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Figure 1. (a) Top: Depiction of full-complementarity of an siRNA to an mRNA to knockdown a particular target gene. Bottom: Depiction
of partial-complementarity in the seed-region of an siRNA, leading to partial knockdown of hundreds of additional genes. (b) Schematic of
a 384-well plate demonstrating imaging sites and 6-channel images. The 4-plate experiments in the dataset were run in such plates. RxRx1
contains two 6-channel images from different sites per well. (c) Images of two different genetic conditions (rows) in HUVEC cells across
four experimental batches (columns). Notice the visual similarity of images from the same batch.

Abstract

High-throughput screening techniques are commonly
used to obtain large quantities of data in many fields of
biology. It is well known that artifacts arising from vari-
ability in the technical execution of different experimental
batches within such screens confound these observations,
and can lead to invalid biological conclusions. It is, there-
fore, necessary to account for these batch effects when an-
alyzing outcomes. In this paper, we describe RxRx1, a bio-
logical dataset designed specifically for the systematic study
of batch effect correction methods. The dataset consists of
125,510 high-resolution fluorescence microscopy images of
human cells under 1,138 genetic perturbations in 51 exper-
imental batches across 4 cell types. Visual inspection of the
images clearly demonstrates significant batch effects. We
also propose a classification task designed to evaluate the
effectiveness of experimental batch correction methods on
these images and examine the performance of a number
of correction methods on this task. Our goal in releasing
RxRx1 is to encourage the development of effective experi-
mental batch correction methods that generalize well to un-
seen experimental batches. The dataset can be downloaded
at https://rxrx.ai.

1. Introduction

High-throughput screening is commonly used in many
biological fields, including genetics [18, 53] and drug dis-
covery [5, 7, 36, 49]. Such screens are capable of gener-
ating large amounts of data that, when coupled with mod-
ern machine learning methods, could help answer funda-
mental questions in biology and solve the problem of ris-
ing costs in drug discovery, which are now estimated to
be well over 2 billion per approved drug [16, 44]. How-
ever, creating large volumes of biological data necessarily
requires the data to be generated in multiple experimental
batches, or groups of experiments executed at similar times
under similar conditions. Even when experiments are care-
fully designed to control for technical variables such as tem-
perature, humidity, and reagent concentration, the measure-
ments taken from these screens are confounded by artifacts
that arise from differences in the technical execution of each
batch. Figure 1c demonstrates the complexity of identifying
relevant biological variation and separating it from techni-
cal noise caused by these so-called batch effects. Batch ef-
fects can alter factors of variation within the images that are
irrelevant to the biological variables under study, but un-
fortunately are often correlated with them. It is, therefore,
necessary to correct for such effects before drawing any bi-
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Figure 1: 6-channel faux-colored composite image of HUVEC cells (left) and individual channels
(rest): nuclei (blue), endoplasmic reticuli (green), actin (red), nucleoli and cytoplasmic RNA (cyan),
mitochondria (magenta), and Golgi (yellow). The similarity in content between some channels is
due in part to the spectral overlap between the fluorescent stains used in those channels.

Figure 2: A 384-well plate. Experiments used to generate the images in this dataset were run in the
wells of such plates. Photo courtesy of Greiner Bio One International GmbH.

the genetic perturbation present in each image in a held-out set of batches. In order for the classifier
to generalize to unseen batches, it must learn to separate biological and technical factors in test
images and make predictions only on the biological factors.

This dataset and task will be of interest to the rapidly growing community of researchers applying
machine learning methods to complex biological data sets, especially those working with high-
content phenotypic screens (Angermueller et al., 2016; Kraus et al., 2016; Caicedo et al., 2017;
Kraus et al., 2017; Ando et al., 2017; Chen et al., 2018). The specific task of removing batch effects
is relevant to the broader life sciences community and can provide insights that enable researchers
to develop improved methods for working with other biological datasets. In addition, we hope the
dataset is of interest to the larger community of machine learning researchers working in computer
vision, especially those in the areas of domain adaptation, transfer learning, and k-shot learning.

2 DESCRIPTION OF THE DATASET

The image set was produced by Recursion Pharmaceuticals in its automated high-throughput screen-
ing laboratory. It is comprised of fluorescence microscopy images of human cells of four different
types — HUVEC, RPE, HepG2, and U2OS — which were acquired using a 6-channel variation of
the Cell Painting imaging protocol (Bray et al., 2016). In Figure 1, we show an example image.

The six channels of an image illuminate the different parts of the cell population in the field of
view: nuclei, endoplasmic reticuli, actin, nucleoli and cytoplasmic RNA, mitochondria, and Golgi.
The images themselves are the result of running 51 different instances of the same type of exper-
iment. Each experiment instance is comprised of four 384-well plates (see Fig. 2), used to isolate
populations of cells into wells. The wells are laid out on each plate in a 16⇥24 grid, but only the
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Figure 2. 6-channel faux-colored composite image of HUVEC cells (left) and individual channels (right) stained with Hoechst 33342
(channel 1, blue), Alexa Fluor 488 Concanavalin A (channel 2, green), Alexa Fluor 568 Phalloidin (channel 3, red), Syto14 (channel 4,
cyan), MitoTracker Deep Red FM (channel 5, magenta), Alexa Fluor 555 Agglutinin (channel 6, yellow). The similarity in content between
some channels is due in part to the spectral overlap between the fluorescent stains used in those channels.

ological conclusions [4, 26, 30, 40, 41, 48]. Indeed, many
computational methods have been designed for correcting
such effects [21–23, 27, 31, 34, 35, 45].

In this paper, we describe the RxRx1 dataset, an im-
age dataset systematically designed to study batch effect
correction methods. The dataset consists of 125,510 6-
channel fluorescence microscopy images of human cells un-
der 1,108 different genetic perturbations (plus 30 positive
control perturbations) across 51 experimental batches and
4 cell types. We propose a machine learning task to gauge
the effectiveness of batch effect correction methods, namely
learning to classify the genetic perturbation present in each
image in a set of experimental batches held out from a train-
ing set. In order for a classifier to perform well on this task,
it must be able to robustly identify the discriminative mor-
phological features associated with each genetic perturba-
tion against a background of the latent technical variations
associated with each held-out experimental batch.

In the present article, we make three main contributions:

1. We present a dataset (46GB, 125,510 images, 1,139
classes) for testing experimental batch effect correc-
tion, comparable in size to reference datasets such as
ImageNet [15] (155 GB, 1.2M images, 1000 classes)
and other biological datasets like BBBC017 (56 GB,
64.5K images, 4903 classes).

2. We introduce a specific task for evaluating the effec-
tiveness of batch effect correction methods, accompa-
nied by three evaluation metrics enabling users of this
dataset to assess their developed methods.

3. We demonstrate the use of a standard convolutional
classifier architecture as a backbone for the task of
experimental batch correction and analyze the perfor-
mance of variations of this model on such a task.

This dataset and task will be of interest to the commu-
nity of researchers applying machine learning methods to
complex biological datasets, especially those working with
image-based high-content phenotypic screens [1,2,8,11,28,
29]. In addition, we hope RxRx1 is of interest to the larger
community of machine learning researchers working in the
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Figure 3. Images of 5 siRNA phenotypes in HUVEC cells across
5 experimental batches. Each siRNA causes changes in the visual
properties of cell populations, including morphology, count, and
spatial distribution.

areas of domain adaptation, transfer learning, and few-shot
learning.

2. Dataset
All images in RxRx1 were generated using Recursion’s

high-throughput screening platform1. The dataset is com-
prised of fluorescence microscopy images of human cells
of four different types:

• HUVEC: primary endothelial cells derived from the
umbilical vein [14].

• RPE: epithelial cells from the outermost layer of the
retina [51].

1https://recursion.com

4286



Presented at the ICLR AI for social good workshop 2019

Figure 3: Images of four different siRNA phenotypes in HUVEC (same experiment and plate).

Figure 4: Images of the same siRNA in four cell types: HUVEC, RPE, HepG2, U2OS.

wells in the inner 14⇥22 grid are used since the outer wells are most susceptible to environmental
factors. Of these 308 usable wells, one remains untreated to provide a negative control. The rest
of the 307 wells receive exactly one small interfering ribonucleic acid, or siRNA, at a fixed con-
centration. Each siRNA is designed to knockdown a single target gene via the RNA interference
pathway, reducing the expression of the gene and its associated protein (Tuschl, 2001). However,
siRNAs are known to have significant but consistent off-target effects via the microRNA pathway,
creating partial knockdown of many other genes as well. The overall effect of siRNA transfection is
to perturb the morphology, count, and distribution of cells in each well, creating a distinct phenotype
associated with each siRNA. The phenotype is sometimes visually recognizable from the images,
but often the specific difference in cell morphology is subtle and hard to detect to the human eye
(see Fig. 3).

In each experiment, the same 30 siRNA appear on every plate as a control set for the plate. These
control siRNA target different genes and produce a variety of phenotypic effects that, taken in com-
bination with the single untreated well, provide a set of useful reference wells for each plate. The
1,108 remaining wells of each experiment (277 wells⇥4 plates) receive 1,108 different siRNA.
These non-control siRNA target different genes than each other and the genes of the control siRNA.
Notice that while the control siRNA appear on each plate, each non-control siRNA appears at most
once in each experiment. We say at most once because, although rare, it happens that either an
siRNA is not transferred into its well, resulting in an additional untreated well on the plate, or an op-
erational error is detected by quality control procedures and renders the well unsuitable for inclusion
in the dataset.

When the images were originally acquired from the microscope, they were of spatial resolu-
tion 2048⇥2048, but in order to make the dataset more manageable, they were downsampled to
1024⇥1024 and cropped to the center 512⇥512 field of view. The image set contains two non-
overlapping 512⇥512 fields of view per well. Therefore, there could be as many as 125,664 images
(= 51 experiments⇥4 plates/experiment⇥4 wells/plate⇥2 images/well), but, because of operational
errors, a number of images were removed, resulting in 125,514 actual images in the dataset.

As was mentioned, the entire dataset consists of 51 experiments: 24 in HUVEC, 11 in RPE, 11
in HepG2, and 5 in U2OS. Figure 4 shows the phenotype of a single siRNA in the four different
cell types. Each of the 51 experiments was run in a different batch, resulting in images that exhibit
technical effects (e.g. differences in temperature, humidity, siRNA concentration) that are common
to the batch but distinct from other batches (see Fig. 5). It is this feature of the dataset that makes it
particularly suited for studying batch effects and methods for correcting them.
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Figure 4. Top row: Images of HUVEC cells under four different
siRNA perturbations, all from the same plate. Bottom row: Im-
ages of cells under the same siRNA perturbation in four cell types:
HUVEC, RPE, HepG2, and U2OS.

• HepG2: nontumorigenic cells with high proliferation
rates and an epithelial-like morphology important for
hepatic functions [17].

• U2OS: immortalized epithelial cells derived in 1964
from an osteosarcoma patient [39].

These were acquired using a proprietary implementation of
the Cell Painting imaging protocol [6]. In Figure 2, we show
an example image. Each channel corresponds to a fluores-
cent dye used to stain one of six different targeted cellular
components, namely the nucleus, endoplasmic reticulum,
actin, nucleoli, mitochondria, and Golgi.

The images themselves are the result of executing the
same experimental design in 51 different experimental
batches, with each execution separated by at least a week
from all others. The experiment design consists of four 384-
well plates (see Figure 1b), where each well contains an
isolated population of cells. The wells are laid out on each
plate in a 16×24 grid, but only the wells in the inner 14×22
grid are used since the outer wells are most susceptible to
environmental factors. In each well, cell populations are ge-
netically perturbed with small interfering ribonucleic acid,
or siRNA, at a fixed concentration. Each siRNA is designed
to knockdown a single target gene via the RNA interference
pathway, reducing the expression of the target gene [50]. In
addition, siRNAs are known to have significant but consis-
tent off-target effects via the microRNA pathway, creating
partial knockdown of many other genes as well (see Figure
1a). Each siRNA, therefore, perturbs cellular function in a
way that can impact visible properties of the cell popula-
tion, including morphology, count, and spatial distribution
(see Figure 3). The set of consistent, observable character-
istics associated with each siRNA is called its phenotype.
Note that the phenotype of an siRNA is sometimes visually
distinct, but more often its visual characteristics are subtle
and hard to detect by the eye (see Figure 4).

2.1. Experiment design

Of the 308 usable wells on each plate, one is left un-
treated to provide a negative control (labeled EMPTY), and
another 30 wells receive a unique siRNA from a positive
control set of 30 siRNA. The remaining 277 wells receive a
unique siRNA from a treatment set of 1,108 siRNA. There-
fore, each 4-plate experiment contains 1,138 unique siRNA
perturbations, where the positive and negative controls ap-
pear once on each plate, and the 1,108 treatments appear
once in each 4-plate experiment. The location of each
siRNA is randomized per experiment and plate, though for
operational reasons, the 1,108 treatment siRNA are divided
into four groups of 277 that always appear together on a
plate. Note that some wells do not receive their intended
siRNA (and are thus labeled EMPTY) due to operational
errors, while the images of other wells are removed from
the dataset due to poor data quality.

2.2. Image resolution

Images were acquired at a spatial resolution of 2048 ×
2048 and 16 bits per pixel per channel, downsampled to
1024 × 1024 at 8bpp and cropped to the center 512 × 512
field of view. RxRx1 contains two non-overlapping 512 ×
512 fields of view per well. Of the possible 125,564 to-
tal images (51 experiments × 4 plates/experiment × 308
wells/plate × 2 images/well), 154 images were excluded
for failing quality filters, resulting in a total of 125,510 6-
channel images in the dataset.

2.3. Cell types

The 51 experiments are distributed across four cell types:
24 in HUVEC, 11 in RPE, 11 in HepG2, and 5 in U2OS.
Figure 4 shows the phenotype of a single siRNA in the four
different cell types. Each of the 51 experiments was run
in a different batch, resulting in images that exhibit distinct
batch effects. It is this feature of the dataset that makes it
particularly suited for studying batch effects and methods
for correcting them.

2.4. Metadata

The following metadata is provided for each image in
RxRx1: cell type, experiment id, plate id, well location,
and treatment class (1,138 siRNA classes plus one untreated
class).

3. Evaluation task
We propose the following task for evaluating the effec-

tiveness of batch effect correction methods: learn to clas-
sify the genetic perturbation present in each image in a set
of experimental batches held out from a training set. In or-
der for a classifier to perform well on this task, it must be
able to robustly identify the visual characteristics associated
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Figure 5. A diagram of our models. 6-channel images are fed to the backbone (DenseNet161 [24]). Feature maps from the backbone
are pooled by global average pooling and then mapped by two fully connected layers, which follow batch normalization and ReLU
layers to obtain a 1024-dimensional image embedding. The embedding layer is connected to two parallel branches – one for perturbation
classification and the other for experimental batch classification. The experimental batch classification branch is either detached (for
baseline and AdaBN model) or gradient reversed (for gradient reversal model). For both classification targets, we use cross-entropy loss.

with each genetic perturbation against a background of la-
tent technical variations associated with each experimental
batch.

3.1. Batch-separated vs batch-stratified splits

In order to appropriately evaluate such classifiers, we
propose two ways of splitting RxRx1 into training and test
sets. The first, called the batch-separated split, assigns 33
of the 51 experiments (16 HUVEC, 7 RPE, 7 HepG2, 3
U2OS) to the training set, and the remaining 18 (8 HU-
VEC, 5 RPE, 5 HepG2, 2 U2OS) to the test set. In this
way, the experimental batches that make up the test set are
different from those in the training set, which allows for as-
sessing out-of-domain generalization. Note that this split is
naturally stratified with respect to treatment class (see Sec-
tion 2.1). The second split, called the batch-stratified split,
stratifies the data by both treatment class and experimen-
tal batch. The size of the training and test sets are made
roughly the same as in the batch-separated split. In the
batch-stratified split, the training and test sets contain im-
ages from all experimental batches, making the classifica-
tion task easier to learn since no experimental batch is out-
of-domain. As a result, accuracy on the batch-stratified split
sets an upper bound for accuracy on the batch-separated
split, and we will use both of these numbers when evalu-
ating experimental batch correction methods.

3.2. Evaluation metrics

With the batch-separated and batch-stratified splits de-
fined, we now propose three evaluation metrics for assess-
ing the effectiveness of experimental batch correction meth-
ods.

3.2.1 Perturbation classification accuracy

This metric is the average perturbation class classification
accuracy (including controls and untreated as classes) on
the test set when using the batch-separated split. It is useful
as an overall measure of the goodness of the batch effect

correction method since 1) the test set contains experimen-
tal batches not seen during training, 2) the training and test
sets are stratified by siRNA classes, and 3) the metric im-
proves with each correctly classified image.

3.2.2 Batch generalization

To define a metric that measures generalization to new ex-
perimental batches, we calculate perturbation classification
accuracy using both the batch-separated and batch-stratified
splits, and then measure the difference between these accu-
racies as follows:

Generalization =
SeparatedPertAcc
StratifiedPertAcc

where SeparatedPertAcc is perturbation classification accu-
racy on the test set of the batch-separated split (after train-
ing on the batch-separated split), and StratifiedPertAcc is
perturbation classification accuracy on the test set of the
batch-stratified split (after training on batch-stratified split).
A generalization of 100% means that perturbation classifi-
cation accuracy on both splits is the same, i.e., the experi-
mental batch correction method has learned to classify per-
turbations in unseen experimental batches as well as it has
learned to classify perturbations in seen experiment batches.

3.2.3 Batch classification accuracy

To measure the content of experimental batch-related infor-
mation encoded into the image embeddings, we calculate
experimental batch classification on the batch-stratified split
(since the training must contain experiment batches from
the test set for this metric to make sense). Because experi-
mental batch related information is an artifact, we want em-
beddings to be as invariant to batch as possible. Therefore,
batch classification accuracy should be as close to random
as possible, i.e., 1/51 ≈ 1.96%.
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unseen experimental batches. In contrast, AdaBN is far more effective in aligning unseen experiment batches.

4. Experimental batch correction methods

In this section, we describe the methods for experimental
batch correction that will be evaluated in this paper using
the metrics defined in Section 3.2.

4.1. Baseline

The baseline method is a standard convolutional classi-
fier architecture (see Figure 5). A detached batch classifica-
tion head is added to calculate experimental batch accuracy
without backpropagating experimental batch classification
error into the rest of the network. For data augmentations,
we use horizontal and vertical flips, 90-degree rotations, and
cutmix [52]. We train for 100 epochs, using a cosine learn-
ing rate schedule with a 5 epoch linear warmup and learning
rate of 0.1024, an SGD optimizer with 0.9 momentum, and
a batch size of 512 distributed across 8 Nvidia A100 GPUs.
Before feeding an image into the network, we preprocess
the image with a channel-wise self-standardization, i.e., we
subtract the mean and divide it by the standard deviation of
the image’s pixel intensities per channel.

4.2. AdaBN

Adaptive batch normalization (AdaBN) [32] modifies
standard batch normalization [25] layers to use statistics
from individual domain distributions (e.g., from experimen-
tal batch distribution in our case) rather than the entire train-
ing set distribution, both during training and at test time.
Therefore, during training, it is necessary to sample mini-
batches from a single experimental batch at a time. By do-
ing so, the model is able to normalize intermediate features
within the context of the experimental batch distribution.
The rest of the model is unchanged (see Figure 5).

4.3. Gradient reversal

Gradient reversal [19] is an adversarial method that
changes the sign of the gradient for specific layers in the
model, e.g., layers connecting the heads of adversarial
losses to the rest of the network. Intuitively, this method up-
dates model weights at the gradient reversal layer in order to
increase the adversarial loss, while the rest of the head up-
dates its weights in order to decrease the loss, giving rise to
the adversarial nature of this method. We want the model to
be invariant to differences in experimental batches, thus to
implement this method, we reattach the experimental batch
classification head mentioned in Section 3.2.3 using gradi-
ent reversal (see Figure 5).

4.4. AdaBN + gradient reversal

We also apply adaptive batch normalization and gradient
reversal simultaneously in order to evaluate their combined
ability to correct experimental batch effects.

5. Experiments
In this section, we evaluate the methods described in

Section 4 using the evaluation metrics described in Section
3.2.

5.1. Evaluation metric performance

The results of the experimental batch correction meth-
ods are summarized in Table 1. The baseline classifier gen-
eralizes poorly to new batches and classifies experimental
batches about 30x better than random. The AdaBN model
improves experimental batch generalization to nearly 96%
while significantly reducing experimental batch classifica-
tion accuracy (∼8x better than random). Interestingly, gra-
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Method Perturbation classification Perturbation classification Batch Batch classification
accuracy (batch-separated) accuracy (batch-stratified) generalization accuracy

Baseline 75.1%± 0.2% 91.1%± 0.1% 82.4% 59.2%± 0.7%
Gradient reversal 71.2%± 0.4% 89.1%± 0.1% 79.9% 1.8% ± 0.1%

AdaBN 87.1% ± 0.2% 91.1% ± 0.1% 95.6% 16.4%± 0.3%
AdaBN + gradient reversal 86.2%± 0.3% 90.2%± 0.2% 95.6% 2.3%± 0.1%

Table 1. Performance of experimental batch correction methods on the proposed metrics. All models, despite having similar perturbation
accuracy on seen batches during training, vary in their ability to generalize to new batches as well as batch classification accuracy. AdaBN
significantly improves generalization to new batches, and gradient reversal reduces batch information encoded in embeddings. Using both
methods simultaneously yields the benefits of both. For every method, the model was trained 5 times on both batch-separated and batch-
stratified splits. For descriptions of the splits, metrics, and methods, see Sections 3.1, 3.2, and 4, respectively.

dient reversal does not improve experimental batch gener-
alization but does reduce experimental batch classification
accuracy to random chance. Finally, combining AdaBN and
gradient reversal yields the benefits of both methods: top
experimental batch generalization, and near-random exper-
imental batch classification.

5.2. Visualization of embedding space

In order to gain a better understanding of the informa-
tion encoded in the embeddings learned by each experi-
mental batch correction method, in Figure 6 we visualize
the learned embedding spaces from our baseline, gradient
reversal, AdaBN methods using UMAP embeddings [37]
(AdaBN + gradient reversal UMAPs are similar to AdaBN
UMAPs). We note that while gradient reversal is able to re-
duce experimental batch classification accuracy to random
when trained on the batch-stratified split, this behavior does
not generalize well to experimental batches from unseen ex-
periment batches. In contrast, AdaBN is far more effective
in aligning unseen experiment batches since it normalizes
intermediate image features with the statistics of the asso-
ciated experimental batch, rather than the statistics of the
training set as used in standard batch normalization.

5.3. Preservation of embedding similarities

While the previous section demonstrated that AdaBN is
sufficient to align embedding distributions across experi-
mental batches, we also wondered if it would preserve geo-
metric relationships across batches. In order to answer this
question, we consider the following distributions of cosine
similarities between perturbation embeddings:

1. same perturbations in same experimental batches

2. different perturbations in the same experimental
batches

3. same perturbations in different experimental batches
(but same cell type)

4. different perturbations in different experimental
batches (but same cell type)
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Figure 7. Distributions of cosine similarities between image em-
beddings for the (a) baseline and (b) AdaBN methods. Blue: co-
sine similarities between embeddings from the same experiments.
Orange: cosine similarities between embeddings from different
experiments, but the same cell types. Left: cosine similarities be-
tween embeddings of the same perturbation. Right: cosine simi-
larities between embeddings of different perturbations. Two mea-
sures of distributional similarity, the Kolmogorov-Smirnov statis-
tic and Wasserstein distance, are computed between the distribu-
tions in each plot. Note that the baseline distributions of the same
and different perturbation cosine similarities are distinctly differ-
ent within and across experimental batches, while the AdaBN dis-
tributions are very similar, showing that AdaBN preserves geo-
metric relationships between embeddings even across experimen-
tal batches. Note that the cosine similarities are always positive
because all values in embeddings are positive as embeddings are
obtained by passing features through ReLU in the model.

In Figure 7, we compare distributions 1 and 2 with distri-
butions 3 and 4, for both the baseline and AdaBN methods.
The similarity of these pairs of distributions to each other
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Model HUVEC RPE HepG2 U2OS

Baseline 84.2 79.0 76.2 26.1
±0.2 ±0.4 ±0.1 ±1.5

Gradient reversal 83.8 78.1 74.0 24.3
±0.2 ±0.5 ±0.6 ±0.7

AdaBN 92.1 87.2 86.2 68.2
±0.2 ±0.0 ±0.2 ±0.1

AdaBN + gradient reversal 92.0 87.5 85.6 66.9
±0.0 ±0.1 ±0.1 ±0.3

Table 2. Perturbation classification accuracy (%) per cell type.
Note that increases in perturbation classification accuracy due to
AdaBN are larger for more difficult cell types.

Model HUVEC RPE HepG2 U2OS

Baseline 39.5 39.2 31.4 2.8
±0.7 ±2.0 ±0.4 ±1.0

Gradient reversal 41.4 38.8 32.3 3.0
±0.5 ±0.5 ±0.4 ±0.3

AdaBN 55.1 56.1 56.2 44.0
±1.1 ±0.4 ±1.6 ±0.9

AdaBN + gradient reversal 55.3 56.7 55.5 44.1
±2.0 ±0.9 ±0.6 ±1.4

Table 3. Perturbation classification accuracy (%) per cell type on
simplified training sets containing only 3 experiments of a single
cell type. HUVEC, RPE, and HepG2 cell types are easier to learn
than U2OS, however, AdaBN significantly improves all classifica-
tion accuracies, especially U2OS.

would be strong evidence that the experimental batch cor-
rection method preserves geometric relationships across ex-
perimental batches. To this end, we calculate two measures
of distributional similarity, the Kolmogorov-Smirnov (KS)
statistic and Wasserstein Distance (WD), between each pair
of distributions in order to quantify these similarities. As
can be seen, the baseline distributions of the same and dif-
ferent perturbation cosine similarities are distinctly differ-
ent within and across experimental batches, indicating that
geometric relationships are not preserved across experimen-
tal batches for the baseline method. In contrast, the Ad-
aBN distributions are very similar within and across exper-
iment batches, demonstrating that AdaBN does indeed pre-
serve geometric relationships across experimental batches.
In Supplementary Table S3, we calculate these similarity
metrics for all batch correction methods.

5.4. Classification accuracy per cell type

Table 2 shows perturbation classification accuracy for
each of the four cell types. Note that HUVEC accuracies are
highest, followed by RPE and HepG2, and finally U2OS.
This is in line with the differing proportions of experimen-
tal batches per each cell type in the training set. In order
to obtain a more fair comparison of per-cell perturbation
classification accuracy, we randomly selected 3 experimen-
tal batches for each cell type from the original training set
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The Shapley value
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Figure 8. The Shapley values for each channel using the base-
line method, represent contributions to perturbation classification
accuracy. Higher values represent greater importance. Similar re-
sults are observed for each experimental batch correction method.

Normalization Accuracy

All images 60.8± 1.1
Control images per experiment 68.4± 0.5

All images per experiment 68.6± 0.5
Control images per plate 73.4± 0.3

All images per plate 73.4± 0.5
Self-standardization 75.1 ± 0.2

Table 4. Perturbation classification accuracy (%) for different
image normalization methods using the baseline method. Self-
standardization, where each channel of a single image is standard-
ized by its own mean and standard deviation, yields the best re-
sults.

to form a new training set. The results are shown in Ta-
ble 3. We note that the HUVEC, RPE, and HepG2 cell
types are far easier to learn than U2OS; however, AdaBN
significantly improves classification accuracies in all cell
types, especially U2OS. Comparing the results (for U2OS
since training sets were the same in both) in Tables 3 and
2, we conclude that jointly training a method on all cell
types rather than individual cell types greatly improves per-
turbation classification accuracy. We therefore reason that
the poorer performance on U2OS is not due entirely to the
lower number of U2OS experimental batches in the dataset,
but possibly because U2OS is biologically distinct from the
other cell types, and expresses different, less consistent phe-
notypes than the others do.

5.5. Channel importance

In Figure 8, we study the importance of each chan-
nel by plotting its Shapley value [46] for the baseline
method. Shapley values measure the relative contributions
each channel makes when assigning correct classes to our
(batch-separated) test set. Note that Channels 2 and 4 are
the most important, while Channel 6 is the least important.
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In fact, using only the first five channels improves pertur-
bation accuracy over using all channels by 2% in the base-
line method (see Supplementary Material for this and other
channel subset accuracy results).

5.6. Image preprocessing

We tried different image normalization methods for pre-
processing the images. In all cases, we calculate per-
channel means and standard deviations on different subsets
of the dataset and standardize (i.e., subtract the mean and
divide by the standard deviation) each image with those
statistics before using them as input to the networks. The
(batch-separated) perturbation classification accuracies as-
sociated with each normalization method are presented in
Table 4. Self-standardization (standardization using only
the image itself) outperforms other methods by a signif-
icant margin. Interestingly, the self-standardization im-
proves perturbation classification accuracy by more than 14
percentage points compared to the standard computer vi-
sion practice of using global statistics calculated from the
entire training set. We hypothesize that this margin is due
to the uniform background of RxRx1 images across experi-
mental batches, which contains little biological information
but whose size relative to the foreground of cells can change
dramatically from perturbation to perturbation and even im-
age to image. Thus image-level statistics are proportional to
the cellular content of an image, so that self-standardization
normalizes each image to the common scale of the average
cell contained within the image.

6. Conclusion and future directions

In this paper, we described the RxRx1 dataset, an image
dataset systematically designed to study experimental batch
effect correction methods. The dataset contains 125,510
6-channel, high-resolution fluorescence microscopy images
of human cells under 1,138 genetic perturbations in 51 ex-
perimental batches across 4 cell types. We proposed a task
and several metrics to evaluate the performance of different
experimental batch correction methods. We demonstrated
that while both adaptive batch normalization (AdaBN) [32]
and gradient reversal [19] are effective techniques for re-
moving experimental batch information from image embed-
dings, only AdaBN was effective in generalizing to unseen
experimental batches, due to the manner in which it normal-
izes all intermediate feature maps using statistics from the
corresponding experimental batch. We also calculated the
importance of each image channel in this task, and the value
of self-standardization as an image preprocessing step. We
hope that the introduction of the RxRx1 dataset will encour-
age further research into the complex problem of correcting
experimental batch effect, as well as other issues that arise
in the analysis of high-throughput screening data.

6.1. Future directions

There are several methodologies for extracting fea-
tures from microscopy imaging screens, including tradi-
tional feature extraction (i.e. CellProfiler) [33, 47], leverag-
ing pre-trained deep learning models [1, 42], and training
deep learning models on microscopy images directly [20].
As both AdaBN and gradient reversal are deep learning
methodologies, it is not possible to directly apply these
methods to traditional feature extraction pipelines, yet an
appropriate comparison would be useful to understand the
benefit of end-to-end feature training. In the future, we plan
to provide such a comparison, e.g., train neural networks on
CellProfiler features with AdaBN and gradient reversal.

Our approach relies on weakly supervised learning [9,
38] since we train models to predict the experimental per-
turbation in each well, without validating that each treat-
ment induces a unique visual phenotype (N.B.: such vali-
dation is likely impossible). This means that there might be
multiple perturbations that either do not perturb the cellu-
lar morphology or perturb it in similar ways to other per-
turbations, yet the perturbation classification task would re-
ward distinguishing them. This would encourage reliance
on spurious features or correlation, which inhibits learn-
ing image representations that capture meaningful morpho-
logical features. Recently, self-supervised methods have
been shown to match the performance of supervised mod-
els on natural image computer vision tasks [3, 10, 12]. Ap-
plying such training techniques for microscopy screening
data [13,43] represents a potentially fruitful future direction
for this work.

Finally, we acknowledge that the proposed perturbation
classification task groups any morphological variation not
associated with a common perturbation under the umbrella
term experimental batch effect, which is usually reserved
for technical effects only. One could imagine improving the
task in a way that would not penalize intrinsic morphologi-
cal features, like those associated with cell type differences,
even if they are not associated with variations amongst per-
turbations. Such a task would promote the development of
more effective experimental batch correction methods that
better disentangle biological and technical causal factors,
and we hope to provide such an update to this work in the
future.

7. Potential societal impact

We do not foresee any negative impacts arising from
the specific contributions of this paper. The data was pro-
duced using commercially-available primary and immortal-
ized cell lines. The RxRx1 dataset is intended for the de-
velopment of methods that further our understanding of bi-
ology, genetics, and pharmacology, and their application in
drug discovery.
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Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 9650–9660, 2021. 8

[11] Hongming Chen, Ola Engkvist, Yinhai Wang, Marcus Olive-
crona, and Thomas Blaschke. The rise of deep learning in
drug discovery. Drug discovery today, 23(6):1241–1250,
2018. 2

[12] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on ma-
chine learning, pages 1597–1607. PMLR, 2020. 8

[13] Jan Oscar Cross-Zamirski, Guy Williams, Elizabeth
Mouchet, Carola-Bibiane Schönlieb, Riku Turkki, and Yin-
hai Wang. Self-supervised learning of phenotypic represen-
tations from cell images with weak labels. arXiv preprint
arXiv:2209.07819, 2022. 8

[14] Jaeger Davis, Steve P Crampton, and Christopher CW
Hughes. Isolation of human umbilical vein endothelial

cells (huvec). JoVE (Journal of Visualized Experiments),
(3):e183, 2007. 2

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 248–255, 2009. 2

[16] Joseph A DiMasi, Henry G Grabowski, and Ronald W
Hansen. Innovation in the pharmaceutical industry: new esti-
mates of r&d costs. Journal of health economics, 47:20–33,
2016. 1

[17] Marı́a Teresa Donato, Laia Tolosa, and Marı́a José Gómez-
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