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Abstract

The popularity of non-contact methods of measuring vi-
tal signs, particularly respiratory rate, has increased dur-
ing the SARS-COV-2 pandemic. Breathing parameters can
be estimated by analysis of temperature changes observed
in thermal images of nostrils or mouth regions. However,
wearing virus-protection face masks prevents direct detec-
tion of such face regions. In this work, we propose to use an
automatic mask detection approach to select pixels within
a mask region as a source of respiration information allow-
ing efficient estimation of respiratory signals. We performed
experiments with two important types of virus protection
masks, i.e., FFP2 (N95) and surgical masks, for subjects
while sitting, slowly walking from a short distance toward
a camera, and slowly walking with moderate head move-
ments. Experiments conducted with the adapted YOLO
model have shown that detection of the mask area on the
face allows for higher SNR values and reduces error in
respiratory rate estimation in all analyzed scenarios. The
Mean Absolute Error for respiratory rate estimation was
below 1 bpm for sitting subjects for all types of masks. The
error for walking subjects was 1.21 bpm for an FFP2 mask
and about 2.1 bpm for a surgical mask. In the presence of
head movements, while walking, the MAE was below 1.39
bpm and less than 1 bpm when only one outlier was re-
moved.

1. Introduction
Remote assessment of vital signs is important in medi-

cal diagnostics, especially when contact sensors present a
risk, are expensive, or can not be used due to skin/body dis-
eases or infections. Contactless measurement has become
very important in recent years due to the SARS-COV-2
virus pandemic. Using cameras and computer vision meth-
ods to analyze recorded images allows computing many
physiological changes potentially useful for clinical or non-
clinical applications [26]. The popular techniques include
pulse rate estimation from visible light camera recordings

(e.g., [30] [23] [31] [6]) and respiratory rate estimation from
thermal camera recordings (e.g., [9] [27] [34] [28] [38]).

During the pandemic, automatic assessment of vital
signs has become problematic in some situations due to
wearing virus-protective masks. In respiratory rate analy-
sis, detection of the position of the masked face in thermal
images, particularly the location of the nostrils, is a chal-
lenge. However, a detected facial mask can be a source of
valuable, respiratory-related information due to the temper-
ature changes on a mask’s surface caused by breathing.

This work aims to extract respiratory signals from peo-
ple wearing different virus protection masks while sitting or
walking. A sitting person in front of a camera resembles a
scenario of a patient encounter in a clinic or testing point.
A person walking toward the camera resembles another sit-
uation, when a person slowly moves in a queue at a virus
testing point, airport security checkpoint, etc.

In particular, our contributions are:

• We designed a method to extract the respiratory sig-
nals 1) from the automatically detected mask regions
and, for comparison, 2) from the lower half of the au-
tomatically detected face region from thermal images
of people with virus protection masks.

• We compared and analyzed the extracted respiratory
signals and related respiratory rates for subjects wear-
ing different types of masks: surgical and FFP2 (N95).

• We compared and analyzed the extracted respiratory
signals and related respiratory rates for subjects wear-
ing different types of masks while sitting, slowly walk-
ing from a short distance toward a camera, and slowly
walking with moderate head movements.

• We have shown that YOLO-based facial mask detec-
tion in thermal images allows extracting the respira-
tory signals with a higher value of Signal-to-Noise Ra-
tio and reduces respiratory rate estimation error in all
analyzed scenarios.

The rest of the work is structured as follows. In the
following section, related work is described. Section III
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presents this study’s methodology, experimental design, and
dataset. Results are shown in Section IV, followed by a
discussion of results in Section V. Finally, Section VI con-
cludes the study.

2. Related work

2.1. Respiratory rate estimation

Many previous studies addressed the problem of respira-
tory rate (RR) estimation from a sequence of thermal im-
ages recorded for a facial region. The most often used
approach is based on the localization of the pixels that
convey respiration information, i.e., thermal image pixels,
whose values change due to the local temperature gradients
caused by respiration. Such source areas or pixels are iden-
tified manually or automatically near nostrils and mouths
(e.g., [27] [9] [2] [5] [24]). Next, values of source pix-
els are aggregated for each frame to obtain a time series
(e.g., using a mean or other statistics [29] [35]). The ex-
tracted raw signals are post-processed using filtration (e.g.,
band-pass filters [25], moving-average filtration [29], etc.).
Finally, the respiratory rate is estimated with peak detec-
tors (e.g., [39]), wavelet analysis [9] or methods based on
Fourier domain analysis (peak in the frequency domain, or
using auto-correlation techniques [7]). Several deep learn-
ing methods were also proposed to improve the process of
respiratory rate estimation (e.g., [21], [13] [22], [39]).

However, to our knowledge, no studies have been re-
ported on respiratory signal estimation from faces covered
by different virus protection masks in various activities of
subjects. Only limited studies address the problem of fa-
cial images with masks in the related context. The au-
thors of [32] proposed a synthetic dataset of thermal im-
ages of people with masks by putting masks on faces from
the SpeakingFaces [1] set. The Cascade R-CNN was used
to determine whether a mask was on the detected face and
whether the mask’s color indicated the inhalation or exhala-
tion phase (the classification problem). The mask detection
validated on the synthetic subset reached high average pre-
cision values (AP=0.879 for the best model). In addition,
the authors recorded thermal sequences from 11 people at
a distance of 1.5 m from the camera. Subjects wore fa-
cial masks (unknown types) and were asked to take breaths
slowly, faster, and normally. This dataset was used to vali-
date the model. The authors obtained MAE=3.76. In [15],
authors investigated the effects of three types of masks (a
surgical mask, a cloth mask, or an N95 respirator with an
exhalation valve) on the thermal signatures of exhaled air-
flow when breathing, speaking, or coughing. In this pre-
liminary study, with the participation of seven subjects, au-
thors manually selected several ROIs on images with and
without facial masks. They showed no significant differ-
ence between breathing rate estimation with or without a

mask. However, the experiment is difficult to evaluate since
comparing separate measurements in time (a person without
a mask and later with a mask) is challenging. The problem
of vital sign estimation from faces covered by masks was
also addressed in [37]. However, in this study, the authors
were interested in pulse rate from images recorded in visi-
ble light. The authors showed that it is possible to evaluate
the heart rate with slightly worse performance for masked
faces (e.g., using the forehead area as proposed in some of
the earlier studies [23]).

2.2. Mask detection

Several papers addressed the mask detection problem for
visible and thermal light images. Most of them use visi-
ble light images. In [36], authors used the transfer learning
method and the ResNet-50 [12] model, which was trained
using the MAFA dataset. They achieved a mask detection
accuracy of over 98%. Automatic mask detection based on
IoT in public transport has been proposed in [20]. A hybrid
model combining deep learning and machine learning was
created and validated on the created dataset (over 1,600 im-
ages) and publicly available datasets to determine whether
a person is wearing a face mask. The detection accuracy
was over 99%. Another interesting problem was the detec-
tion of the position of the mask on the face. Probably only
one of the publicly available sets contains annotations about
the location of the mask area on the face - a face mask de-
tection dataset (FMD) [19]. It has over 52,000 images and
annotations of location and classes - face with and with-
out a mask, incorrect mask, and mask area. The authors
used Yolov4 [4] model, achieving an average precision of
87.05%. The same group has also created another solution
- ETL-YOLO v4 [18] using the FMD set, reaching the Aver-
age Precision of mask location detection of about 87% and
mean Average Precision (mAP) of about 67.6%.
Only limited works addressed the detection of a mask or a
face with a mask for thermal images. The examples include
the work [32] described in the previous section. In [10],
authors analyzed the face detection problem of people with
and without masks. A new private set of over 7,900 ther-
mal images was used. Several popular classifiers were an-
alyzed, and some were also pre-trained on RGB images.
The best results were obtained for the adapted Yolov3 [33]
model. The achieved mAP was 99.3%, while the precision
was limited and equal to 66.1%. In [17], authors proposed
detecting a face mask area in thermal images. They created
a dataset of nearly 9,400 thermal images of people wearing
three types of masks. The annotated dataset was used to
train the adapted Yolov5 [14] model in the ”nano” version.
The obtained mAP was over 97% with a precision of about
95%. In addition, they proposed a CNN-based model to
classify face mask types into three classes: surgical, FPP2,
and cloth mask. The obtained accuracy for the best model
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was 91%.

3. Methods

In Figure 1, the overall pipeline of the proposed method
is shown. Mask and face detection are performed for each
frame of the thermal video recorded for each subject. A
respiratory signal is extracted based on the average value
of pixels located in the region of the mask or the lower
half of the face. A binary respiratory signal (inhalation) is
also extracted from each frame. In the next stage, the post-
processing of breathing signals takes place. The last step is
the quantitative analysis of the extracted signals providing
estimated respiratory rates, SNR values, etc.

Figure 1. Method pipeline overview.

3.1. Experimental setup and data acquisition

Two experiments were conducted to collect a proprietary
dataset of thermal recordings to determine respiration rate.
The first was for a sitting subject and the second for a slowly
walking subject. All sequences were recorded with the
FLIR A665SC thermal camera with 50 frames per second.
The frame’s resolution was 640x480 pixels.

In the first experiment (sitting subjects), 15 participants
were asked to wear a certified FFP2 (N95) mask, and one-
minute recordings were recorded. The subject was looking
at the camera and breathing. During a series of recordings,
to obtain a reference signal, the subject had to signal inhala-
tion (upward movement) and exhalation (downward move-
ment) with a finger movement. After a short break, the same
procedure was used for subjects wearing surgical masks. In
this part of the study, 30 recordings were collected, 15 for
each type of mask. The subject was about 1 m away from
the camera. The temperature in the room was 22.5 degrees
Celsius. The average age of the study participant was 35.66
± 12.56 years. An example of two images from the record-
ings (for two different types of masks) is presented in Figure
2.

The second experiment consisted of recording the
breathing process in masks while slowly moving toward the
camera (walking subjects). This experiment resembled real-
world conditions, such as moving in a queue at airports,
testing points, or building entrances. Each of the 15 par-
ticipants (age 41.47 ± 11.51 years) moved towards a cam-
era set 6m from the starting point. It must have taken 1
minute to walk this road. As in the first experiment, each

(a) (b)

Figure 2. Examples of images from recordings obtained during
experiment 1: (a) a person with a surgical mask and (b) a person
with an FFP2 mask.

participant had to signal the moment of inhalation and ex-
halation. As this experiment is practically more interest-
ing, more measurements were taken. The first recording
for each participant was made in a surgical mask. Next, it
was repeated. The third recording was made for an FFP2
mask, and it was also repeated. The fifth recording was also
performed for subjects wearing FFP2 masks. But the par-
ticipants were asked to move their heads from side to side
(right-left) along the way. In total, 75 files (about 1.5GB
each) were recorded, each with a sequence of images last-
ing 1 minute. Unfortunately, after the experiments, two files
were found corrupted. However, the corrupted files were for
repeated measurements, so for each experiment, at least one
recording was available for each subject. The temperature
where the experiments were performed (a building corridor)
was 19 degrees Celsius. Sample images from the recordings
obtained in the second experiment are shown in Figure 3.

Figure 3. Examples of images from recordings registered during
the second experiment - for two distances from the camera for a
person with an FPP2 mask.

The experiments were performed with permission of the
local Committee for Ethics of Research with Human Partic-
ipants on 02.03.2021. Informed consent was obtained from
all subjects involved in the study.

3.2. Face and mask detection

Respiratory signal extraction requires identifying the
pixels that change their values in time due to respiratory
activity. Two methods were used in this study. The first
uses the adapted model of the face with mask detection
from [10]. Based on the detected region of the face, the
lower half of the region is used to calculate the average
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value of the pixels in this area for each frame. As a result,
a raw respiratory-related signal is extracted. The choice of
this region is closely related to the location of the mask on
the face, i.e., the covered area of the nose and mouth, based
on which RR can be determined.

The second method consists in detecting the mask area
on the face in thermal images using the adapted Yolov5
model [14], specifically created for mask detection in ther-
mal images [17]. The trained model achieved very high val-
ues of mAP and precision (>95%), so it was used in this
study. The respiratory-related signal is extracted similarly
to the previous method - by obtaining the average value in
the detected region of the mask. In both methods, in the
event of a temporary lack of face or mask detection in a
given frame (50fps), the predicted area of interest is approx-
imated using the area extracted in the previous frame.

For each recording, reference signals were created based
on the finger movements of the subject. These signals are
binary and represent the start of inhalation. It should be
noted that the moment of inhalation determined by the study
participant is subjective; therefore, it may differ from per-
son to person.

3.3. Extraction of respiratory signals and post-
processing

Each extracted respiratory signal from the respective
ROI of each frame was processed with a baseline removal
filter implemented using asymmetrically reweighted penal-
ized least squares smoothing [3]. Next, each signal was
normalized to a [0,1] range. Noise peaks were identified
as values outside the 1.5 X interquartile range (IRQ). Iden-
tified peaks were smoothed with an upper or a lower limit
value:

vul = µ± 1.5 ∗ IQR (1)

Next, the square root of each sample was calculated to
amplify low amplitude changes. Signals were further stan-
dardized about mean and smoothed using the asymmetric
least squares smoothing function proposed in [8]. Finally,
the values of each signal were inverted to obtain positive
values for the inhalation phase that corresponds to the bi-
nary reference signal.

Fig. 4 presents examples for the selected post-processing
steps.

3.4. Quantitative analysis

The SNR values were calculated for each raw, extracted
respiratory signal (i.e., before post-processing). The modi-
fied version of the SNR metric from [11] was used:

SNR = 10log10

∑60
1 (Ut(f) ∗ Ŝ(f))2∑60

1 ((1− Ut(f)) ∗ Ŝ(f))2
(2)

Figure 4. Example of the results of raw respiratory-related signal
post-processing functions.

where Ŝ(f) is the spectrum of the extracted, raw respi-
ratory signal, S, f is the frequency in breaths per minute
(BPM), and Ut(f) is a binary template window moving
through the spectrum. The 10-bin window was used in this
study.

Finally, the respiration rate as breaths per minute was
estimated as the mean of peak distances in a signal, which
was returned by the autocorrelation function.

All the methods were implemented in Python and are
available in a GitHub repository [16]. Additionally, exam-
ple video recordings are included for all experiments. This
should allow future testing of the method and also for future
video recordings.

4. Results

Figure 5 presents examples of face (in blue) and mask (in
orange) detection in thermal images. Despite the different
quality of recordings and facial or mask features blurring,
masks are detected with high accuracy.

(a)

(b) (c)

Figure 5. Selected frames with detected face and mask bounding
boxes from sitting subject with surgery mask (a) and walking sub-
ject with an FFP2 mask in the 60th second of the recording: (b)
without head movements and (c) with head movements.
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Figure 6. Selected frames with detected face and mask bounding boxes from a walking, W00 subject wearing an FFP2 mask, in the 0,
10, 20, 30, 40, and 60th second of the recording with head movements: original image resolution (top), cropped and enlarged image with
detected face - blue, and half of the face - orange (middle), and cropped and enlarged image with detected mask area (bottom).

Other examples of the face/mask detection phase are pre-
sented in Figure 6. It shows frames from 0, 10, 20, 30,
40, and 60th seconds of recordings from the walking sub-
ject with head movements. The detected regions are pre-
sented in images with the original resolution (top) and as
the cropped and enlarged versions with face area (bottom).
Automatically detected face and mask regions are presented
with blue and red rectangles. Additionally, the extracted
lower half of the detected face used in the further analy-
sis is presented as an orange rectangle. The face and mask
area are detected well at different angles of the face to the
camera and at different distances from it. The difference
between the mask region and the lower half of the face re-
gion is visible for rotations with higher angles (e.g., images
in the last columns). Figure 7 shows examples of reference
signals and the raw signals extracted from the recordings
collected during the ”walking experiment”. The presented
signals were extracted for the participants wearing an FFP2
mask. The graphs show the moments of inhalation - a de-
crease in the signal value due to the decreasing temperature
in the detected area and exhalation - an increase in the signal
value by heating the mask area with exhaled air.

Due to limited space, the results for all experiments are
available at the GitHub repository [16]. Examples of de-
tailed results for all sitting subjects in the FFP2 mask are in
Table 1 and for walking subjects in the FFP2 mask in Table
2.

The cumulative results for all experiments for sitting and
walking subjects (without head movements) are presented
in Table 3.

The extracted respiratory signals for each sitting partic-
ipant are shown in Figures 8 - for the lower half of the de-
tected face region and 9 - for the detected mask region.

Similarly, filtered signals for the walking subjects with-
out head movements are shown in Figure 10. The mask

(a) (b)

(c) (d)

Figure 7. Examples of raw respiratory signals and reference sig-
nals (start of inhalation) for the walking, W00 subject: (a) and (b)
without head movements, (c) and (d) with head movements. Sig-
nals (a) and (c) are extracted for the detected mask region, and (b)
and (d) for the lower half of the detected face.

Example gt bpm det bpm mask det bpm face SNR mask SNR face
S00 21 19.523 19.523 26.836 13.372
S01 16 14.543 14.563 10.695 7.173
S02 11 10.292 10.300 24.803 13.455
S03 10 10.545 10.610 16.266 9.712
S04 14 13.720 13.544 11.196 11.596
S05 11 11.070 11.268 7.989 10.442
S06 15 15.025 15.038 35.459 32.370
S07 10 9.202 9.202 21.097 14.707
S08 13 13.550 13.587 19.446 10.033
S09 19 18.265 18.265 27.613 27.870
S10 12 10.753 10.811 17.503 15.683
S11 15 14.901 14.975 17.267 14.872
S12 16 16.601 16.588 24.966 21.676
S13 11 10.408 10.399 26.277 27.523
S14 19 14.936 14.894 13.199 8.579

Table 1. Comparison of the ground truth (‘gt ’) value of the num-
ber of breaths with the number automatically detected (‘det ’) for
mask and face regions for sitting subjects wearing an FFP2 mask

regions were used to calculate average values.
In the ”walking experiment,” participants were also
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Example gt bpm det bpm mask det bpm face SNR mask SNR face
W00 0 13 12.245 12.336 24.964 19.799
W00 1 12 11.696 11.742 22.138 16.365
W01 0 13 11.848 11.691 7.181 8.214
W01 1 12 12.058 11.914 7.584 11.554
W02 0 17 17.529 17.515 24.360 16.815
W02 1 16 16.575 16.522 22.673 14.125
W03 0 10 9.514 9.554 24.918 22.621
W04 0 8 7.673 7.595 13.380 12.257
W05 0 13 12.712 12.842 24.035 12.208
W05 1 12 10.733 10.753 23.882 11.375
W06 0 11 13.286 17.013 16.951 7.010
W06 1 12 12.205 12.255 19.788 9.678
W07 0 16 15.652 15.693 11.760 7.129
W07 1 16 15.332 15.280 21.841 5.581
W08 0 13 11.820 21.641 7.622 4.147
W08 1 12 10.909 13.357 9.292 9.209
W09 0 19 11.936 12.521 13.660 9.388
W09 1 29 18.605 18.100 4.47 6.189
W10 0 14 14.184 13.953 16.793 10.528
W10 1 14 13.624 13.636 15.743 9.765
W11 0 16 16.304 14.041 4.765 8.926
W11 1 16 15.986 16.304 9.071 3.341
W12 0 6 5.484 5.386 26.096 14.139
W12 1 6 5.747 5.964 24.815 15.287
W13 0 8 7.042 7.220 19.274 14.535
W13 1 8 8.555 8.483 24.960 15.784
W14 0 7 6.383 6.472 30.482 15.468
W14 1 7 5.917 5.814 25.120 21.744

Table 2. Comparison of the ground truth value of the number of
breaths with the number automatically detected for mask and face
regions for walking subjects wearing an FFP2 mask

Experiment Mask
type Region RMSE MAE minSNR mSNR

sitting
ffp2 face 1.314 0.908 7.173 15.938

mask 1.303 0.883 7.989 20.041

surgery face 0.849 0.721 5.591 18.296
mask 0.84 0.703 6.368 20.839

walking
ffp2 face 3.195 1.664 3.341 11.899

mask 2.496 1.208 4.47 17.789

surgery face 6.966 4.314 2.191 10.492
mask 3.209 2.107 2.265 14.453

Table 3. Estimation error values for all experiments (without head
movements, mSNR - mean SNR)

asked to perform head movements. This type of experi-
ment is similar to natural conditions (people turn around
and look at the sides). Table 4 shows the results obtained
for each walking participant wearing the FFP2 mask, with
head movements.

Table 5 shows the calculated values of the performance
measures for the walking subjects with head movements. It
presents results for the mask’s detected area and the face’s
lower half. One outlier was identified (W04, the lowest
SNR - see also in Figure 11). The presented results were
calculated with and without the outlier.

Examples of post-processed signals and ground truth res-
piratory signals obtained for walking subjects with head
movements are presented in Figure 11. The signals ex-
tracted from the detected mask area and face area are com-
pared. Additionally, the signal with the lowest SNR is pre-
sented (W04).

Figure 8. Extracted (filtered) respiratory signals for sitting subjects
without head movements. The lower half of the face region was
used as the ROI for pixels aggregation.

Figure 9. Extracted (filtered) respiratory signals for sitting subjects
without head movements. The mask region was used as the ROI
for pixels aggregation.

Figure 10. Extracted (filtered) respiratory signals for walking sub-
jects without head movements. The mask region was used as the
ROI for pixels aggregation.
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Example gt bpm det bpm SNR
W00 11 9.967 25.723
W01 10 9.975 18.922
W02 14 14.516 22.699
W03 11 10.230 25.517
W04 9 22.422 4.156
W05 12 11.080 19.523
W06 17 16.949 16.907
W07 15 14.822 13.562
W08 12 11.353 9.841
W09 25 24.773 10.947
W10 11 10.629 22.006
W11 12 11.299 18.583
W12 5 4.082 19.343
W13 12 12.552 9.189
W14 7 6.452 21.721

Table 4. Comparison of the ground truth value of the number of
breaths with the number automatically detected for mask region
for walking subjects in FFP2 mask

Experiment Mask type RMSE MAE minSNR mSNR

walking

mask all 3.517 1.392 4.156 17.243
mask no 1 outlier 0.618 0.533 9.189 18.177

face all 6.079 4.466 5.321 9.952
face no 1 outlier 5.773 4.116 5.321 10.153

Table 5. Estimation error values for walking subjects with head
movements (mSNR - mean SNR)

Figure 11. Extracted (filtered) respiratory signals for walking sub-
jects with head movements. Waveform obtained for the subject
S00 from the detected FFP2 mask ROI (top), from the lower half
of the detected face ROI (middle), the signal with the lowest SNR
value for subject W04 (bottom).

Figure 12 presents all extracted respiratory signals for
walking subjects with head movements (without the W04
outlier) when the mask region was used as the source ROI.

5. Discussion
When automatic mask detection is used to identify pixels

that convey respiration information, lower RMSE and MAE
values and higher SNR values are observed for both exper-
iments (for sitting and walking subjects). The lower part of

Figure 12. Extracted (filtered) respiratory signals for walking sub-
jects with head movements (without the W04 outlier). ROI = mask
region.

the detected face area is an approximation of the location of
the mask area, and in most cases, it is larger than the mask
area. This can cause inaccuracies and disturbances in the
extracted signal.

The difference in the values of the obtained RMSE,
MAE, and SNR measures is also visible for walking and sit-
ting subjects without head movements. Results for walking
conditions are less accurate. The factors that affect the ob-
tained results are probably the distance from the camera and
the image quality (e.g., related to proper respiratory-related
source identification).

The accuracy of the respiration rates estimated for sig-
nals obtained for the sitting subjects is less than 1 bpm
(MAE) and is within the Fourier-based method accu-
racy. For N=3000 and fs=50Hz, the resolution in the
frequency domain is δf = fs ÷ N = 50 ÷ 3000 =
0.0167Hz, 0.0167Hz ∗ 60s = 1bpm. The results are much
better than in [32] where MAE=3.76 was obtained for a sim-
ilar ”sitting” experiment (but with unknown types of facial
mask). However, different test datasets were used, so the
obtained MAE values cannot be directly compared. This
study used different mask types, and more difficult ”walk-
ing” experiments were performed. The respiratory signal is
also estimated, allowing for a much better explainability of
the results. The worst results were obtained for the walk-
ing experiment for the subjects with the surgery masks and
when the lower half of the detected face area was used as a
source ROI. This is a consequence of improperly identify-
ing pixels that do not convey respiration information. The
surgery mask detection in thermal images is less accurate
for the used method. Similarly, the lower half of the de-
tected face region can include many, not respiratory-related
pixels. This can be especially present in the first phase of
the walking, when the subject is far away from the camera
(small resolution) and when a head is rotated. Nevertheless,
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the RR was accurately estimated for all experiments when
automatic mask detection was used. The time cost for the
detection of the mask with Yolov5 or for the face with mask
detection with Yolov3 model is approximately 15.6 ms per
frame, so they can be certainly used in real-time scenarios.

For the W04 example, the obtained SNR value is signifi-
cantly lower. The high noise content of the signal extracted
for this person may be due to fast and large-angle move-
ments, and the mask detection model could not correctly
detect its exact location. In future studies, the value of SNR
could be used to filter reliable signals (or other methods
should be used to improve the quality of extracted signals).

Many previous studies on estimating respiratory signals
used the detection of nostrils, mouth regions, or related pix-
els (e.g., [9], [22]) to locate the best sources representing the
highest contribution to the respiratory signal-to-noise ratio.
It is much easier for subjects who are wearing a mask. A
mask is directly heated or cooled by the respiratory-related
heat flow. This study showed that it was possible to accu-
rately extract respiratory signals for subjects wearing dif-
ferent mask types. The facial masks used in this study are
probably the most popular and effective protection against
airborne viruses. Although many different factors were con-
sidered in this work, the study has several limitations. First,
other mask types (and from other producers) could be used
to analyze the influence of the mask type on the results. In
this study, the FFP2 and surgery masks were used, and the
results show no significant difference in the chosen metric
values (similar mean SNR values and MAE < 1 bpm).
The subject’s self-observation of inhalation/exhalation
phases was used. Each breathing phase beginning was sig-
naled by rising or lowering a pointing finger. This refer-
ence method has limited accuracy since some subjects can
show intention to start a given breathing phase while oth-
ers can point to these two phases with different delays. The
other option would probably be to use the pressure belt [34],
which could be easily used in stationary experiments. Using
a pressure belt as a reference for the walking experiments
would be more difficult due to movement-related noise re-
quiring additional filtering. Also, related data synchroniza-
tion would be a challenge. Nevertheless, it is an interesting
option to use in the future.
Further studies should also consider different walking paths,
head movements, etc. Probably the best validation option
would be to observe the subject in real situations (e.g., at the
airport), but this should require many data privacy aspects to
be addressed. The volunteer group has only 15 healthy sub-
jects. However, even in this group, different breathing be-
havior was observed. Some volunteers were breathing with
a high frequency of breaths (29 bpm), others with a low rate
(5-6 bpm) or with irregular rhythm (e.g., Fig. 4). Never-
theless, observing the results for a larger group, including
patients, would be very interesting for future studies.

Another limitation of the study is related to the local mea-
surement environment. The experiment was performed in
the corridor with no sources of reflections and for typical
room (hall) temperature. Other environment options related
to different ambient temperatures, moisture levels, the in-
fluence of air conditions, etc., could be considered in future
studies. It is also important to mention that this study’s tra-
ditional data processing method was based on signal pro-
cessing. Many other methods have been recently proposed
for camera-based physiological signal extraction [26] that
could be used in the future. However, this study has many
advantages, as concluded in the next section.

6. Conclusion
This paper presents probably the first study on estimating

respiratory signal and rate from automatically detected fa-
cial mask regions in thermal videos for sitting and walking
subjects. Different experiments were designed, and the re-
sults show high reliability of respiratory rate estimation in
the considered scenarios. We also demonstrate that pixel
values from the automatically detected mask region im-
prove the results compared to data obtained from the de-
tected facial sub-region. The proposed method produces
similar results for two popular virus protection masks: FFP2
(N95) and surgical masks. We analyze the extracted respira-
tory signals and related respiratory rates for subjects wear-
ing different types of masks while sitting, slowly walking
from a short distance toward a camera, and slowly walking
with moderate head movements. The values of quality met-
rics were lower for ”walking experiments,” which was ex-
pected. However, the results could be acceptable for many
applications. They could be improved using more sophis-
ticated data processing methods (e.g., identification of best
sources within mask region).
The proposed method is highly explainable. It is relatively
easy to match each point at the extracted respiratory signal
with a mask detected from a given video frame showing the
changes in temperature within the mask area. The exam-
ination documentation could contain the original sequence
of frames with detected mask ROIs or, to improve data pri-
vacy, only a sequence of mask ROIs.
The presented work is part of a comprehensive study fo-
cused on the complex, remote examination of people wear-
ing virus protection masks using thermal imaging. The
complex examination considers previously known methods
for face detection and body temperature estimation using
detected characteristic facial regions (the inner canthus of
the eyes) and new methods for mask detection [17], mask
type classification [17], respiratory signal and respiratory
rate estimation (this study, and future works on respira-
tory patterns analysis), identification if a mask is appropri-
ately adjusted and covering nose, mouth, and chin (work in
progress).
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