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Abstract

Modern microscopes can image at atomic resolutions
but often reach technical limitations for high-resolution
images captured at the smallest nanoscale. Prior works
have applied super-resolution (SR) by deep neural networks
employing high-resolution images as targets in supervised
training. However, in practice, it may be impossible to
obtain these high-resolution images at the smallest atomic
scales. Approaching this problem, we consider a new super-
resolution training paradigm based on low-resolution (LR)
microscope images only, to surpass the highest physically
captured resolution available for training. As a solution,
we propose a novel multi-scale training method for SR
based on LR data only, which simultaneously supervises
SR at multiple resolutions, allowing the SR to generalize
beyond the LR training data. We physically captured low-
and high-resolution images for evaluation, thereby incor-
porating real microscope degradation to deliver a proof
of concept. Our experiments on periodic atomic structure
in STEM and STM microscopy images show that our pro-
posed multi-scale training method enables deep neural net-
work image SR even up to 360% of the highest physically
recorded resolution. Code and data is available on github1.

1. Introduction
Single image super-resolution (SR) describes the task of

creating a higher resolution and higher quality image from
a given typically physically captured low-resolution image.
Deep learning based SR techniques have been adopted to
various microscopy applications, such as medicine [1], cell
biology [16] and physics [10]. One promising application
are scanning microscopes, such as scanning transmission
electron microscopes (STEM) [38] and scanning tunneling
microscopes (STM) [3,37], which allow to access the struc-

1https://github.com/ifnspaml/SuperResolutionMultiscaleTraining
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Figure 1. STEM PSNR results with standard evaluation of a
4x SR with our proposed multi-scale (MS) training vs. a single-
scale (SS) and a bicubic interpolation (BI) baseline, depending
on the target zoom level with millionfold magnification (MX)
of microscope images of gallium nitride (GaN). MS and SS
models were trained based on low-resolution 5MX STEM images
Dtrain

STEM−5MX, the MS training oracle based on (downsampled)
high-resolution 20MX STEM images. All methods were evalu-
ated on high-resolution 20MX STEM images Dtest

STEM−20MX and
pseudo-real downsampled versions thereof (5MX...19MX). For
target zoom levels above 5MX, the proposed MS training leads
to better image quality than the SS and the BI baselines.

ture and properties of solid state matter down to the atomic
scale. They raster the sample using a probe and produce
2D images. However, capturing images at a higher pixel
density at a certain limit comes at the cost of decreasing im-
age quality due to time dependent drift effects [38], which
practically limits maximum pixel resolution. As these mi-
croscopes capture images point by point, causing the acqui-
sition time to scale quadratically with image resolution, the
effect of drift also becomes more prominent. While some
of these noise effects can be minimized by more expensive
equipment, allowing measurements at low temperature, the
general problem of drift effects is always present.

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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To overcome these limitations, DNN super-resolution [9,
11, 22–24, 27, 32, 39, 40] is investigated as an intriguing
approach to super-resolve images beyond the capabilities
of those scanning microscopes. SR deep neural networks
(DNNs) are usually trained in a supervised manner, mean-
ing that the reconstruction of a high-resolution (HR) im-
age from a low-resolution (LR) input is learned, requiring
paired LR/HR images [9, 11, 22–24, 27, 32, 39, 40]. For
scanning microscopes operating at nanoscale, it might not
be possible to measure high-resolution (HR) high-quality
reference images to learn the reconstruction from.

Motivated by these technical limitations, we consider
a new super-resolution training paradigm based on low-
resolution (LR) microscope images only. Following this
paradigm, our proposed multi-scale (MS) training method
generates new LR/HR training pairs from the available LR
images of a certain single zoom level, enabling training in a
supervised fashion. The approach is based on a configurable
data augmentation combining various image interpolation
techniques. MS training utilizes upscaling of the available
LR images to create multiple resolutions to crop new HR
training targets from, and then degrades these to obtain LR
training inputs. While image SR increases pixel resolution,
we use the term zoom level to describe the amount of pixels
that are used within an image to depict a given fixed area on
a sample, thereby incorporating magnification.

Fig. 1 shows that MS training (green curve) enables
DNN SR based on LR images only, significantly outper-
forming a common single-scale (SS) training. As SR per-
formance decreases for target zoom levels far beyond that
of the LR data, the method can be configured to converge to
bicubic interpolation for high target resolutions (red curve).

For our experiments, we captured data at two magnifi-
cations, such that physically recorded images of a low and
of a high zoom level are available, both of which contain
some degree of pixel-based noise. To quantify the meth-
ods’ results, we use the high zoom level images as ref-
erences during evaluation, while training is performed on
low zoom level images only. Following supervised SR
works [9, 11, 22–24, 27, 32, 39, 40], we do a standard eval-
uation on degraded versions of the reference images, al-
though using a noise-preserving degradation. Additionally,
we present a physical evaluation, which uses physically
recorded lower zoom level images (LR) as model inputs and
physically recorded higher zoom level images (HR) as ref-
erences, incorporating real-world microscope image degra-
dation into our evaluation.

Our contributions are the following. First, we propose a
multi-scale training method for SR models, which we apply
to periodic atomic structure STM and STEM microscopy
images. Second, we show that our method generalizes
to resolutions beyond those available in the training data.
Third, we provide a proof of concept for image SR beyond

the technical limits of microscopes, potentially increasing
the zoom levels of microscopes around the world.

2. Related Work
Image super-resolution Traditionally, convolutional
neural networks (CNNs) are well suited for SR
[11, 12, 20, 24, 31, 40], while newer techniques use
generative adversarial networks (GANs) [21] and with
the recent surge of attention [33] for vision models [13],
transformer-based architectures have shown state-of-the-
art performance for this task [7, 23, 26]. In this work,
we chose the SwinIR transformer model [23] for our
image SR experiments. These models were trained in a
supervised fashion, reconstructing HR reference images
from LR-degraded versions thereof, often obtained by a
simple degradation simulation, i.e., the direct downscaling
using the bicubic kernel [6]. Only few authors collect both
resolutions physically [5, 10], since the process is tedious
due to imperfections in the image acquisition. In this work,
we collect both resolutions but assume that HR reference
images are not available for training supervision but just
during evaluation.

Few initial works tackle this unsupervised SR problem
[2, 30, 34]. Shocher et al. [30] proposed a zero-shot SR
method (ZSSR), training a CNN for each LR test image
on generated LR/HR training pairs, downscaled, cropped
and degraded from the LR image. Building on that, Ahn
et al. [2] train a model using multiple LR images. An-
other approach utilizes GANs to learn super-resolution and
downscaling simultaneously from LR images [34]. How-
ever, these methods struggle with noisy real-world LR im-
ages. Both [2, 30] rely on bicubic kernels for image degra-
dation, filtering pixel noise in this process, while Wang et
al. [34] assume a zero-noise scenario. However, simple
scanning microscopes produce rather noisy images, mak-
ing these approaches appear suboptimal. Accordingly, our
multi-scale training integrates a dedicated noise-preserving
downscaling to simulate real degradation in input images.
Furthermore, our method generates LR/HR training pairs by
not only downscaling the LR image but also by upscaling it,
thereby creating HR targets at multiple scales for training.
Per HR target, we also create multiple degraded versions as
training inputs via a set of various interpolation functions,
including a noise-preserving degradation.
Super-resolution for scanning microscopy images Re-
cent works demonstrate that image reconstruction tech-
niques are able to generate high-resolution microscopy im-
ages from low-resolution scanning microscope measure-
ments. They especially focus on the increased acquisition
speed by utilizing sparse scanning patterns in combination
with learnable image reconstruction [15, 19]. To generate
the LR/HR training pair for supervised training, some ap-
proaches mask out pixels in the HR image to yield a sparse
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Figure 2. Overview of our proposed multi-scale training method (data generation) using a combination of image interpolation functions
to enable super-resolution beyond the highest physically captured zoom level available in the training data. Training data, consisting of
HR/LR pairs of image crops (x, x), is generated that spans multiple zoom level scales.

LR image [15], while others register physically captured
images of the same sample as LR and HR training pairs
[10,16,25]. In contrast to our work, these approaches follow
the supervised training paradigm having access to the HR
images to learn the reconstruction from, whereas we per-
form training only on the basis of LR measurements. Also,
hardly any of the former approaches considers microscopy
at atomic scale [15], which we operate on. Finally, we phys-
ically capture images at a high and low resolution [16], and
show how to evaluate on unpaired LR/HR images.

3. Proposed Super-Resolution Training
3.1. Training Paradigm

Deep learning based SR models are trained to recon-
struct a higher-resolution (HR) image from a given lower-
resolution (LR) image. In practice, however, with scanning
microscopes, noise effects become more prominent as mag-
nification increases, making it difficult or even impossible
to capture high-quality images at the smallest nanoscales.
Therefore, we assume that HR images cannot be acquired
for training, but only microscope data at low resolution.
Approaching this problem, we consider a new training
paradigm for training super-resolution models based on LR
microscope images only. To the best of our knowledge, we
are the first to address the LR-only training problem for mi-
croscope data, and for noisy LR training data in general.

3.2. Multi-Scale (MS) Training Method

Our proposed approach is a multi-scale training method,
trainable from LR data only, enabling supervised single-
image super-resolution models to deliver microscope im-
ages beyond the maximum of physically captured zoom lev-
els in the training data. The approach is based on data aug-
mentation by a combination of various image interpolation

techniques for image resizing. The method iterates over
a training dataset Dtrain and takes a raw grayscale image
x̌∈GH×W as input, where G = [0, 255] is the set of gray
values, while H , W define height and width, respectively.

Fig. 2 provides an overview of the core of our proposed
multi-scale training method, which is the dataset genera-
tion for training. Since the data is prepared for supervised
training, the data generation’s output is a set of paired high-
resolution (HR) target images x of size sh × sw and low-
resolution (LR) input images x of size h × w, whose res-
olutions differ by the super-resolution factor s>1. Each
training pair is generated by one out of four unique aug-
mentation sub-processes ( 1⃝ - 4⃝). In sub-process 1⃝, for
a raw low-resolution image x̌, HR training targets x are
simply obtained by cropping with no image scaling in-
volved. These crops are degraded to LR training model in-
puts using a set of various downscaling methods ( 1⃝). The
set of image scaling functions consists of nearest neigh-
bor [4], Lanczos [14], bilinear [4], bicubic [4], box [17]
and Hamming interpolation [18], resulting in six training
pairs per crop. In contrast to traditional image SR train-
ing [9, 11, 22–24, 27, 32, 39, 40], our proposed multi-scale
training aims to model a variety of HR↔LR transforma-
tions by additionally scaling the source images up, apply-
ing bicubic interpolation ( 3⃝), and down, applying nearest
neighbor interpolation ( 2⃝, 4⃝), thereby obtaining images
both at higher and lower resolution. In any case 1⃝, 2⃝,
3⃝, 4⃝, crops are generated. For 1⃝, 2⃝, 3⃝, crops are of size
sh×sw, while for 4⃝, crops are of size h×w. For LR model
input generation, 2⃝ and 3⃝ further follow the degradation
process of 1⃝. Sub-process 4⃝, however, takes the crops as
LR input images x, and generates the respective HR target
image x by bicubic upscaling. The method’s sub-processes
2⃝, 3⃝, and 4⃝ can be applied multiple times with different

values for factors α ∈ A, β ∈ B and γ ∈ Γ, resulting in
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Table 1. Multi-scale training configurations. The parameters
α, β and γ control the target zoom level ranges of the multi-scale
training data generated by the method’s sub-processes (see Fig. 2,
2⃝- 4⃝). Resulting target zoom level ranges (MX, nm) are given in

the far right columns. Markers refer to sub-process configurations
as used in the result figures (see Figs. 1, 5, 6, 7, 8).

SR Marker Parameters Target ranges
α β γ 1⃝, 2⃝, 3⃝ 4⃝

ST
E

M 4x
(MX)

0.25:0.95 - - 1.25-5 -
- 1.1:2 - 5-10 -

0.25:0.95 1.1:2 - 1.25-10 -
0.25:0.95 1.1:2 0.55:0.75 1.25-10 11-15
0.25:0.95 1.1:3.4 0.85:0.95 1.25-17 17-19

- 1.1:3.4 0.85:0.95 5-17 17-19

ST
M

2x
(nm)

- 1.04:1.71 - 24-14 -
0.5:0.96 1.04:1.71 - 48-14 -

- 1.04:1.71 0.86:0.92 24-14 14-13

(a) GaN sample (b) Graphite surface

Figure 3. Physically captured microscopy images: (a) STEM im-
age of a gallium nitride (GaN) sample with magnification of 20MX
(b) STM image of a graphite surface with magnification to 12nm.

a multi-scale zoom level range. Since β specifies a factor
for upscaling, we have B ⊂ (1,∞) ( 3⃝), while A ⊂ (0, 1),
Γ ⊂ (0, 1] represent ranges of downscaling factors ( 2⃝, 4⃝).

We use various multi-scale training configurations gen-
erating training data based on LR STEM data Dtrain

STEM−5MX

and LR STM data Dtrain
STM−24nm, the specifics of which we

show in Table 1. It displays the parameterization of α, β,
and γ and corresponding notations incorporating the MX
or nm scale for better readability of results. The step size
within the respective intervals αmin :αmax, βmin :βmax, and
γmin : γmax corresponds to integer MX or nm values (see
”target ranges” column), with the exception of αmin = 0.25
and αmax = 0.95, where a step size of 0.05 for 4xSR is
used. As notation in the later results figures, we list the
sub-processes used in the respective configuration and, fol-
lowing in parentheses, the generated range of target zoom
levels (MX, nm) from minimum to maximum. The ranges
for 1⃝, 2⃝, 3⃝ are listed jointly, since they use the same degra-
dation process to generate LR images. For example, ”MS
T. 1⃝, 2⃝, 3⃝(1.25-17) 4⃝(17-19)” denotes a multi-scale (MS)
training, where the first three sub-processes operate with
target zoom levels ranging between the minimum and max-

Table 2. Microscopy datasets for STEM and STM: Im-
ages showing periodic structures of solid matter are investigated.
”Scale” refers to magnification (STEM) or is the nanoscale im-
age size (STM). ”Scale parameter” L is proportional to the STEM
(MX) scale and antiproportional to the STM (nm) scale.

Scale L # Samples in Notation
train/val/test

ST
E

M 5MX 1 8 1 1 DSTEM−5MX = DLtrain

20MX 4 7 1 1 DSTEM−20MX = DsLtrain

ST
M 24nm 1 205 21 21 DSTM−24nm = DLtrain

12nm 2 439 45 45 DSTM−12nm = DsLtrain

imum of 1.25 and 17. Training data was also generated by
4⃝ for target zoom levels 17, 18, 19. ”MS T. 1⃝, 3⃝(5-10)”

indicates the integer target zoom level range 5...10 and that
2⃝, 4⃝ were not used for training data generation (no α, γ).

4. Datasets and Evaluation Setup
4.1. Microscope Datasets

In this work, we either use real data recorded by a scan-
ning transmission electron microscope (STEM) or by a
scanning tunneling microscope (STM). All samples from
the STM show graphite surfaces, while the STEM im-
ages show gallium nitride (GaN). The STEM was a JEOL
Neoarm F200 with aberration correction, while the STM
images have been captured by a table-top Nanosurf
NaioSTM at room temperature under air. Example images
are shown in Fig. 3. All images depict materials with pe-
riodic atomic structure, which we focus on. Table 2 pro-
vides an overview of the datasets used. The scale refers to a
magnification (STEM) or is the nanometer image width and
height (STM). We introduce the scale parameter L, which
is proportional to the STEM (MX) magnification and an-
tiproportional to the STM (nm) scale, thereby harmonizing
both the STEM and the STM scales. A large L indicates a
higher zoom level. The number of samples refers to images
of size 2048x2048 for STEM and 512x512 for STM. For
the experiments, we split the data into training, validation,
and test sets proportionately at about 80%, 10%, and 10%,
respectively.

4.2. Overall Evaluation Setup

To evaluate our method, we use the peak signal-to-noise
ratio (PSNR) [29] and the multi-scale structural similarity
index measure (MS-SSIM) [36] as common image quality
metrics, which are established in the fields of image recon-
struction and SR. For evaluation, we have access to two
datasets captured at magnification levels differing by super-
resolution factor s. To still evaluate the methods for zoom
levels between those, we also generate downscaled realistic
versions of the HR reference images by downscaling with
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Figure 4. Overview of our evaluation setup. Image quality metrics are calculated from the SR model’s HR prediction y and a HR target
image x. Standard evaluation (top) uses crops x of images taken from a test set with s times the training scale parameter sLtrain = L
or downsampled versions thereof as HR targets and degrades them to yield LR SR model inputs x. Physical evaluation (bottom) uses
crops of test images with training scale parameter Ltrain as LR inputs and matches the model’s prediction y against images from a different
dataset with a higher scale parameter sLtrain to obtain a HR target image x. The ”SR model” represents the SR method to be evaluated.

factor z to integer zoom levels (e.g., z = 19/20), which
we call pseudo-real images. Thereby, we effectively create
a zoom pyramid [17] of reference images, which we eval-
uate and report on. Since STMs and STEMs capture im-
ages point by point, we select nearest-neighbor interpola-
tion [17] as realistic degradation function for downscaling,
which uses no filters and therefore preserves pixel-based
noise. Using this concept, we deploy the following two
evaluation setups, shown in Fig. 4.

Standard evaluation The standard evaluation (top part in
Fig. 4) follows standard supervised SR works [9,11,22–24,
27,32,39,40], in evaluating on degraded versions of the HR
reference images, although using a noise-preserving degra-
dation. Since test images are paired, the reconstruction of
slight irregularities in the periodic structure of the measure-
ments is reflected in the evaluation. Standard evaluation
takes HR raw images from a dataset Dtest

sLtrain with scale pa-
rameter sLtrain = L, meaning that evaluation is performed
solely based on physically captured images with an s times
higher scale than what the training dataset Dtrain is based
on. HR targets x are cropped from the raw image x̌ and
from pseudo-real downscaled versions thereof (x̃). The HR
targets x are then degraded by a super-resolution factor of
s to LR test inputs x, using once again nearest neighbor in-
terpolation, which results in an approximation of captured
images of an s times lower scale. Ultimately, quality met-
rics for image similarity of target image x and the model’s
prediction y are calculated.

Physical evaluation The physical evaluation (bottom part
in Fig. 4) can also be carried out for periodic images and is

based on two physically captured unpaired datasets, a low-
resolution one for SR model inputs and a high-resolution
one for reference. Thereby, it incorporates real-world mi-
croscope image degradation in the evaluation but also re-
quires an alignment of a super-resolved image crop y to a
(pseudo-)real image x̌ (x̃) of the same zoom level. To ac-
complish this, test images from a dataset Dtest

Ltrain with scale
parameter Ltrain = L are the basis for SR model inputs x
(bottom part), while target images x are obtained from a
dataset Dtest

sLtrain of an s times higher scale parameter (from
the top part). Correspondingly to the pseudo-real ground
truth images, pseudo-real variants of Dtest

Ltrain are generated
by nearest-neighbor interpolation with factor z, from which
SR model input image x can be cropped. To obtain the tar-
get image x, the model’s output y is matched against a raw
(or pseudo-real) image x̌ (x̃) taken from Dtest

sLtrain to find a
matching area used as ground truth x. For that, we devel-
oped a noise-robust alignment and cropping method, which
slightly corrects the image x̌ (x̃) regarding pixel size and
orientation, since the atomic lattices on two point-scanning
microscope images are usually not perfectly aligned to each
other, as well as actual magnification may slightly differ. A
matching crop x is selected via maximizing structural sim-
ilarity (SSIM) [35] from crop candidates, which are pro-
posed by maximizing Pearson correlation computed for all
possible areas based on smoothed versions of the images.
Finally, the quality metrics for image similarity of the iden-
tified target image x and the model’s prediction y are calcu-
lated. Consequently, the physical evaluation assesses the SR
results between two unpaired physically recorded datasets,
that differ in scale by s.

4267



5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Target zoom level (z*20MX)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

M
S-

SS
IM

MS Training oracle
(upper bound)

MS Training oracle
MS T. , , (1.25-10)
MS T. , (5-10)
MS T. , (5-17) (17-19)
MS T. , , (1.25-17) (17-19)

MS T. , , (1.25-10) (11-15)
Bicubic (BI) baseline
MS T. , (1.25-5)
SS Training baseline

Figure 5. STEM MS-SSIM results with standard evaluation of
a 4x SR with our proposed multi-scale (MS) training vs. a single-
scale (SS) and a bicubic interpolation (BI) baseline, depending on
the target zoom level with millionfold magnification (MX) of mi-
croscope images of gallium nitride (GaN). MS and SS models,
the oracle excluded, were trained based on 5MX STEM images
Dtrain

STEM−5MX.

5. Evaluation and Discussion
Models We conduct experiments on 2-fold super-
resolution (2xSR) and on 4-fold super-resolution (4xSR) on
the datasets presented in Section 4, Table 2. For all ex-
periments, the lightweight SwinIR [23] model topology
with 0.878M parameters is used. Details for MS-trained
models are given in Table 1. A single-scale (SS) trained
model, solely using training data of scale Ltrain as train-
ing targets, serves as a baseline (i.e., sub-process 1⃝ only).
We choose bicubic interpolation (BI) [4] as a non-trainable
baseline method, since it is the established method for com-
parison in single-image SR [12,25]. For further context, we
also trained models on HR data using our multi-scale (MS)
training. Those MS trainings are based on 20MX STEM
images (and nearest neighbor-downscaled to 5MX...19MX)
and 12nm STM images (and nearest neighbor-downscaled
to 13nm...24nm). As this data is not available in our task
definition, we label results with ”MS Training oracle”.

Training details For model training, we follow Liang et
al. [23], employing the AdamW optimizer for training 150k
iterations using a stepwise learning rate scheduler with an
initial learning rate of 0.001. We use the L1 pixel loss and
a batch size of 16 for 4xSR and of 4 for 2xSR. We train
on target image crops of 256x256 pixels. The models are
trained with PyTorch [28] on an NVidia GTX 1080
Ti GPU. For the up- and downscaling, we use the imple-
mentations of the Python Pillow Library [8].

5.1. Evaluation for STEM Microscopy
For STEM data, we evaluate on 4x SR over a range of

target zoom levels spanning 5MX to 20MX, based on phys-
ically acquired HR 20MX STEM images Dtest

STEM−20MX in-
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Figure 6. STEM MS-SSIM results with physical evaluation of
a 4x SR with our proposed multi-scale (MS) training vs. a single-
scale (SS) and a bicubic interpolation (BI) baseline, depending on
the target zoom level with millionfold magnification (MX) of mi-
croscope images of gallium nitride (GaN). MS and SS models,
the oracle excluded, were trained based on 5MX STEM images
Dtrain

STEM−5MX.

cluding a range of pseudo-real HR downsampled versions
thereof (5MX...19MX). Accordingly, the SR model input
zoom levels are in the range 1.25MX to 5MX, being cre-
ated by 4x degradation of the reference images for stan-
dard evaluation, or physically captured at 5MX (and down-
scaled) for physical evaluation. Within this setting, we show
the effects of sub-processes in Table 3 and Fig. 5. The
SS training baseline ( ) uses solely training targets from
5MX images and it’s performance for zoom levels above
5MX collapses. By including sub-processes 1⃝ and 2⃝
(”MS T. 1⃝, 2⃝(1.25-5)”, ), the method uses training tar-
gets from the original and downscaled images in the fashion
of [2, 30], but almost no improvement is apparent. In con-
trast, using sub-processes 1⃝ and 3⃝ (”MS T. 1⃝, 3⃝(5-10)”,

), thereby using training targets from original and up-
scaled images, leads to strong improvements for the config-
ured zoom levels (5MX...10MX) and even generalizes be-
yond those with small improvements over BI performance.

Combining down- and upscaling for training target gen-
eration (”MS T. 1⃝, 2⃝, 3⃝(1.25-10)”, ) improves the per-
formance even further for zoom levels of 10MX to 18MX,
while the maximum upscaling zoom level used in training
was 10MX. We select this as our main configuration. In-
terestingly, here, sub-process 2⃝ improves results, while it
has no noticeable effect in isolation. Unfortunately, it also
causes the performance to drop below the BI baseline for
zoom ranges above 18MX ( ). To counteract this, sub-
process 4⃝(11-15) can be included into the configuration
( ), so the model converges to the BI baseline at 10MX,
showing the strong impact of sub-process 4⃝. Using sub-
process 4⃝(17-19), but now with a higher upscaling max-
imum in sub-processes 1⃝, 2⃝, 3⃝(1.25-17) ( ), the perfor-
mance gets better, approaching ”MS T. 1⃝, 3⃝(5-17) 4⃝(17-
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Figure 7. STM MS-SSIM results with standard evaluation of a
2x SR with our proposed multi-scale (MS) training vs. a single-
scale (SS) and a bicubic interpolation (BI) baseline, depending on
the target nanometer zoom level (nm) of microscope images of
graphite. MS and SS models, the oracle excluded, were trained
based on 24nm STM images Dtrain

STM−24nm.

Table 3. Ablations on sub-processes contributions. PSNR in dB
and MS-SSIM for 4xSR on 20MX STEM (GaN) images (400%)
and pseudo-real images thereof (200% and 300%) with nearest-
neighbor degradation (standard evaluation). The SS baseline 1⃝ is
trained on single-scale 5MX data, while multi-scale (MS) trainings
add the sub-processes: 2⃝(1.25-5); 3⃝(5-10); 4⃝(11-15).

Method Sub-processes PSNR / MS-SSIM at % magnification Tag
1⃝ 2⃝ 3⃝ 4⃝ 200% 300% 400%

Bicubic 21.97 / 0.8021 22.13 / 0.7577 22.15 / 0.7151
SS Baseline ✓ 19.67 / 0.4272 19.56 / 0.4094 19.96 / 0.4770
+ MS ✓ ✓ 17.90 / 0.1037 18.52 / 0.2343 19.18 / 0.3674
+ MS ✓ ✓ 23.01 / 0.8612 22.39 / 0.7679 22.47 / 0.7265
+ MS ✓ ✓ ✓ 23.03 / 0.8575 22.86 / 0.8015 21.58 / 0.6889
+ MS ✓ ✓ ✓ ✓ 22.96 / 0.8541 22.15 / 0.7586 22.17 / 0.7160

19)” ( ). As interesting insight, we note that models using
4⃝ even mimic BI performance for zoom levels above those

configured in training, indicating that a generalization of the
BI algorithm was learned for unknown zoom level ranges
(cf. Fig. 5, , , ), ensuring that image quality does not
fall below the bicubic baseline (cf. Fig. 9, Bicubic vs. MS
Train.+ Conv. at 20MX). Fig. 5 concludes that the proposed
MS method is able to surpass (or match) the baselines at all
target zoom levels.

Fig. 6 confirms the results for physically captured HR
ground truth images. The same applies to PSNR results in
Fig. 1 (and Table 3), where the proposed multi-scale train-
ing method ( ) is able to surpass the bicubic baseline up
to 18MX, or up to 14MX ( ) while beyond converging to
the BI baseline. We infer that multi-scale training is bene-
ficial for resolving STEM images up to 360% (18MX/5MX)
of highest available zoom level (5MX) ( ), taking advantage
of image upscaling for training target generation. In prac-
tice, this implies capturing an image at 4.5MX and super-
resolve it to 18MX with the 4x SR model.
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Figure 8. STM MS-SSIM results with physical evaluation of a
2x SR with our proposed multi-scale (MS) training vs. a single-
scale (SS) and a bicubic interpolation (BI) baseline, depending on
the target nanometer zoom level (nm) of microscope images of
graphite. MS and SS models, the oracle excluded, were trained
based on 24nm STM images Dtrain

STM−24nm.

5.2. Evaluation for STM Microscopy

As a simple STM was used for capturing our STM data,
the images of graphite surface structure contain more mi-
croscope noise (cf. Fig. 3), leading to an overall more chal-
lenging dataset. Therefore, we evaluate the 2x SR task
on HR 12nm STM reference images Dtest

STM−12nm includ-
ing a range of pseudo-real downscaled versions thereof
(24nm...13nm). For STMs, a lower nanometer zoom level
corresponds to a higher magnification. In Fig. 7, the pro-
posed MS-trained methods ( and ) are able to surpass (or
match) the BI baseline at all target nanometer zoom levels,
as well as the SS baseline, except at 24nm target nanometer
zoom level. Interestingly, for this noisy dataset, sub-process
2⃝ does not lead to better model results. Since the graphite

STM images contain such high noise level, we suspect the
SR of the atomic structure to get more difficult with down-
scaling of the HR reference images, leading to an overall
increasing trend in MS-SSIM for lower nanometer zoom
levels, where less downscaling is involved.

Physical evaluation in Fig. 8 shows very low MS-SSIM
results, which could be explained by the huge difference in
image quality and microscope noise between the two phys-
ically captured datasets at 24nm DSTM−24nm and 12nm
DSTM−12nm (cf. Fig. 10, HR ground truth and LR input),
making it difficult to evaluate the real-world degradation.
Fig. 10 shows a qualitative comparison of an example 2x
super-resolved image crop at 18nm for the MS training
1⃝, 2⃝, 3⃝(48-14)( ), MS training + convergence ( ), and

the BI and SS baselines. While the SS baseline reaches met-
ric scores above our methods, the qualitative results reveal
that the SS model produces very pixelated structures and
draws pixel values towards the average gray value (see Fig.
10, histograms). In the context of a noisy reference image,
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Figure 9. Qualitative comparison on STEM (GaN) samples with 4xSR and standard evaluation. Rows display the results for target zoom
levels of 10MX (top), 15MX (middle) and 20MX (bottom), being a 200%, 300% and 400% magnification compared to the 5MX (100%)
training data Dtrain

STEM−5MX. Columns display method results as well as the HR ground-truth crops and the 4x degraded LR input images.
HR ground-truth image is taken from the 20MX dataset Dtest

STEM−20MX. At 10MX and 15MX, the MS training results appear closest to
the HR ground truth. The MS training + convergence produces visually very similar results to BI for 15MX and 20MX, as configured.
MS-SSIM and PSNR results for the methods’ output vs. the ground truth are displayed in the right bottom corner (here: metrics of example
crop; for test dataset average see Figs. 1, 5). The lower left rectangle is a zoom of the small marked area. Best viewed digitally with zoom.

15
0%

18
nm

af
te

r2
xS

R

Bicubic (BI) SS Training MS Training MS Train + Conv. HR ground truth LR Input

Figure 10. Qualitative comparison on STM (graphite) samples with 2xSR and physical evaluation. Columns display method results as
well as the HR ground-truth crop and the LR input crop. The LR input image crop from the 24nm dataset Dtest

STM−24nm is downscaled
to 36nm, then super-resolved to 18nm and individually matched to a pseudo-real HR ground truth image obtained from Dtest

STM−12nm by
downscaling to 18nm. All results match individually to the same ground truth. We show image histograms, MS-SSIM and PSNR results
in the right bottom corner. The lower left rectangle is a zoom of the small marked area. Best viewed digitally with zoom.

average pixel values can push quantitative metrics, while
actually weakening image quality (cf. Fig. 10, SS Train-
ing). Due to the overall low MS-SSIM level, this effect
might lift the SS baseline above our models in Fig. 8. In
contrast, our method ( ) preserves the intensities and pro-
duces images with smoother structure. Visually comparing
results, MS training leads to better quality images than the
SS baseline, arguably even better than the physically cap-
tured HR ground truth (Fig. 10). Integrating 4⃝ for BI con-
vergence also works for this data, comparing BI and MS
Train.+ Conv. ( ) in Fig. 8 and image qualities in Fig. 10.

6. Conclusions
In this work, we enable image SR for scanning micro-

scope images beyond the zoom level available for training.
Our proposed multi-scale training method is solely based on
augmentation of the available LR training data and lever-
ages image upscaling for LR/HR training pair generation.
We incorporate real microscope degradation in the evalua-
tion and show improved image quality for zoom levels not
available for training. We claim this setup to be a proof of
concept, increasing image resolution to surpass the techni-
cal limits of STEM and STM microscopy.
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