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Abstract

This paper addresses the problem of recovering the
shape morphology of blood volume pulse (BVP) informa-
tion from a video of a person’s face. Video-based remote
plethysmography methods have shown promising results in
estimating vital signs such as heart rate and breathing rate.
However, recovering the instantaneous pulse rate signals is
still a challenge for the community. This is due to the fact
that most of the previous methods concentrate on capturing
the temporal average of the cardiovascular signals. In
contrast, we present an approach in which BVP signals
are extracted with a focus on the recovery of the signal
shape morphology as a generalized form for the compu-
tation of physiological metrics. We also place emphasis
on allowing natural movements by the subject. Further-
more, our system is capable of extracting individual BVP
instances with sufficient signal detail to facilitate candi-
date re-identification. These improvements have resulted
in part from the incorporation of a robust skin-detection
module into the overall imaging-based photoplethysmog-
raphy (iPPG) framework. We present extensive experi-
mental results using the challenging UBFC-Phys dataset
and the well-known COHFACE dataset. The source code is
available at https://github.com/yogeshd21/CVPM-
2023-iPPG-Paper.

1. Introduction

Devices that perform convenient measurements of phys-
iological signals have grown in popularity in recent years.
For example, wearable devices by Fitbit [6], Apple [17],
AliveCor [1], and others are capable of monitoring heart
rate and other vital metrics. In addition to wearable devices,
researchers have also considered the use of camera-based
monitoring of physiological signals (e.g., [23, 31, 45, 46]).
Circumstances such as the novel coronavirus pandemic

Figure 1. Examples of head movement and occlusion of faces
in the UBFC-Phys dataset [30], highlighting our inclusion of
natural movements. Green boxes indicate face regions detected
by MTCNN [48].

have also increased awareness of benefits that can be
obtained from convenient, noninvasive devices [24]. Unlike
systems that require contact with the body, camera-based
systems have the potential to be less intrusive in many
situations like patient monitoring, and driver monitoring
[21,32,38,41]. Researchers have developed imaging-based
systems that benefit from deep-learning techniques [4, 22].
However, more work is needed in sensing instantaneous
(instance-level) physiological metrics.

This paper is concerned with monitoring the cardiovas-
cular system through the analysis of image sequences from
standard RGB video cameras. Sample frames are shown
in Figure 1. The approach is based on the principle that
each beat of the heart causes blood volume pulses (BVP) to
travel through the body; these pulses cause slight changes
in reflectance near the skin that are captured by the camera.
The resulting intensity changes are very faint and are not
noticeable with the unaided eye. The general technique is
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referred to in the literature as imaging-based photoplethys-
mography (iPPG) which makes use of light to perform
remote measurements of volumetric changes.

While most previous approaches have focused on
retrieving iPPG signals as the subject’s head remains
stationary during the measurement process, our work
emphasizes the need to accommodate relatively large head
movements. These movements pose significant challenges
in detecting skin regions and measuring intensity changes
accurately and reliably. Moreover, several confounding
factors complicate the problem further, such as facial hair,
eyeglasses, occlusion of the face, and variations in skin tone
across subjects. Our work proposes a novel approach to
address these challenges and improve the accuracy and reli-
ability of camera-based recovery of cardiovascular signals
in scenarios with significant head movements.

One of the key distinguishing features of our work is
the focus on extracting individual BVP instances with good
approximations of the underlying volumetric signal shape.
Unlike previous systems that estimate average heart rate
(HR), our approach has the potential to provide informa-
tion related to inter-beat intervals and heart-rate variability
(HRV). Another potential benefit of pulse-level signal infor-
mation is the ability to distinguish one person from another.
This paper also considers the problem of re-identification
based on iPPG signals. We present a model that can make
such re-identification possible. In summary, the primary
contributions of this paper are as follows:

1) New Architectural Pipeline: The method relies on
a deep network that incorporates a novel attention branch
with a refined region of interest that emphasizes skin detec-
tion and also handles cases with facial hair and specular
reflection, over a wide range of skin tones.

2) Shape Morphology Recovery: The new method
emphasizes the recovery of shape morphology of phys-
iological signals solely from RGB videos of the human
face, with emphasis on handling large head movements and
partial occlusion.

3) Improved Standard Cardiovascular Metrics: We
present quantitative experimental results that demonstrate
improved estimates of heart rate, as compared to previous
state-of-the-art methods.

4) Shape Morphology Metrics: We present recov-
ered time-variant physiological signal-based metrics and
propose a standardized approach that could be followed by
future researchers.

5) Re-identification: We introduce a candidate approach
to subject re-identification, based on the recovered signals
from the proposed model rather than averaged cardiovas-
cular metrics. Our work therefore has the potential for use
in biometric authentication tasks.

6) Generalized ROI with Significant Variations: Rather
than handpicked regions of interest (ROI), our model targets

generalization even in extreme cases including partial
candidate visibility, occlusion cases, specular reflections
from the skin as well as cases such as facial hair; all of them
are addressed by our model.

2. Related Work
Approaches for contactless measurement of PPG signals

and heart rate have been explored extensively over the
past few years. Circumstances including the COVID-19
pandemic have led to significant changes in the healthcare
sector [9, 18], including realization of the need for contact-
less techniques for the assessment of vital signs and phys-
iological signals. An example is imaging-based measure-
ment of PPG, which exploits signals from video of a subject
to obtain BVP information. The subtle changes in skin
pixel appearance due to blood flow is leveraged to estimate
PPG signals and eventually vitals such as heart rate (HR)
and heart rate variability (HRV). Previous research in the
area can be broadly divided into three categories: signal
processing-based methods, supervised methods, and unsu-
pervised methods.

2.1. Signal Processing Based Methods

Using signal-processing techniques, the variation in
average brightness of skin pixels is tracked over time [42].
This variation is too subtle to be noticed by human eyes
without digital magnification [31]. Wu et al. [44] proposed
a method to amplify such subtle changes. The method,
commonly referred to in the literature as VidMag, takes a
video sequence as input followed by temporal (band-pass)
filtering of frames. The resulting signal after amplifica-
tion was used to reveal hidden signals. Similarly, Garbey
et al. [8] made use of sensitive thermal cameras to acquire
the signals from major superficial vessels of face and neck
regions. Fourier methods were used to measure cardiac
pulse amplitudes. The main problem with these methods
is the stability of the face in videos. The observed face
is expected to remain stationary, and even small move-
ments cause significant noise during PPG signal recovery.
Later, researchers began utilizing a combination of signal-
processing techniques and facial tissue trackers to tackle
this problem [49].

2.2. Supervised Methods

With the increasing use of deep learning in the medical
domain, supervised methods are now widely used for the
retrieval of heart rate and physiological signals. Niu et
al. [25] proposed an end-to-end HR estimation model based
on spatial-temporal representations of multiple regions of
interest (ROI). The use of multiple ROIs helped in the
generalizability of the model in situations such as small
movements, changing lighting conditions, etc. Similarly,
DeepPhys [4] is a supervised model that makes use of a
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feed-forward CNN for the estimation of heart and breathing
rates. DeepPhys incorporates an attention mechanism to
assist the network in learning frame-to-frame differences.
Earlier work relied primarily on high-resolution videos
for the model implementation. Yu et al. [47] proposed
a two-step mechanism for the estimation of heart rate
from compressed videos. A video enhancement network
is followed by an iPPG network to recover cardiovas-
cular signals for estimating HR and HRV. The supervised
model works well when there is a large number of training
samples.

2.3. Unsupervised Methods

Because PPG signals are different for each individual,
it can be difficult to learn general distributions. Thus,
unsupervised methods have also been explored in recent
years for the camera-based monitoring of PPG signals. For
example, Lee et al. [14] proposed a meta-learning approach
in a transductive setting for remote assessment of heart
rate. Through this approach, substantial improvements
were made in performances using the MAHNOB-HCI and
UBFC-rPPG dataset [35]. Similarly, Wang et al. [40]
proposed a self-supervised spatiotemporal learning frame-
work for remote assessment of vitals such as HR using iPPG
signals. A landmark-based spatial augmentation followed
by sparsity-based temporal augmentation was used to cover
diverse distributions in the approach. A constrained
spatiotemporal loss was introduced to generate the pseudo-
labels for augmented data. Unsupervised methods have also
been used in sub-applications like skin tissue segmenta-
tion [2, 26].

2.4. Authentication

Every individual possesses a heart and associated
vascular system that are inherently unique. When sensing
physiological signals such as PPG and ECG, differences
between individuals can lead to distinctive characteristics
that can be leveraged for the purpose of biometric authen-
tication [12, 33, 34]. Different research efforts have shown
promise in the field of authentication using contact sensor-
based PPG [15]. However, the development of biometric
authentication systems using imaging PPG (iPPG) signals
has been a challenging task due. One of the primary chal-
lenges is the presence of noise in iPPG signals, which can
lead to inaccurate results. Additionally, the recovery of
shape morphology from iPPG signals has been a difficult
task for researchers [20, 27].

3. Architecture and Approach

A goal of this work is to accommodate relatively large
movements of the head, and we wish to take advantage
of Shafer’s dichromatic reflection model [42]. We have

modified the DeepPhys model [4] by incorporating a a skin
segmentation model.

3.1. Extraction of Areas of Interest

The primary objective of this study is to incorporate
natural variations in video data during the training process.
Traditional face detection methods, such as center-crop,
Haar cascades, and SeetaFace, are insufficient for locating
faces with significant movement, partial occlusion, and
wide ranges of skin tones. We decided to use the MTCNN
face tracking and detection method [48], with results illus-
trated in Figure 1. This choice aided in addressing many
problems related to face detection.

3.2. Skin Segmentation Model

Skin segmentation is a crucial step in training models for
remote photoplethysmography (iPPG), as it directs learning
toward the important areas of the face from where signals
could be recovered. While previous research has empha-
sized the importance of skin pixels and proper skin detec-
tion, there has been less consideration given to the need for
having a skin detection algorithm that would avoid facial
hair, heavy skin illumination based reflection, glare, etc.
Most existing ROI detectors do not have the capability to
exclude these regions during learning. Additionally, when
employing attention-based networks, it is often assumed
that the regions of interest consist entirely of skin pixels.

To address these problems, we have used a skin segmen-
tation model as shown in Figure 2. This is a fully convo-
lutional network (FCN), with an encoder-decoder architec-
ture. The model was trained using the benchmark ECU
dataset [28] using binary cross entropy loss function and
SGD optimizer. where the loss function could be repre-
sented as follows,

LSkin = −1/N
N∑
i=1

yi log(f(yi) + (1− yi) log(1− f(yi)) (1)

where N represents the number of classes (here N = 2 for
skin pixels and non-skin pixels), yi represents labels, and
f(yi) represents predicted probability.

This trained model gives a skin probability mask as the
output which is used in our main architecture to gain the
output skin frame. To retrieve the skin frame, a thresholding
operation is performed on the mask generated from the FCN
model such that 0 represented non-skin pixels and 1 repre-
sented skin pixels. This computed mask is then multiplied
with the RGB channels of the original face frame, thus
providing the required skin ROI from the respective input
video frame. Standard data augmentation techniques were
used during training, along with image color variations in
order to accommodate different skin tones.

The primary objective of this implementation is to focus
on skin regions and eliminate areas that include signif-
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Figure 2. (a) Our skin segmentation model is a fully convolutional network (FCN) based encoder-decoder network. This subsystem
generates a face mask in which skin pixels are detected. (b) Example outputs of some of the important cases using our ROI pipeline. The
system extracts the face region and detects skin while excluding major facial hair and divergent factors such as reflections from eyeglasses.

icant facial hair, overly bright intensities, and specular
reflections. The architecture of the model is presented in
Figure 2(a). Figure 2(b) illustrates some critical test cases
from the UBFC-Phys dataset along with their corresponding
skin segmentation results, providing an intuition of how
disregarding such scenarios could lead to a lack of gener-
ality during model training.

3.3. Proposed Model

Our proposed architecture is based on Shafer’s dichro-
matic reflection model (DRM) [42] and the mathematical
analogy introduced by DeepPhys [4]. We can represent the
time-varying function of the RGB values of the kth skin
pixel in an image sequence as follows,

Ck(t) = I(t) · (vs(t) + vd(t)) + vn(t) (2)

where Ck(t) represents a vector of the RGB values, I(t)
represents luminance intensity level, vs(t) represents spec-
ular reflection, vd(t) represents diffuse reflection and vn(t)
represents camera quantization noise. Here to reduce the
effects due to camera quantization error, every frame is
down-sampled to a size preferred by the model (72× 72
in our case). Then bilinear interpolation for downsampling
is used. This is in contrast to more conventional bicubic
interpolation, as the former helps in avoiding excessive
smoothing effects and influences better learning from the
face features for the BVP signal retrieval. A revised repre-
sentation is

Cl(t) = I(t) · (vs(t) + vd(t)) (3)

where Cl(t) represents a vector of the RGB values for
the lth skin pixel from the resized frames. In previous
modeling approaches, the lth pixel in an image sequence
is naively assumed to be a skin pixel. Instead, we have

added an additional attention branch in the training pipeline
(see Figure 3) that can improve the automatic selection of
regions of interest to skin areas. As a result, we can update
(3) as

Cl(t) =

{
0, if Skin(l) < δ,

I(t) · (vs(t) + vd(t)), if Skin(l) ≥ δ
(4)

where Skin(l) represents the outcome of our skin detection
model for the lth pixel and δ represents the threshold for the
binary cross entropy probabilities (0.5 in our case).

We use MTCNN-based face detection and tracking [48]
to extract target face regions from video frames. This choice
helps our system accommodate spatial motion. We use a
normalized face frame difference of two consecutive face
frames as the input to the main branch of our convolution
attention network (CAN), with maxima that are clipped to
the third standard deviation above the mean. The input
normalized face frame difference can be represented as

Dip(t) = min(D(t), Dipmax) (5)

and

D(t) =
Cl(t+ 1)− Cl(t)

Cl(t+ 1) + Cl(t)
(6)

Dipmax(t) = µ(D(t)) + (3× σ(D(t))) (7)

where Cl(t) is the vector of the RGB values for the resized
face frame, Dip(t) is the input (clipped normalized face
frame difference), D(t) is the normalized face frame differ-
ence without clipping, Dipmax(t) is the maxima of the
threshold for clipping, µ represents mean and σ represents
standard deviation.

The attention branch of our model (which includes the
skin segmentation model) helps retrieve the skin regions
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Figure 3. The complete proposed architecture. Face extraction is performed by the MTCNN module, and skin detection is performed on
these areas of interest to recover the required ROI’s. From a single frame difference, the system generates a single signal value either for a
BVP signal or for a temporal derivative of the BVP signal.

from the face which are then batch standardized and passed
on to the network. As depicted in Figure 3 the archi-
tecture after the skin segmentation model, in the attention
branch, is the same as the one we have in the main branch
of the CAN network. We use dropout layers, with dropout
rates of 0.5, before every average pooling layer and also
before the last fully connected layer which is followed by
a tanh activation function. The mask generated from our
attention branch uses sigmoid activation over the respec-
tive branch outcome which is multiplied by the height and
width of the respective layer prior to pooling layers and
then this outcome is divided by twice the L1 normaliza-
tion on the output of the sigmoid activation. Finally, for
our feature extracting dense layers we consider 32 feature
parameters in the output layer, which has a tanh activa-
tion function to keep the outcomes bounded. We trained
our attention model using the Stochastic Gradient Descent
with Momentum (SGDM) optimizer, a momentum of 0.9, a
batch size of 128, and a learning rate of 10−4.

3.4. BVP Annotation and Loss Function

During training, the ground truth blood volume pulse
(BVP) values are first resampled to match the sampling
rate of the video frames. The first derivative of these BVP
signals is computed and batch standardized to be used as the
ground truth in one training pipeline. We also use the orig-
inal batch-standardized BVP signal as the ground truth, thus
computing outcomes on both the first derivative as well as
the original BVP signals in two different training pipelines.
To compute the loss during training, we utilize the mean
square error between the model outcome and the standard-
ized ground truth. Hence, in the case of the first derivative
BVP signal retrieval, it could be represented as

bder(t) = b(t+ 1)− b(t) (8)

bgt(t) =
bder(t)− µ(bder(t))

σ(bder(t))
(9)

LossCAN =
1

N

N∑
i=1

(bgt(t)− bpred(t))
2 (10)

where b(t) is the BVP value collected from the sensor at
time t, bder(t) is the first derivative signal, bgt(t) is the
standardized first derivative BVP signal that we use as the
ground truth and bpred(t) is the predicted model outcome.

3.5. Signal Morphology

The field of remote photoplethysmography (iPPG) has
mainly focused on extracting average cardiac pulse-based
metrics. However, as physical sensor-based technology
advances, the potential for generating instantaneous phys-
iological data also increases, highlighting the need for more
research in this area [19]. This work is one of the first
to tackle the challenges of detailed shape (morphological)
features. In this section, we present a set of metrics that can
be used to study conformity of the recovered signals.

For morphology-based metrics, we compute the mean of
the normalized cross-correlation between the model output
signals and the ground truth BVP signals for every candi-
date in the dataset. These metrics are computed for the
respective signals in the time domain, frequency domain as
well as power domain, which are reported further giving us
a complete idea of how well the model could retrieve correct
signal shape morphology.

The normalized cross-correlation (ncr) is computed as:

ncr(xgt(n), xop(n)) =

∑N
i=1 xgt(ni)xop(ni)√∑N

i=1 xgt(ni)2
√∑N

i=1 xop(ni)2
(11)

where xgt(n) is the ground truth signal, xop(n) is the
model output signal and N is the number of signal samples.
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The signal in the time domain is represented as xgt(t)
and xop(t) where xgt(t) is ground truth signal in time
domain and xop(t) is model output signal in time domain.

Thus, the same signals in the frequency domain could be
represented as follows,

xgt(f) = FFTmag(xgt(t)) (12)

xop(f) = FFTmag(xop(t)) (13)

where FFTmag is the magnitude of the Fast Fourier Trans-
form for a signal in the time domain.

Similarly, the signals in the power domain will be as
follows,

psd(x(n), fs) = lim
x→∞

1

T

∣∣∣∣ N∑
n=1

xne
−i2πfn

∣∣∣∣2 (14)

xgt(p) = psd(xgt(t), fs) (15)

xop(p) = psd(xop(t), fs) (16)

where psd is power spectral density, fs is sampling
frequency and N is the number of signal samples.

Thus, based on this developed baseline we further
compute our shape morphology metrics in the time,
frequency, and power domain denoted as smmt, smmf and
smmp respectively, which could be given as follows:

smmt =
1

C

C∑
i=1

ncr(xi(t)gt, xi(t)op) (17)

smmf =
1

C

C∑
i=1

ncr(xi(f)gt, xi(f)op) (18)

smmp =
1

C

C∑
i=1

ncr(xi(p)gt, xi(p)op) (19)

4. Experiments and Results

Since our implementation addresses the process of BVP
signal recovery from face videos as well as re-identification
based on those recovered signals, we divided our experi-
ments into three parts, starting with the signal recovery fore-
front, followed by computation of standard human under-
standable metrics and then computing re-identification
procedure. For better evaluation, we have two different
pipelines covering both the recovery from ground truth BVP
signals as well as first derivative BVP signals.

4.1. Dataset

UBFC-Phys [30]: This dataset includes 56 candidates
with a distribution of 10 males and 46 females. The video
frame rate is 35 FPS and has a resolution of 1024× 1024,
BVP signals are also provided in this dataset which are
collected at a rate of 64 Hz using the E4 wristband. Each
candidate is subjected to 3 tasks, which are rest, speech, and
arithmetic tasks, respectively, and a 3-minute RGB video is
collected for each task. All the videos were captured in
a lab environment, with natural movements incorporated
into all tasks. Additionally, the dataset features natural
translational and rotational movements, along with various
attributes such as facial hair, glasses, skin color, and occlu-
sion. The annotated labels in the UBFC-Phys dataset for
tasks two and three are not suitable for training, and hence
we have only considered the data from the first task, which
still encompasses all the necessary variations in the video
data.

COHFACE [11]: This dataset includes 40 candidates
with a distribution of 28 males and 12 females. The videos
were captured at a frame rate of 20 FPS and have a resolu-
tion of 640× 480. The dataset also includes corresponding
BVP signals collected at a rate of 256 Hz. Each candidate in
the dataset was recorded for a duration of one minute, under
two different illumination scenarios, i.e., good lighting and
low light conditions. All the videos were collected in a lab
environment. Though there are no intentional movements,
the challenge in this dataset is brought by the low illumina-
tion samples. The data also include a considerable variation
of skin tones which makes it even more useful.

4.2. Signal Morphology Recovery

This section reports results on the recovery of signal
shape morphology. Here, we demonstrate our model’s
performance on the UBFC-Phys dataset quantatively using
(17)-(19) as well as using a visual depiction as shown in
Figure 4. Table 1 presents the shape morphology metric
outcomes for our models with ground truth as the orig-
inal BVP signal and first derivative BVP signal, along with
recovered signals from our implementation of the DeepPhys
model all without any form of the post-processing involved.
Similarly, in Table 2, we present the shape morphology
metrics on the integrated signals after post-processing for
the first derivative ground truth BVP signal-based models.

4.3. Standard Cardiac Pulse Metrics

The computation of the heart rate in beats per minute,
is often performed by post-processing the model’s output
BVP signals using a bandpass filter. We have used a cutoff
frequency of 0.75 Hz and 0.25 Hz (since the expected range
for heart rate is 45 beats/min to 150 beats/min). We next
compute the power spectral representation of the band-
passed signal where the highest peak is considered as the
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Figure 4. The two plots are for the same individual from the UBFC-Phys dataset, representing the shape morphology recovery from our
model (top) and from DeepPhys [4] (bottom). This is a qualitative representation of how well our model retrieves signal shape morphology
and its comparison with signal recovery from a state-of-the-art model that focuses on averaged pulse values.

Table 1. Domain-wise shape morphology metrics outcomes
for our model pipelines and for DeepPhys without any post-
processing of the output signals.

Metrics Our Model
(BVP)

Our Model
(First Der. BVP) DeepPhys

Time↑ 0.088 0.077 0.06
Frequency↑ 0.443 0.511 0.359

Power↑ 0.45 0.47 0.339

Table 2. Domain-wise shape morphology metrics outcomes for
our BVP first derivative-based model pipeline and DeepPhys after
integrating output signals to get them in original BVP signal
format.

Metrics Our Model
(First Der. BVP) DeepPhys

Time↑ 0.120 0.118
Frequency↑ 0.670 0.645

Power↑ 0.594 0.472

estimated HR. We report root mean square error (RMSE),
mean absolute error (MSE), and Pearson correlation coeffi-
cient between the heart rate for the ground truth BVP signal

and the estimated BVP signal. The results are shown in
Table 3 for both UBFC-Phys and COHFACE.

Further, in Table 4 we present a comparison of the
MAE-based outcomes for the average cardiac pulse-based
measurements from our models with respect to the state-of-
the-art models previously published.

4.4. Re-identification

As a part of our experiments, our aim was to evaluate
the possible scope and extent of re-identification using our
devised architecture. Since we were focusing primarily on
good BVP signal shape retrieval and thereby performing
computations based on the retrieved BVP signals, hence
instead of evaluating authentication based on an Inter
Beat Interval (IBI) or similar averaged cardiac pulse-based
metrics, we computed the Pearson correlation coefficient
between the ground truth and the output BVP signals for
each candidate. So, the outcome for every candidate was
compared with the annotated BVP signals for every other
candidate in the test set and the one with the maximum
correlation was acknowledged as the identified candidate
for the respective output signal. Considering rank 5, we
could re-identify 14 candidates from a pool of 20 candidates
from a diverse dataset such as UBFC-Phys. The rank-5
accuracy was therefore 70%, which demonstrates the poten-
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Table 3. Performance of our architecture pipelines on UBFC-Phys and COHFACE dataset, in terms of heart rate measurements in beats
per minute (HR bpm) [7, 10, 13, 36]. Comparisons have been made with literature using available metrics that are used in our study.

Methods UBFC-Phys COHFACE
MAE↓ RMSE↓ r↑ SNR(dB)↑ MAE↓ RMSE↓ r ↑ SNR(dB)↑

ICA [29] 6.71 - - - 12.24 15.67 0.24 -4.43
CHROM [5] 4.39 - - - 7.80 12.45 0.26 -

POS [42] 5.98 - - - 13.43 17.05 0.24 -4.43
HR-CNN [36] - - - - 8.10 10.78 0.29 -
DeepPhys [4] 11.78 17.848 0.174 -7.676 6.60 10.788 0.524 -6.425

Our Model (BVP) 5.02 10.673 0.701 -1.792 4.02 6.799 0.80 -6.317
Our Model (1st Der. BVP) 4.05 8.438 0.828 -0.78 2.92 6.128 0.86 -2.685

Table 4. Performance (HR BPM-MAE) of our technique in
comparison with previously published state-of-the-art models on
the UBFC-Phys and the COHFACE dataset [7, 10, 13, 36].

Methods UBFC Phys COHFACE
GREEN [39] 14.17 -

ICA [29] 6.71 12.24
CHROM [5] 4.39 7.8

POS [42] 5.98 13.43
1D-CNN [36] 5.41 -

LSTM-rPPG [3] 6.48 -
SQA-rPPG [7] 6.01 -

2SR [43] - 20.98
LiCVPR [16] - 19.98
HR-CNN [36] - 8.10
SAMC [37] - 6.23

DeepPhys [4] 11.78 6.6
Our BVP 5.02 4.02

Our BVP Der. 4.05 2.92

tial of this approacy. The rank-wise distribution is presented
in Figure 5 where we show the rank-wise re-identification
for both of our models including first derivative BVP signal
outcomes as well as integrated BVP signal outcomes.

5. Conclusion
This paper has presented an iPPG method that can

extract BVP signals from standard RGB video of a person’s
face. The primary emphasis has been to recover the
shape (morphology) of the BVP signal. We have shown
that recovery of systolic and diastolic peaks is possible
through camera-based iPPG. Using large-scale benchmark
datasets and a series of metrics, we have demonstrated that
our method performs better than previous state of the art
methods to extract the BVP signal.

A better understanding of BVP will help iPPG research
in many ways. First, there is no longer a need to place
so much emphasis on recovering average heart rate only.

Figure 5. The rank-wise distribution for re-identification is
presented here, where the graph in blue represents the re-
identification results for the model trained using BVP signals,
and the graph in red represents the re-identification results for the
model trained using first derivative BVP signals.

Direct BVP signal recovery will help in studying inter-beat
intervals with greater accuracy than is now possible. In
turn, this work opens up the potential of iPPG in performing
measurements related to heart rate variability. We have
shown that better recovery of BVP signals significantly
reduces error associated with other HR metrics. Finally, we
also demonstrated that extracted BVP signals can be used
for person reidentification.
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