is tagged with multiple fluorophores. In such
cases, LASSO can remove such objects from both channels.

k-Means Clustering to Label Fluorophores

In [13], the authors describe an unsupervised algorithm,
Learning Unsupervised Means of Spectra (LUMoS), pro-
vided as an ImageJ plugin, to learn and separate the spectral
signatures of fluorophores. The authors assume that fluo-
rophores are spatially separated, i.e. each pixel is occupied
by exactly one fluorophore. LUMoS first normalizes the
intensity at each pixel across all channels and then uses k-
means++ [2] to approximate each spectral signature in the
image as one of the k clusters. For the k-means algorithm,
the authors assume one spectral signature for each of the flu-
orophores and one additional signature for the background.
Each pixel is assigned to one of k spectral signatures. Fi-
nally, LUMoS creates a new image with k channels, with
one channel for pixels in each spectral signature.

By working with images in which fluorophores are not
colocalized, LUMoS was able to identify the signal of each
fluorophore even when the number of fluorophores was
larger than the number of measurement channels. The au-
thors demonstrated this by separating the signals of six flu-
orophores from an image with four channels. However, this
method assumes that fluorophores are spatially separated,
and requires knowledge of the number of fluorophores.

Linear Unmixing by Solving the Linear Least
Squares Problem

As described in [22], bleed-through correction can also
be formulated as a linear unmixing problem. In this work,
model used a priori knowledge about which fluorophores
(and their subsequent emission spectra) the specimens were
labelled with to enable them to correct for bleed through
and distinguish between a large number of spectrally near
fluorophores. By recording the emission spectra at multiple
excitation wavelengths, they increased the number of obser-
vations in the linear system, thus increasing the number of
separable fluorophores.

However, they also labelled each organism with exactly
two fluorophores, adding a constraint to the linear model,
which allows for more robust solutions. This model, while
effective within the above bounds, was limited by the signif-
icant amount of required information on the fluorophores,
and the strict limitations on the experimental design. Also,

this approach became prohibitively computationally expen-
sive for larger images, and images with many objects.

Independent Component Analysis (ICA) for Sepa-
rating Spectra

Spectral unmixing is particularly ameanble to being for-
mulated as a Blind Source Separation problem and lends
itself well to an application of ICA [10, 20].

In [20], the authors used ICA to separate dyes in multi-
channel fluorescent microscopy images. In strictly con-
trolled scenarios where fluorophores are either spatially sep-
arated or the fluorophores have discrete overlap with sharp
boundaries, this method demonstrates good signal separa-
tion and converges in a small number of iterations. How-
ever, in the case of continuous spatial overlap of the fluo-
rophores with smooth gradients, the method requires at least
two orders of magnitude as many iterations and even then,
it converges to a much higher error value.

While ICA can perform well at spectral unmixing, it has
some intrinsic limitations. ICA requires that the number
of measured channels to be at least as large as the number
of fluorophores [10]. Further, since ICA requires matrix
inversions and decompositions, it requires that all images
and channels be loaded into memory at the same time, thus
severely limiting its feasibility on large images such as [12].
In addition, the Independent Components (ICs) identified
by ICA are not guaranteed to be in any particular order, and
thus ICA erases any traceability from ICs, i.e. the separated
fluorophores, to the original measured channels in the im-
age, thus needing experts to identify what new “channels”
are associated with which fluorophore.

3. Methods

Theia is an algorithm for learning convolutional kernels
that extract bleed-through signal. A brief overview of the
method is shown in Figure 1B, and discussed below. Theia
requires minimal a priori knowledge of fluorphore spectra
It works with multi-channel images and does so scalably
both in terms of computational efficiency and the sizes of
the images involved.

Theia draws inspiration from Least Absolute Shrinkage
and Selection Operator (LASSO) [21] and Siamese Neural
Networks [4, 6, 8, 19]. Theia generalizes Siamese Networks
to use an arbitrary number of arms, each of which learns a
convolutional kernel to correct for bleed-through and spatial
shifts by minimizing an objective function that is mathemat-
ically identical to the LASSO objective, i.e. generalized lin-
ear regression with an l1-norm penalty on the coefficients.
We call this generalization of Siamese networks a Dynami-
cally Branched Neural Network (DBNN) because the neural
network architecture changes as a function of the number of
input channels and channel overlap.
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Dynamically Branched Neural Networks

Theia relies on a novel neural network architecture
which is a generalization of Siamese Networks and is im-
plemented using Tensorflow [1] and Keras [7]. Theia si-
multaneously learns a number of DBNNs, with each DBNN
learning the convolutional kernels required to minimize
bleed-through in a single “target” channel. It is dynami-
cally branched in that the number of arms of the network
are dependent on the number of channels in the and the
amount of channel overlap to consider when learning bleed-
through kernels. Figure 2 shows an example of one such
DBNN, targeting channel 2 in a multi-channel image, as-
suming that bleed-through is present only from up to one
adjacent channel on each side of the wavelength spectrum.
Similar networks can be trained with an arbitrary number
of total channels and an arbitrary number of bleed-through
contributing channels. The DBNN has a number of arms,
each with its own independent convolutional network (in
our case, this consists of a single convolutional layer with
a one-channel filter). Each arm is responsible for applying
a filter to an adjacent channel (i.e. a channel that may con-
tribute bleed-through to the target channel), or to an interac-
tion term between the target and an adjacent channel. Each
arm passes on the filtered signal, along with the convolu-
tional filter, to an Aggregation Layer. The aggregation layer
computes and applies the LASSO loss to the DBNN. Thus,
Theia learns the convolutional kernels required to bleed-
through in multi-channel images.

For a target channel Ci and a channel overlap of o, we
compute interaction terms with each contributing channel:
Iji =

√
Ci · Cj where j ∈ {i − o, i − o + 1, ..., i + o −

1, i + o}/{i}. Each contributing channel and each interac-
tion term then passes through a convolutional layer with a
single trainable kernel, producing contribution estimations
Cj

i and interaction estimations Iji , along with correspond-
ing kernels kCj

i and kIji . These, and Ci, are all then passed
to an Aggregation layer Ai, the purpose of which is to apply
the LASSO loss to the DBNN. This loss is given by:

1

|p|
∑
p

(
ci −

∑
j

Cj
i −

∑
j

Iji

)2

+ λ
1

|k|
∑
k

(∣∣kCj
i

∣∣+ ∣∣kIji ∣∣) (1)

where λ is the relative magnitude of the l1-penalty, p is the
set of pixels and k is the set of kernel coefficients. Equa-
tion 1 is equivalent to the LASSO objective, as described in
the following subsection.

LASSO

The Least Absolute Shrinkage and Selection Operator
(LASSO) (from scikit-learn [15]) is a generalized linear

C1

I1

C2
1

C2

I3

A2

C3

C2
3I21 I23

Figure 2. A DBNN architecture from Theia. The Dynamically
Branched Neural Network architecture that has a number of arms
proportional to the number of input channels. In this figure, three
channels are shown (top row, C1 − 3), and the bleed-through from
C1 and C3 into C2 is learned. All convolutional layers consist of
one trainable kernel and zero bias. Interaction terms are calculated
(I1, I3), then convolutional layers are applied to each channel and
interaction term (C2

1 , C2
3 , I21 , I23 ). Outputs from the convolutional

layer are then combined in the aggregation layer (A2) and the loss
is back-propagated.

model with an l1 penalty on its coefficients. The l1 penalty
produces a sparse set of coefficients, which is important to
help prevent false positives because some fluorophores may
not have overlapping spectra and cannot bleed into each
other. The objective of LASSO, as implemented in scikit-
learn, is to minimize:

N∑
i=1

(
yi −

∑
j

βjxij

)2

+ λ

p∑
j=1

∣∣βj

∣∣ (2)

where the xij’s are the standardized predictors, the yi’s are
the centered response values for i = 1..N and j = 1..p, the
βj’s are the coefficients to be learned, and λ is a tuning pa-
rameter that controls the relative strength of the l1 penalty.

To predict the bleed-through coming into a target chan-
nel, the pixels for the target channel are the response values
and corresponding pixels from neighboring channels are the
predictors. The learned coefficients are the factors by which
neighboring channels bleed into the target channel. Intu-
itively, the LASSO objective, in 2, is minimized when all
bleed-through has been subtracted away. This method is
common in literature [11–13, 22] and was used in [17].

Theia builds upon this with some novel improvements.
First, it intelligently selects a small subset of the data which
is most likely to contain bleed-through. Second, it uses in-
teraction terms which helps to preserve the real signal espe-
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cially in the case of colocalized fluorophores.
Given any fixed set of fluorophores and emission filters,

the brightest regions in a channel will bleed through the
most into other channels. Thus, Theia selects the bright-
est patches (tiles) from each channel. This selection has the
dual benefit for removing the human-in-the-loop element
of manual curation of data, and significantly reducing the
amount of data used to train the model. This tile selection
also allows Theia to scale to arbitrarily large images.

Theia uses interaction terms as additional predictors in
the model. An interaction term is the pixel-wise geometric
mean of the target channel with a neighboring channel that
contributes bleed-through. As a pre-processing step, pixel
intensities are normalized to the [0, 1] range, with low val-
ues representing background regions and high values repre-
senting foreground objects. Thus, interaction terms capture
colocalized objects (objects that have been tagged with mul-
tiple fluorophores) and bleed-through of the target channel
into neighboring channels. This leaves the primary terms to
estimate bleed-through. While Theia uses both the primary
and interaction terms to train the model, it only subtracts
the primary terms to produce the corrected images. This
leaves colocalized objects relatively untouched in the target
channel. The loss for this GLM is:∑

i

(
yi −

∑
j

Cijxij −
∑
j

Iij
√
xijyi

)2

+ λ
∑
i,j

(∣∣Cij

∣∣+ ∣∣Iij∣∣) (3)

where the Cs are the coefficients for the primary terms and
the Is are the coefficients for the interaction terms.

Equation 3 is adapted to the form in Equation 1 by di-
viding the first term by the number of pixels and the second
term by the number of kernel coefficients. This re-scales the
loss values to a range which is more manageable for neural
network frameworks, like TensorFlow, to optimize.

As an additional optimization, it is important to note that
not all channels need to be included as terms in the model.
The tails of the emission spectra of fluorophores tend to
quickly decrease from the peak emission wavelength, as
seen in Figure 1A. Thus, light from a majority of fluo-
rophores will bleed into only a small number of neighbor-
ing emission filters. If the “wavelength order” of emission
spectra is known, Theia can take advantage of this informa-
tion by ordering the channels by wavelength and then only
fitting models with terms for a small number of adjacent
channels rather than among all pairs of channels.

Datasets

The mechanism of bleed-through inspired the following
approach to synthetic data generation, which resulted in a
more realistic synthetic bleed-through data set for bench-

marking. Complementing this dataset, metrics were devel-
oped to validate and compare Theia against competing ap-
proaches. Various combinations of parameters were used to
generate synthetic data for controlled tests of Theia and to
explore the various aspects of its performance. In addition,
a real-world dataset was obtained from [12], henceforth re-
ferred to as the “RatBrain Data”, and used for benchmark-
ing all algorithms.

Synthetic Data

Synthetic data were generated by simulating various as-
pects of the process of capturing an image on a micro-
scope, including small spatial aberrations, multiple fluo-
rophores, corresponding filter-cubes, and simulated bleed-
through. Spatial aberrations were generated using random
mixing kernels of shape 3x3 with values sampled from a 2d
Gaussian distribution whose peak is offset from the center
of the kernel by a half pixel unit in a random direction. Each
channel in an image is convolved with a new random spa-
tial offset kernel. Then, bleed-through is computed using
the sum of the target channel and the neighboring channels,
weighted by the strength of the emission of the correspond-
ing fluorophore through its filter cube. The resulting signals
contain synthetic bleed-through from the adjacent channels.

Representative images of synthetic bleed-through are
shown in Figure 3. These are limited to two-channel images
for the purpose of demonstration. Five sets of synthetic data
were generated. The first dataset consists of images contain-
ing only Poisson noise and is shown in Figure 3A. Theia is
expected to perform poorly on this dataset since there is no
distinction between bleed-through and noise.

The second and third datasets were generated using im-
ages from the TissueNet data [9]. For the second set, nu-
clear masks were randomly partitioned into two sets with
ten percent being in common among the two sets. The
overlap between the two sets represents cases where, in ad-
dition to one channel bleeding into another, there is also
co-localization (i.e. objects stained with multiple fluo-
rophores). These objects represent signal that should not
be removed. This represents an ideal case where the back-
ground is always dim and the objects of interest all present
with strong, uniform signal. This is shown in Figure 3B.
The third set is the same as the second set except that
the corresponding intensity images from the TissueNet data
was used instead of the nuclear masks. This represents the
case where the background is dim and the objects of interest
are present with signals of varied strengths. This is shown
in Figure 3C.

The fourth and fifth datasets were generated using the
RatBrain dataset. The fourth dataset contains the same Field
of View (FOV) from different slices in the Rat Brain data,
and the strength of the original signal is left un-normalized.
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Figure 3. Five datasets with synthetic bleed-through. Row A
shows images that only contain random Poisson noise. Row B
shows images in which the objects have a bright and uniform sig-
nal. Row C shows the same images as row B but the objects have
varied signal. Row D shows images from the same FOV from the
Rat Brain data but with a large spatial offset. Row E shows im-
ages from different FOVs and channels from the Rat Brain data
with the two images having been normalized for relative signal
strength. The first and third columns show signal from Alexa Fluor
488 (red) and Alexa Fluor 512 (cyan) respectively, by simulating
their corresponding full-width-half-max filters. The middle col-
umn shows the images form the first and third columns overlaid
with each other so that the objects bleeding into other channels
show in white, or with a significant tint, instead of red or cyan.

This represents the case where there is some background
noise, the objects present with varied signal, and the differ-
ent channels have different intensity profiles, i.e. the emis-

sion spectra of the fluorophores have their peaks at different
heights. This is shown in Figure 3D. The fifth dataset con-
tains different FOVs from the same replicate, and has had
the signals normalized so that all channels have the same
relative strength. This is shown in Figure 3E.

RatBrain Data

This dataset contains images of five slices from a rats
brain, each of which was stained with ten different flu-
orophores. Starting with the FOVs, we applied the Ba-
SiC algorithm [16] to correct for flat-field effects. With-
out this step, the centers of the FOVs would be brighter
than the edges, significantly impacting the estimated bleed-
through components. Next, we used the MIST image stitch-
ing tool [3, 5] to produce 41, 906 × 29, 286 sized images
with 10 relevant channels for each of the five slices, forming
the full RatBrain data.

We then applied Theia to estimate the bleed-through
components for each channel and we subtracted away this
component to correct for bleed-through. Since the authors
provide information on the different fluorophores used [12]
in the imaging process, we used this knowledge to order the
channels by the wavelength of the emission filter of the cor-
responding fluorophores. This allowed us to restrict Theia
to look for bleed-through contributions from one adjacent
channel on each side on the wavelength scale.

4. Results
By its design, Theia is expected to perform well on di-

verse datasets. Two metrics were used to quantify the bleed-
through correction in the images: Root Mean Squared Er-
ror (RMSE) and Pearson’s Correlation Coefficient (PCC).
Each metric was calculated on every pair of channels in the
images before and after bleed-through correction. These
metrics were chosen to measure relative similarity and the
covariance among pairs of channels in the image before and
after applying Theia. Our expectation is that when bleed-
through is present, the signal across channels will be cor-
related and after bleed-through correction the correlation
should decrease while the RMSE should increase (assum-
ing co-staining is not perfect between channels).

Visually, Theia successfully removes synthetic bleed-
through as expected (Figure 4A). Inspection of the learned
filters confirms that the primary filters (bleed-through con-
tributions) are well learned since channels with bleed-
through components have parameters with larger magni-
tudes than channels that do not have bleed-through compo-
nents (Figure 4B). Finally, quantitative analysis of RMSE
and PCC shows expected changes before and after bleed-
through correction (Figure 4C). Before bleed-through cor-
rection, RMSE is high and PCC is moderate. After bleed-
through correction, RMSE is still relatively high but PCC is
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Figure 4. Theia bleed-through correction. A shows three repre-
sentative original images, mixed images (i.e. after adding syn-
thetic bleed-through) and corrected images (i.e. after applying
Theia to the mixed images.) B shows the bleed-through correc-
tion kernels learned by Theia. The top row in B shows the primary
(bleed-through) kernels and the bottom row shows the interaction
kernels, while column i → j shows the kernels for bleed-through
from channel i into channel j. C shows a grouped bar plot of
bleed-through metrics on the images, where the pair of bars for
each x-axis label show PCC on the left and RMSE on the right.
The three groups, from left to right, are of metrics between differ-
ent channels before bleed-through correction, between the same
channels compared before and after bleed-through correction, and
between different channels after bleed-through correction.

much lower across channels.
Figures 5 and 6 show a summary of an exhaustive

and quantitative performance analysis of Theia on various
datasets. For each dataset, Theia was used to generate cor-
rected images, and this process was timed for 100 replicates
on each dataset. The run-time for Theia scales linearly with
increasing channel overlap and quadratically with increas-
ing kernel size and image size. The run-time is independent
of the combination of wavelengths and to image content be-
tween variants of the same dataset.

The Poisson Noise dataset is composed entirely of

Table 1. Comparison of Theia to two methods using PCC and
RMSE. We compare Theia against LUMoS [13] and the version
of LASSO from [17]. For PCC, high positive values are better
whereas for RMSE, low values are better. The best performer for
each metric in each column is in bold.

PCC Theia LUMoS LASSO
Poisson 0.06 0.73 0.76

Uniform TissueNet 0.91 0.88 0.90
Varied TissueNet 0.97 0.92 0.80

Normalized RatBrain 0.99 0.95 0.82
RatBrain 1.00 0.96 0.92
RMSE Theia LUMoS LASSO
Poisson 0.23 0.70 0.56

Uniform TissueNet 0.12 0.10 0.17
Varied TissueNet 0.10 0.24 0.22

Normalized RatBrain 0.15 0.12 0.29
RatBrain 0.11 0.15 0.19

poisson-random noise in images, and we expect the bleed-
through correction algorithm to be unable to identify bleed-
through in the images. Indeed, Figure 6 shows that the PCC
is nearly zero and RMSE is relatively high compared to the
other four datasets. For the other four datasets, we consis-
tently see that the corrected images have a high PCC with
input images and also have a low RMSE.

Comparison with Other Methods

Table 1 shows a quantitative assessment of Theia against
two other methods. The ImageJ plugin for LUMoS [13] was
used for each of the five datasets. As a second point of com-
parison, the bleed-through correction portion of the work-
flow from [17] (which uses the LASSO model from scikit-
learn) was used. With the exception of the dataset consisting
entirely of Poisson noise, Theia outperforms these methods
on all datasets as measured by PCC. When measured with
RMSE, the results are split evenly between Theia and LU-
MoS. Unlike Theia, however, LUMoS assumes that fluo-
rophores are spatially separated in images.

Comparison on the RatBrain Data

On an Arch Linux machine (kernel 6.1.3-arch1-1) with
16 cores (i7-211700KF) @ 4.9GHz, an NVIDIA GeForce
RTX 3080, and 128G of memory, Theia took approximately
437 seconds on the Rat Brain Dataset. On a MacBookPro
with the M1 Max and 64G of memory, Theia took approx-
imately 516 seconds on the same data. On a Dell XPS 13
with 8 cores (i7-1065G7) @ 3.9GHz, 16G of memory, and
no dedicated GPU, Theia took approximately 834 seconds
on the same data. These benchmarks show that Theia does
not require expensive hardware to run on large scale data. In
comparison, the original pipeline [17] for this dataset took
6 hours on a machine with 32 cores, an NVIDIA GeForce
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Figure 5. Run-time benchmarks for Theia, showing the combined time taken (in seconds) for learning and removing bleed-through with
different hyper-parameters. Every combination of kernel size (3 × 3, 5 × 5 and 7 × 7) and channel overlap (1 and 2) is shown. Five
different datasets and 9 different emission filter combos were used, covering a wide array of data structure and bleed-through amount. The
five datasets are grouped into three facets. 100 runs were performed for each combination of parameters. As shown in the graphs, run-time
is mostly independent of wavelength combination and does not vary within the two variants of the same dataset. Run-time does increase
with increases in channel overlap, kernel size and image size.

Figure 6. Theia bleed-through metrics. The y-axis shows the
mean RMSE while the x-axis shows the mean PCC between chan-
nels from each image before and after bleed-through correction.
Random Poisson noise exhibits low PCC and high RMSE values.
For each of the other 4 datasets, the PCC is very high while RMSE
is low, indicating effective removal of bleed-through without loss
of important information from each channel. Each data point is the
mean of 100 runs. The standard deviation among the 100 measure-
ments was always smaller than a factor of 10−3 of the mean and
is not shown on this plot.

GTX 1080 Ti, and 256G of memory, and required manual
RoI annotations. Theia requires less manual intervention
(no RoI selection) and has over an order of magnitude bet-
ter speed (26x) on the same dataset, despite running on far
smaller computational resources.

5. Discussion

Theia is a bleed-through correction algorithm inspired by
LASSO and Siamese Networks. Theia has a novel Dynami-
cally Branched Neural Network architecture with a LASSO
regression loss objective for use in multi-channel images.
Using this architecture Theia calculates kernels that invert
spectral mixing, rather than typical neural network outputs
such as images or embeddings.

Theia addresses many of the drawbacks of other algo-
rithms for bleed-through correction [11–13, 22]. It makes
no assumptions about the spacial locality, or overlap, of ob-
jects tagged with different fluorophores, removes the need
for manual RoI selection, and does not require any reference
images or the emission spectra of fluorophores. The only
requirement is that there be a one-to-one correspondence
between the channels and the fluorophores. An optional re-
quirement, for an optimization step, is that one know the
relative wavelength ordering of the channels.

Future work may alleviate the latter requirement, for ex-
ample, through the use of different (higher-order) interac-
tion components.

Additional work may be conducted to use the learned
filters for signal purification. While the bleed-through com-
ponent is “noise” to be removed from other channels, it may
be useful signal for the channel producing the bleed-through
effect.

Further future work can explore the effects of having a
higher fraction of colocalized objects in different channels.
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