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Abstract

Remote body temperature measurement using infrared
thermography has been widely deployed worldwide to de-
tect feverish persons, but the measurement accuracy is af-
fected by various factors including ambient temperature
and sensor-subject distance. We present a novel compen-
sation model to address the undesirable interacting influ-
ence of ambient temperature and sensor-subject distance
during remote facial temperature screening in real-world
setting. We derived our model on site-data collected over
12 months and demonstrated the significant linear relation-
ship between ambient temperature and the measured tem-
perature from a thermal camera. In addition, the interac-
tion between the effects of sensor-subject distance and am-
bient temperature on the measured temperature is signifi-
cant. Our model can significantly reduce the measurement
error (MAE) by 23.5% and is better than the best existing
models. The model can also extend the detection distance
by up to 46% with sensitivity and specificity over 90%.

1. Introduction

Temperature is one of the most important vital signs
for health monitoring. The remote mass facial temperature
screening system, which can be placed far without obstruct-
ing pedestrians, has been widely used to screen for feverish
persons since the outbreak of SARS [2,20]. These systems,
equipped with both color and thermal cameras, can detect
the facial temperatures of multiple persons simultaneously
in a contactless manner, thereby enabling the identification
of potentially infected people at an early stage. In the wake
of the COVID-19 outbreak, the systems were installed not
only at national borders but also at the entrances of various
venues to prevent feverish from accessing public indoor ar-
eas. The integration of thermal screening into security solu-
tions has become an important measure to safeguard public
health in the most relevant ways. Nevertheless, the fluctu-
ating ambient temperature may lead to an inaccurate body

temperature measurement, which is not in compliance with
the Food and Drug Administration’s guidelines [13] that
suggest the temperature screening system to be operated in
an environment of 20◦C to 24◦C. This leads to the question
we are trying to solve in this paper: How to accurately de-
tect persons with elevated body temperature under a wide
range of distances and varying ambient temperatures using
infrared thermography?

Since accurate temperature measurement is the foun-
dation of remote temperature measurement using infrared
thermography, therefore, our focuses are: (i) the effect of
ambient temperature on the measured temperature, (ii) the
interaction between distance effects and ambient tempera-
ture effects on the measured temperature, (iii) a more com-
prehensive compensation model that takes not only distance
between the camera and the subject (sensor-subject dis-
tance) and ambient temperature but also their interactions
into account, which is tested in a public area. Our study
provides a comprehensive analysis of the effects of both
distance and ambient temperature on the measured temper-
ature in a public environment. Below is a summary of our
contributions.

1. Our results show that the maximum measured facial
temperature increases significantly (p < 0.01) and lin-
early as the ambient temperature increases.

2. Our results show that there is an interaction effect be-
tween sensor-subject distance and ambient tempera-
ture (p < 0.01).

3. With our proposed compensation model, our results
show that the system detects febrile persons success-
fully with sensitivity and specificity over 90%. The
maximum detection range is 6 m (the whole detection
area) in ambient temperatures ranging from 28.6◦C to
29◦C.

2. Related Works
Infrared thermography has proven to be an effective

method for measuring human body temperature [5]. Since
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the SARS outbreak in 2003, infrared thermography has
been widely utilized in temperature screening, particularly
in airports and international borders. [4, 11, 12, 15, 20].
Generally, a traditional facial temperature screening sys-
tem would notify border control personnel when a person
with an abnormal temperature passes through the check-
point. The staff would then manually compare images taken
from the thermal and color cameras in the system to pin-
point the target person, and they would promptly stop the
suspect before they could depart the screening area. The
procedure requires a great deal of work and puts enormous
strain on personnel, as it needs to be finished swiftly. With
the introduction of deep learning and AI in computer vision
area [3, 18], there has been a surge in the development of
more intelligent systems [7, 10, 16, 21] for facial tempera-
ture screening applications.

Precise measurement of human body temperature us-
ing a thermographic camera is crucial for detecting people
with abnormal body temperature with automated mass fa-
cial temperature screening systems. Several studies inves-
tigated the impact of different factors on temperature mea-
surement with a thermographic camera, including the pres-
ence of dust [14], wind velocity [23], the ambient temper-
ature [17, 19, 23], the distance between the camera and the
subject [7, 9], and so on. Pan et al. evaluated the effect of
dust on temperature measurements [14]. Wind and heating,
on the other hand, can significantly influence temperature
measurement, as demonstrated in experiments with black
bodies at 35◦C and 55◦C [23]. Nonetheless, as this study’s
focus does not encompass the investigation of dust, wind,
and heating effects on temperature measurement, these fac-
tors were not simulated.

The effects of ambient temperature on the measured tem-
perature have been highlighted as a significant factor in
several studies [17, 23]. However, as for the relationship
between ambient temperature and the measured tempera-
ture, there is a contradiction in Wan’s finding [23] and Vut-
tyvong’s [17]. Wan et al. [23] found a linear relationship
between ambient temperature, while Vuttyvong et al. [17]
thought it was a quadratic relationship. To apply the mass
temperature screening system in varying ambient tempera-
tures, we focus on exploring the relationship between am-
bient temperature and the measured temperature in the field
study. The effect of distance and ambient temperature on
the measured temperature would interact, and to have pre-
cise body temperature detection in a wide range of distances
and ambient temperatures, this factor cannot be neglected.
However, the interaction between the effects of distance and
ambient temperature on the measured temperature has not
been explored in the mass facial temperature screening sys-
tem [7, 8, 16, 17, 21].

To mitigate the noise of temperature measurement
caused by different factors, in previous studies Zhang et

al. [9] made theoretical corrections related to distance and
Chin et al. [7] proposed a compensation model only con-
sidering the distance factor after finding the significant lin-
ear relationship between the distance and the measured tem-
perature. Additionally, Vuttyvong et al. [17] proposed two
compensation models, independently considering the dis-
tance and ambient temperature. The authors of [8] demon-
strated a compensation model using a neural network that
only considers distance at 1 meter and 2 meters, yet the ex-
periment they conducted was not sufficiently regulated. In
conclusion, no compensation model accounts for the effects
of ambient temperature, distance, and their interactions on
the measured temperature. Consequently, our paper focuses
on studying the relationship between ambient temperature
and the measured temperature, the interaction between the
effects of ambient temperature and distance on the mea-
sured temperature, and the compensation model.

3. Methods
To facilitate our study, we implemented an remote mass

facial temperature screening system [7] at a commercial
site, as demonstrated in Figure 1. It consists of a distinct
camera setup featuring a Logitech BRIO color camera, a
FLIR E6 thermal camera, an environmental sensor, and a
PC for computing.

Figure 1. Schematic diagram of the flow of collecting data with
the remote mass facial temperature screening system

3.1. Data information

We collected a private dataset that consists of key-point
information from the human body extracted with Open-
Pose [3] and thermal faces (a 2D temperature array of a
face shown in Figure 4) with the above-mentioned system.
They were collected in a field site that is sheltered outdoors
from June 2021 to June 2022. The raw dataset consists of
23,371,717 data points. Since the site’s furthest distance is
6 meters, we only collected data from 0.25 m to 6 m. Fig-
ure 2 demonstrates the variation of humidity and ambient
temperature during the data-gathering period between June
2021 and June 2022. The environmental temperature range
is between 14.3◦C and 34.6◦C. The mean and standard de-
viation are 27.7◦C and 3.7◦C, respectively. Furthermore,
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the humidity range is between 25.6% and 94.1%. The mean
and standard deviations are 65.8% and 11.4%, respectively.

Figure 2. Data information: Change of Ambient Temperature and
Humidity from Jun 2021 to Jun 2022. The Ambient temperature

ranges from 14.3◦C to 34.6◦C and the Humidity ranges from
25.6% to 94.1%.

To have an accurate sensor-subject distance estimation
and compensation on the measured temperature measured
by the thermal camera, we also collected calibration data,
including non-fever data and simulated fever data with ex-
tra reference forehead temperature measured by a handheld
thermometer (HuBDIC Non-Contact infrared Thermome-
ter FS-300). Similar to a previous study [7], a hot pack
was put on the subject’s forehead for 10 seconds before
the temperature measurement to simulate fever. The range
of referenced normal temperature is between 36.4◦C and
36.5◦C. The range of referenced fever temperature is be-
tween 38.2◦C and 38.3◦C. The range of the ambient tem-
perature is from 28.7◦C to 29◦C. The mean and standard
deviation of the ambient temperature are 28.8◦C and 0.1◦C,
respectively. The range of the humidity is from 72.5% to
73%. The mean and standard deviation of the humidity are
72.9% and 0.1% during the calibration period.

3.2. Distance estimation

Since the remote mass facial temperature screening sys-
tem system does not have a depth sensor, the sensor-subject
distance is approximated through the average of the diago-
nal length of the face boxes using Equation 1 [7], where d
denotes the sensor-subject distance, f denotes the average of
the diagonal length of the face boxes, and a, b, and c denote
the coefficients of the functions.

d =
a

f + b
+ c (1)

Figure 3. Plot of the sensor-subject distance versus the average of
the diagonal length of the face boxes of the calibration subject.

The sensor-subject distance and the average of the diagonal
length of the face boxes are highly correlated (R2 = 99.4%).

Figure 3 shows the relationship between the sensor-
subject distance and the average of the diagonal length of
the face boxes. The subject was filmed head-on at 1-meter
intervals between 2 and 6 meters, and the parameters a, b,
and c were determined to be 315.3, 22.8, and -2.2, respec-
tively.

3.3. Data Processing

Since Zhou et al. [24] suggested that the maximum tem-
perature of a whole face is an effective alternative for tem-
perature screening, we applied a series of condition filters
listed in Table 1 to obtain a full frontal thermal face (e.g.
Figure 4) for our analysis. There are four major filtering
criteria: (i) To obtain data within the valid distance, (ii) To
obtain data at the valid temperature, (iii) To obtain full ther-
mal faces (iv) To obtain front-facing thermal faces. In addi-
tion to the four filters, humidity is controlled within 60% to
80% to match the humidity of the calibration data for further
study. After the filtering, N = 20,471 data points remained
in our clean dataset out of the 23,371,717 data points in the
raw dataset. Figure 5 illustrates the distribution of data after
data cleaning, with regards to both ambient temperature and
humidity, indicating that the ambient temperature of the ma-
jority of the data (94.3%) exceeds the FDA-suggested am-
bient temperature range. The environmental temperature is
ranging from 15.9◦C to 34.4◦C. The mean and standard de-
viation are 29.6◦C and 2.9◦C, respectively. As mentioned
above, the range of humidity is between 60% and 80%. The
mean and standard deviation are 71.3% and 5.5%, respec-
tively.

Figure 4. An example of the thermal image of a face facing the
camera. The maximum measured facial temperature is 35.7◦C.
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Table 1. Filtering criteria applied to extract a full frontal thermal face from the raw measured images. After filtering, N = 20,471 data
points remained in our clean dataset out of the 23,371,717 data points in the raw dataset.

Filter name Description Criteria Discarded example

Criteria 1: To obtain data in valid distance

Distance Filter • To filter out the invalid dis-
tances that exceed the physical lo-
cation which can be caused by er-
rors due to sensor-subject distance
estimation

• 0.25 - 6 m

Criteria 2: To obtain data in valid temperature

Temperature Fil-
ter

• To filter out invalid temperatures
caused by the wrong estimation by
the thermal camera such as the tem-
perature over 100◦C

• Valid temperature is within (20◦C,
40◦C)
• Valid body temperature is higher

than the environmental temperature
• The definition of valid temper-

ature is the range of body tempera-
ture measured by the thermal cam-
era which can be affected by multiple
factors.

Criteria 3: To obtain front-facing thermal faces

Head Orientation
Filter

• To filter out lateral faces • Key-point confidence [3] of the left
and right eyes > 0.75
• Key-point confidence of the left

and right ears > 0.5
• Key-point confidence difference in
left and right ears < 0.05

Criteria 4: To obtain full thermal faces

Central face Fil-
ter

• To retain thermal faces with the
hottest pixel in the center where the
hottest pixel is normally located on
the forehead or the inner canthi.

• The hottest pixel on the face is not
on the edges (within 40% center left-
right and 50% top-bottom and start-
ing from 20% from the top)

Continued on next page
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Table 1 – continued from previous page

Filter name Description Criteria Discarded example

Valid Face Filter • To filter out the extremely long
and short faces because Open-pose
may wrongly recognize two faces
as one

• The ratio of the color face is within
(0.8, 2)
• The ratio of the thermal face is within
(0.8, 2)

• The definition of face ratio: The
height of the face divided by the width
of the face

Forehead Filter • To retain face showing forehead • Percentage of the pixels with tem-
perature between peak temperature –
1.5◦C and peak temperature > 0.1

Figure 5. Data distribution of the dataset after data cleaning
regarding ambient temperature and humidity. The ambient
temperature of 94.3% of the data after cleaning exceeds the

FDA-suggested ambient temperature range.

3.4. Compensation model

Ever since the outbreak of COVID-19, many facial tem-
perature screening systems have been installed at locations
with varying ambient temperatures which may not follow
the suggested environmental temperature of between 20◦C
and 24◦C [13]. This can cause inaccurate temperature mea-
surement and eventually causes imprecise fever detection.
After exploring the effect of both ambient temperature and
sensor-subject distance on the measured temperature (re-
sults in section 4.1 and 4.2), we extend the compensation
formula [7] by including ambient temperature, the sensor-
subject distance and their interactions which can be defined

by Equation 2.

T
′

m = Tm + a1D + a2Tamb + a3D ∗ Tamb + a4 (2)

where T
′

m denotes the Compensated Measured Temperature
Tm denotes the Measured Temperature
D denotes the Sensor-subject Distance
Tamb denotes the Ambient Temperature
D ∗ Tamb denotes the interaction between the effects of
Sensor-subject Distance and Ambient Temperature
an denote the coefficients of the factors, where n ∈ 1, 2, 3, 4

3.5. Metrics

Mean Absolute Error (MAE) and Root Mean Square Er-
ror (RMSE) are used to compare the compensated measured
temperature and reference temperature. We further eval-
uated the accuracy of the compensation model through a
sensitivity and specificity assessment. The analysis could
evaluate the effectiveness of the compensation on fever de-
tection. The equations shown in Equation 3 and Equation 4
illustrate the definition of sensitivity and specificity.

Sensivity =
TP

TP + FN
(3)

where TP denotes the number of fever persons correctly
regarded as fever
FN denotes the number of fever persons incorrectly
regarded as non-fever
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Specificity =
TN

TN + FP
(4)

where TN denotes the number of non-fever persons
correctly regarded as non-fever
FP denotes the number of non-fever people incorrectly
regarded as fever

4. Results
4.1. Ambient effect

N = 20,471 measurements of the data from our clean
dataset were filtered at different distances (0.25 m to 6
m). Figure 6 illustrates the measured temperature obtained
at different ambient temperatures. The field data demon-
strates a statistically significant linear rise in the maximum
measured facial temperature as the ambient temperature
increased (p < 0.01). The finding is consistent with [23].

Figure 6. Temperature Measurement over Sensor subject
Distance. A significant linear relationship between Ambient
Temperature and The Measured Temperature over different

distances from 0.25 m to 6 m (N = 20471)

4.2. Interaction effect

The Interaction effect was explored to see whether the
effects of sensor-subject distance and ambient temperature
on the measured temperature interact. The result indicates
that as the distance increased, the maximum facial tem-
perature linearly decreased (p < 0.01). Additionally, the
ambient temperature led to a significantly greater decrease
(p < 0.01) in temperature, with the measured temperature

dropping faster as ambient temperature decreased. In short,
the evidence suggested a significant correlation (p < 0.01)
between the effects of sensor-subject distance and ambient
temperature on the measured temperature.

4.3. Compensation model

We incorporated sensor-subject distance, ambient tem-
perature, and their interactions into our proposed compen-
sation model. 90:10 split on our clean dataset was used for
training and testing, respectively. The coefficients in Equa-
tion 2 were determined by leveraging the Optimization, and
Root finding capabilities of the Scipy library [22]. Due to
practical limitations, it was not feasible to measure the ref-
erence temperature of all passersby with a handheld ther-
mometer. As a result, a referenced temperature of 36.5◦C
was adopted as the referenced temperature for non-fever
data points in the field data. The compensated temperature
was then plotted against different ambient temperatures, as
depicted in Figure 7.

Figure 7. Temperature Measurement over Ambient temperature.
The measured temperature and the compensated temperature after

correction under different ambient temperatures

Table 2 provides a comparison between the measured
temperature (i) without temperature compensation, (ii) with
the ambient temperature compensation, (iii) with sensor-
subject distance compensation, and (iv) with our proposed
compensation and referenced temperatures. Evaluation of
the models is based on two metrics, MAE and RMSE. The
result shows that the MAE and RMSE between measured
temperatures before compensation and referenced tempera-
tures are 2.5◦C and 3.3◦C, respectively. When compensa-
tion was only applied to compensate for the ambient effect,
the MAE and RMSE dropped to 1.7◦C and 2.5◦C. Simi-
larly, the MAE and RMSE attained the values of 1.7◦C and
2.6◦C with compensation only with sensor subject distance
effect. Our newly proposed compensation model demon-
strated a reduction in the MAE and RMSE, decreasing to
1.3◦C and 1.8◦C, respectively. These values significantly
reduced (p < 0.01) the MAE and RMSE by 23.5% and
28% respectively, compared to the compensation model
only with ambient effect. In addition, our compensation
model also exhibited a statistically significant reduction (p
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Figure 8. Sensitivity and specificity analysis among different compensation models and without compensation from 2 m to 6 m. The valid
detection distance can reach 6 m (the whole area) at a sensitivity and specificity of 90%.

Table 2. Comparision of the average Mean Absolute Error (MAE), and average Root Mean Square Error (RMSE) between different
compensation models

Models
Training data (N = 18436) Testing data (N = 2049)

MAE (◦C) RMSE (◦C) MAE (◦C) RMSE (◦C)

Measured Temperature 2.5 3.4 2.5 3.3

Compensated Temperature (Distance Only) 1.7 2.6 1.7 2.6

Compensated Temperature (Ambient Temperature Only) 1.7 2.6 1.7 2.5

Compensated Temperature (Distance + Ambient
Temperature + Interaction between Distance effect
and Ambient Temperature effect)

1.3 1.8 1.3 1.8

< 0.01) of 0.4◦C and 0.8◦C in MAE and RMSE, reducing
by 23.5% and 30% respectively, compared to the compensa-
tion model that only considered the sensor subject distance.

To evaluate the end-to-end accuracy of a non-invasive fa-
cial temperature screening system, sensitivity in Equation 3
and specificity in Equation 4 were employed. The dataset
for conducting the analysis consists of data from the non-
fever group and the fever group of calibration data. The cut-
off value for fever detection before and after temperature
compensation was determined to be 33.8◦C and 37.5◦C, re-
spectively. The rationale for selecting 33.8◦C as the bench-
mark was based on the Hong Kong Center for Health Pro-
tection’s Monitoring of Body Temperature Guidance Note
[1], which establishes 35.5◦C as the fever detection thresh-
old for a FLIR A310 / A315 thermal infrared camera. A

1.7◦C difference is revealed in [6] between the FLIR A315
thermal imaging camera and the FLIR E8xt thermal imag-
ing camera. Given that the FLIR E6 and FLIR E8xt share
the same hardware, it is reasonable to assume that the tem-
perature difference between the FLIR A315 and the FLIR
E6 utilized in the present study is similar between the FLIR
A315 and FLIR E8xt.

Figure 8 shows the sensitivity and specificity analysis of
four different cases: (i) without temperature compensation,
(ii) with the ambient temperature only compensation model,
(iii) with distance only compensation model, and (iv) with
our proposed compensation model. We defined the valid
detection distance as the furthest distance where the sys-
tem can detect feverish with sensitivity and specificity both
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larger than 90%. Since most of the data exceeded the tem-
perature range recommended by the Food and Drug Admin-
istration, we chose to use a temperature of 28.8◦C for the
calibration data. Without compensation, the sensitivity was
greater than 90% within 2 m to 6 m using calibration data
taken at the ambient temperature of 28.8◦C (plus and minus
0.1◦C). However, specificity remained consistently zero,
indicating that the system is ineffective when the ambi-
ent temperature exceeds 24◦C, consistent with FDA guide-
lines [13]. With ambient temperature only compensation
model [17], the specificity remained above 90% while sen-
sitivity dropped to lower than 90% after 4.1 m and became
0 at 6 m. In terms of the compensation model only with
distance, the specificity still kept larger than 90% between
2 m to 6 m, while the sensitivity fell below 90% after 5.4
m and reached 75% at 6 m. Under the same condition, our
proposed compensation model achieved both sensitivity and
specificity of larger than 90% from 2 m to 6 m, where 6
m is the physical limit of the site. Regarding valid detec-
tion distances, the system with ambient temperature only
compensation model, system with distance only compen-
sation model, and system with our proposed compensation
model achieved 4.1 m, 5.4 m, and 6 m respectively. Our
proposed compensation increased the valid detection dis-
tances by 46% and 11% with respect to ambient temperature
only compensation model and distance only compensation
model. To summarize, our results showed that the facial
temperature screening system with temperature compensa-
tion enables fever screening outside of the FDA-suggested
ambient temperature range. Our solution surpassed the pre-
vious works.

5. Conclusions
This paper reports the interaction effects between sensor-

subject distance and ambient temperature on the remotely
measured facial temperature in a sheltered outdoor site. The
result indicates a significant correlation between the mea-
sured facial temperature and the ambient temperature (p <
0.01: from 15.9◦C to 34.4◦C, humidity controlled between
60% and 80%), as well as a significant interaction between
the effects of ambient temperature and sensor-subject dis-
tance (p < 0.01: 0.25 m to 6 m) on the measured temper-
ature. Furthermore, we propose a temperature compensa-
tion model that significantly reduced the average MAE from
2.5◦C to 1.3◦C and lowered the average RMSE from 3.3◦C
to 1.9◦C. Using calibration data taken at the ambient tem-
perature of 28.8◦C (plus and minus 0.1◦C), our proposed
model increased the specificity from 0 to 100% compared
to without compensation. Similarly, our model achieved a
sensitivity of 100% in the range of 2 m to 6 m. These sen-
sitivity results are better than past work that compensates
for the influence of ambient temperature only (0%, [17]);
and the influence of distance only (75%, [7]). Furthermore,

our model increased the valid detection distance to 6 m (4.1
m [17]; 5.4 m [7]). Without compensation, fever detection
does not work under varying ambient temperatures.

6. Future work
Future work involves exploring and compensating for the

effect of other factors on temperature measurement, such as
humidity, wind, and face orientation. In addition, it would
be interesting to study the feasibility of using lateral facial
temperature for fever screening as this would increase the
flexibility of setting up the fever screening system at differ-
ent locations and still achieve high detection accuracy.
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