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Abstract

Remote photoplethysmography (rPPG) is an optical
technique that enables both non-invasive and efficient mea-
surement of vital signs from facial videos. However, the
quality of rPPG measurements can be adversely affected by
improper camera exposure control and bad lighting condi-
tions. In this paper, we present a systematic study of cam-
era exposure control settings, specifically gain and expo-
sure time, in low-light environments. Our results indicate
that manual adjustment of gain and exposure time can sig-
nificantly improve the quality of rPPG measurements, en-
abling accurate vital sign measurement even in environ-
ments with illuminance levels as low as 25 lux. Further-
more, we demonstrate that the optimal brightness range for
rPPG-based vital sign measurement depends on the sensi-
tivity of the vital sign to the shape and peaks of the rPPG
signal. These findings have important practical implica-
tions for the use of rPPG in healthcare and remote moni-
toring applications.

1. Introduction

Remote photoplethysmography (rPPG) is an innovative
technique for remotely measuring physiological signals by
analyzing blood volume changes under the skin from cam-
era videos. The rPPG technique provides a low-cost and
effective approach to extract vital physiological signs such
as heart rate (HR) [8, 16], heart rate variability (HRV) [6],
and blood pressure (BP) [19]. In particular, heart rate and
heart rate variability derived from an rPPG signal have been
used in patient, sleep, and neonate monitoring, as well as
wellness applications [3, 4, 17, 22].

Different measurement conditions can greatly affect
rPPG results and may be detrimental to the quality of de-
tected physiological signals [9, 14, 21, 23]. In low-light en-
vironments, it has been observed that insufficient lighting
results in the loss of facial details and a decrease in the am-

plitude of pulsatile signals leading to a low signal-to-noise
ratio [21]. Proper exposure control could alleviate such an
impact by adjusting related camera parameters such as the
analog gain and exposure time. Analog gain is the elec-
tronic amplification applied to the voltage of the detected
light, while exposure time measures the duration of light
reaching the sensor.

Exposure control methods have been studied primarily
for producing aesthetic images and boosting performances
for computer vision and robotics tasks [5, 12, 13, 18]. Re-
search has highlighted that camera parameters such as ex-
posure time and gain greatly affect the results of tasks in-
volving information retrieval from images. Furthermore,
using existing Auto-Exposure (AE) algorithms or setting
fixed camera parameters manually do not always achieve
optimal image quality for different tasks. Therefore, vari-
ous metrics to evaluate the ‘well-exposed’ quality are de-
fined, and exposure control algorithms based on these met-
rics were proposed and tested.

Previous research has mainly focused on improving
computer vision tasks unrelated to rPPG extraction. Other
studies have been carried out to investigate the effect of
camera exposure control on remote vital sign measurement.
For example, Laurie et al., [5] examined total noise and
quantization noise under different gain and exposure time
levels. They observed that increasing gain did not reduce
total noise after some critical points, while increasing expo-
sure time, on the contrary, reduced total noise. An exposure
time control algorithm maximizing rPPG Signal-to-Noise
Ratio was then proposed and tested under fluorescent light-
ing. Their method improved HR assessment, demonstrat-
ing the potential of improving rPPG results under different
lighting conditions with camera exposure control. Van Esch
et al., [15] also investigated the effect of exposure time on
HR measurement under different lighting conditions. Their
research concluded that camera exposure control is unnec-
essary beyond avoiding saturation, thereby conflicting with
the results of Laurie et. al. [5]

However, both Van Esch et al., [15] and Laurie et al., [5]
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limited their research and experiments solely to the heart
rate and did not consider sensitive vital signs that depend
on peak localization and shape of the rPPG signal. Further-
more, these studies were conducted in well-lit environments
and the number of participants involved in related experi-
ments was limited to 4-5 people. Therefore, our focus in
this paper was to study the effect of camera settings under
low-light scenarios. Our contributions can be summarized
as follows:

1. We present a systematic study of camera exposure
control settings, specifically camera exposure time and gain,
for rPPG extraction in various illumination environments.

2. We propose a novel metric to assess the feasibility
of rPPG extraction based on the perceived brightness of the
subject’s face.

3. We show that the optimal brightness of facial videos
for remote vital sign measurement depends on the vital sign
that is being measured. The range is much smaller for vital
signs that are sensitive to the rPPG signal’s shape, such as
heart rate variability and blood pressure.

4. We demonstrate that controlled exposure outperforms
auto exposure for HR estimation in low-light scenarios.

2. Theory
There are many factors that can impact the brightness

and the quality of an image. The relationship between these
factors can be summarized in the following equation [11]:

IB ∝ gain ∗ ET ∗AA ∗ SI ∗ C1 (1)

where IB stands for Image Brightness, gain is analog gain
also known as ISO sensitivity, ET is exposure time, AA
is aperture area, SI is scene illumination and C1 is a con-
stant. C1 in this equation represents factors that are dif-
ficult to control such as the reflectivity of an object. The
aperture area, in optics, is the opening through which light
passes. It is adjustable in industrial cameras or dedicated
photographic cameras. However, the aperture area is fixed
in most webcams and smartphone cameras, and therefore,
equation 1 can be re-written as:

IB ∝ gain ∗ ET ∗ SI ∗ C2 (2)

where C2 is constant for the factors that are difficult to ad-
just.

gain in equation 2 is an electronic amplification of the
detected voltage. A higher gain increases image bright-
ness, but an excessive gain may also lead to strong salt-and-
pepper noise [13]. The gain is usually given in decibels (dB)
as follows [1]:

gain(dB) = 20 log10
Vout

Vin
(3)

where Vout is output voltage that is mapped to pixels, Vin is
input voltage or detected voltage.

Exposure time (ET ), in Equation 2, is the duration that
the digital sensor of the camera is exposed to light. Larger
exposure time leads to greater brightness of the image,
while an excessive amount may cause motion-blur effects.
Finally, scene illumination (SI) is the magnitude of light
per unit area calculated in units of lux.

3. Experimental Setup
3.1. Dataset

Figure 1. Illustration of the experimental setup. The participant is
seated 60 cm away from Logitech cameras.

A total of 12 participants, consisting of 8 males and 4 fe-
males aged 22 to 56 years with diverse skin tones, took part
in our experiment. The experimental setup included two
cameras, a Logitech Brio, and a Logitech C270, mounted on
a stand. An adjustable lighting device was used to control
the ambient environment’s luminosity, and an HPCS-320
spectrometer was used to measure luminosity by placing it
directly in front of the subject’s face and pointing it toward
the light source and cameras. To minimize measurement er-
rors, we took three measurements for each luminosity set-
ting. The MP 370 patient monitor and an oximeter were
used as reference devices for benchmarking purposes.

During the data collection, each participant was assigned
an ID to ensure anonymity and was asked to sit on a chair
and rest for 5 minutes to achieve a stable physiological state.
They were then invited to look at the two cameras from
60 cm while seated and with their faces positioned on a
chin rest (see Figure 1). A total of 72 uncompressed video
recordings of 30 seconds were collected for each participant
from each camera, with a frame rate of 15 frames per sec-
ond at a resolution of 480×640 pixels. Of these recordings,
60 consisted of various conditions, including four illumina-
tions (25, 50, 75, 100 lux), five gain controls (0, 6, 12, 18,
24 dB), and three exposure times (1/16, 1/32, 1/64 s). The
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Figure 2. Flowchart illustrating the data processing pipeline of the study.

remaining 12 recordings were taken with auto-exposure, in
which the cameras set the gain and exposure time automat-
ically, for three repetitions under each of the four illumina-
tions.

3.2. Data Processing

The recorded videos were processed with the pipeline as
shown in Figure 2. The face of each participant was de-
tected and tracked by MediaPipe FaceMesh [7]. Skin seg-
mentation was applied to mask out nonskin regions. The
spatial mean of face pixels was then taken and temporarily
concatenated to acquire a mean RGB signal over time. The
Plane Orthogonal to Skin (POS) [20] algorithm was utilized
to map the mean RGB signal to the rPPG signal. The But-
terworth bandpass filter with band size 0.7- 3Hz was applied
to reduce noise. Finally, the heart rate mean absolute error
and the cross-correlation of PPG and rPPG (both defined in
Section 3.3) were used to evaluate the performance of vital
sign extraction with different video recordings.

To facilitate our study, brightness was defined as the
mean brightness of the face, and it was utilized for further
analysis of the effects of camera gain and camera exposure
time on rPPG quality. The calculation of brightness is
shown in the formula below [2]:

L = 0.213R+ 0.715G+ 0.072B (4)

where R is the red channel, G is the green channel, B
is the blue channel and L stands for Luma, the perceived
lightness dimension of an image in HSL space.

3.3. Metrics

During the experiment, the PPG and rPPG signals were
obtained from the oximeter and cameras, respectively. The

former served as the ground truth, while the latter served
as an estimation. To assess the accuracy and reliability of
the rPPG signal, it was compared to the PPG and evaluated
based on two metrics: heart rate mean absolute error (MAE)
and cross-correlation of the two signals.

For cross-correlation, the sampling frequency of the
rPPG signal, originally at 15 Hz, is first increased to 125
Hz to match the sampling frequency of the PPG using first-
order linear interpolation. Then the cross-correlation oper-
ation in 1-D can be performed through the dot product of
PPG and rPPG signal, given by the equation below [10]:

F ◦ I(x) =
N∑

i=−N

F (i)I(x+ i) (5)

Here, F and I represent the PPG and rPPG signals, re-
spectively, and x is the time lag between the two signals.
Both signals have 2N + 1 elements/data points.

4. Results and Analysis

The result of MAE heart rate against gain and exposure
time for different illumination values is given in Figure 3
for Logitech C270 and Figure 4 for Logitech Brio. It can
be noted that the accuracy of the heart rate estimation was
strongly dependent on brightness. When the images were
under-exposed (brightness < 50), increasing brightness
by either increasing gain or exposure time, decreased heart
rate MAE. Furthermore, from Figures 3b, 3c and 3d, it
can be observed that when the frames were over-exposed
(brightness > 200) the heart rate MAE increased. Finally,
when brightness ∈ [50, 200], MAE heart rate was less
than 5bpm for both cameras under various combinations
of exposure time, gain, and scene illumination. Hence, it
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(a) (b)

(c) (d)

Figure 3. Average MAE of heart rate (bpm) across all subjects versus brightness, gain, and the exposure time of C270 webcam for different
illuminations: (a) 25 lux, (b) 50 lux, (c) 75 lux, and (d) 100 lux. The number on each data point represents the corresponding gain from 0
to 24 decibels (dB). The color of each data point represents exposure time (1/64, 1/32, 1/16) in units of seconds.

(a) (b)

(c) (d)

Figure 4. Average MAE of heart rate (bpm) across all subjects versus brightness, gain, and the exposure time of Brio webcam for different
illuminations: (a) 25 lux, (b) 50 lux, (c) 75 lux, and (d) 100 lux. The number on each data point represents the corresponding gain from 0
to 24 decibels (dB). The color of each data point represents exposure time (1/64, 1/32, 1/16) in units of seconds.
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(a) (b)

(c) (d)

Figure 5. Cross-correlation of the contact PPG signal and interpolated rPPG signal versus brightness, gain, and the exposure time of C270
webcam for different illuminations: (a) 25 lux, (b) 50 lux, (c) 75 lux, and (d) 100 lux. The number on each data point represents the
corresponding gain from 0 to 24 decibels (dB). The color of each data point represents exposure time (1/64, 1/32, 1/16) in units of seconds.

(a) (b)

(c) (d)

Figure 6. Cross-correlation of the contact PPG signal and interpolated rPPG signal versus brightness, gain, and the exposure time of Brio
webcam for different illuminations: (a) 25 lux, (b) 50 lux, (c) 75 lux, and (d) 100 lux. The number on each data point represents the
corresponding gain from 0 to 24 decibels (dB). The color of each data point represents exposure time (1/64, 1/32, 1/16) in units of seconds.
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can be concluded that when the image is not under or over-
exposed, increasing the brightness of the video does not de-
crease the MAE heart rate by a significant margin. This is
consistent with the findings of this paper [15] that suggest
controlling exposure time is not important beyond avoiding
saturation. Examples of under-exposed and over-exposed
faces are illustrated in Figure 7.

(a) (b)

Figure 7. (a) Under-exposed face; (b) overexposed face, both
recorded by Logitech C270. (a) 25lux, exposure time: 1/32s, gain:
0dB, average face brightness: 11; (b) 75lux, exposure time: 1/16s,
gain: 18dB, average face brightness: 251

However, this conclusion is only limited to heart rate.
From Figures 5 and 6 it can be noticed that unless the face
pixels are oversaturated (brightness > 200) longer ex-
posure times consistently yield a higher cross-correlation
between contact PPG signal and rPPG signal than shorter
exposure times. For instance, in Figure 6d by looking at
gain = 18dB, where different exposure times are repre-
sented by different colors, it can be observed that increas-
ing exposure time from 1/64s to 1/16s increased the cor-
relation between rPPG and contact PPG signals by 20%.
This implies that more sensitive metrics such as HRV and
blood pressure, which are dependent on the position of the
peaks and shape of the rPPG, are significantly influenced by
a change in exposure time.

Furthermore, both MAE and correlation plots show that
increasing gain does not always improve the quality of vital
sign measurement significantly. Figures 3 and 4 demon-
strate that when brightness ∈ [50, 200], increasing bright-
ness by increasing gain did not reduce MAE heart rate or
reduced MAE by 1bpm. A similar trend can be observed
from correlation plots. For example, in Figure 6d it can be
noticed that for a fixed exposure time = 1/16s, increasing
gain did not improve the cross-correlation between contact
PPG signal and rPPG signal. Lastly, Figure 6d reveals that
increasing exposure time is more effective than increasing
gain to achieve the same brightness level.

Figures 5 and 6 also illustrate the relationship between
the feasibility of rPPG extraction and the brightness of
the face. From these figures, it can be noticed that when
brightness < 200, increasing the brightness of the face
improves the cross-correlation between rPPG and contact
PPG signals, reaching the maximum value at brightness ≈

175 − 200. However, when brightness > 200, increas-
ing brightness reduces cross-correlation. This implies that
even before calculating human vital signs, by looking at
the brightness of the face, one can estimate the quality of
the rPPG signal and the feasibility of vital sign extraction.
Moreover, it can be concluded from the figures that the
range of optimal brightness is strongly dependent on the vi-
tal sign. For less sensitive metrics like heart rate, as depicted
in Figures 3 and 4, brightness ∈ [50, 200] gave MAE <
5bpm. However, the range was different for other metrics
that are dependent on the location peaks and structure of
rPPG such as cross-correlation, as illustrated in Figure 5,
6. These figures demonstrate that the cross-correlation be-
tween contact PPG and rPPG signals reached the maximum
value when brightness ∈ [150, 200]. Therefore, the range
of optimal brightness is unique and distinct for each vital
sign.

CE Brio AE Brio CE C270 AE C270
Illumination MAE±SD MAE±SD MAE±SD MAE±SD

25 lux 1.8± 1.2 2.1± 2.1 2.3 ± 2.0 3.8 ± 5.5
24dB, 1/16s 18dB, 1/16s

50 lux 1.5 ± 0.9 2.2±2.5 2.2 ± 2.8 2.9 ± 2.3
0dB, 1/16s 0dB, 1/16s

75 lux 1.8 ± 1.0 2.0 ± 1.0 2.2±1.4 2.2± 1.0
24dB, 1/16s 0dB, 1/16s

100 lux 2.1 ± 2.1 2.8 ± 1.5 2.1±2.7 3.4±2.1
12dB, 1/16s 12dB, 1/16s

Table 1. Comparison between heart rate MAE Auto Exposure
(AE) and Controlled Exposure (CE) of different cameras and il-
lumination values. Superior performance is highlighted in bold.
The settings to obtain optimal heart rate are given below the MAE
values

Finally, from Table 1, it can be seen that controlled ex-
posure consistently outperformed or was on par with auto
exposure set by the camera. This phenomenon was also ob-
served by Laurie et al., [5]. The rationale behind this phe-
nomenon is that the camera adjusts its auto exposure setting
based on the entire frame for aesthetic purposes, rather than
for an rPPG measurement. Furthermore, it can be noted that
optimal heart rate estimation was always achieved by the
exposure time = 1/16s. This indicates that greater ex-
posure time is associated with a higher correlation between
contact PPG and rPPG under low-light scenarios.

5. Conclusion

In this paper, we conducted a systematic study of cam-
era exposure control settings, specifically gain and exposure
time, in a range of low-light conditions for rPPG-based vi-
tal sign measurement. We found that the effect of gain on
the quality and accuracy of rPPG-based vital sign measure-
ments is significant when the face is under-exposed, and
increasing exposure time improves the quality of the rPPG
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signal unless the face pixels are oversaturated. The ability
to accurately measure vital signs using rPPG in low-light
environments is critical for its widespread adoption in clin-
ical and remote monitoring settings. Our study provides
important insights into the impact of camera exposure con-
trol settings on rPPG measurements and can inform the de-
velopment of more robust and accurate rPPG-based vital
sign monitoring systems. We also demonstrate that the op-
timal brightness range for rPPG-based vital sign measure-
ment varies depending on the sensitivity of the vital sign
to the shape and peaks of the rPPG signal. Future research
should explore the effects of sensor size on rPPG and inves-
tigate camera exposure properties under changing lighting
conditions and various motion scenarios.
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