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Abstract

The collection of infant body data such as height and
weight is a useful mean of tracking its growth and wellness.
The contact-based measurements using height and weight
scales are manual and cumbersome, camera-based meth-
ods were proposed to obtain features from face or body
for height and weight estimation. In this paper, we cre-
ated a clinical dataset including 200 newborns collected
at obstetrics, and benchmarked four convolutions neural
networks for infant height estimation, where MobileNet,
VGG16, GoogleNet, and AlexNet were chosen. Moreover,
we investigated different MobileNet-based variants for in-
fant weight estimation, including linear regression model,
one-task model, and multi-task model. Several sets of ex-
periments were carried out on the newborn dataset to vali-
date the effectiveness of the proposed methods. The results
show that the Mean Absolute Error (MAE) of different mod-
els are quite similar, with an average MAE < 1.1 cm and
< 0.28 kg for height and weight estimation, respectively.
Among them, the multi-task MobileNet has better temporal
stability given its lower variance of measurement in a video.

1. Introduction

Height and weight are important anthropometric param-
eters need to be measured for newborns, i.e. the growth rate
of infant weigh can indicate the trend of overweight [1], the
low birth weight is closely associated with neonatal mortal-
ity [2], the high birth weight may increase the risk of Type-
2 diabetes and obesity [3], and height and weight are im-
portant factors for osteosarcoma diagnosis [4], etc. More-
over, they are often used for making diagnostic or treat-
ment decisions, i.e. in the emergency department, inpatient
department, or consultation clinic [5]. Some of these in-
clude the assessment of nutritional status [5] and medica-

Figure 1. The clinical scenario for infant data collection. The im-
age data were acquired by the smartphone of nurses. The reference
data were acquired by the height and weight scales.

tion dosage [6]. The height of the infant is typically mea-
sured by a height ruler. Two medical staffs need to work
together to stabilize the infant’s head and feet when mea-
suring the height. The weight data is obtained by a weight
scale. The manual measurement is difficult for preterm in-
fants that need to be kept in the incubator to prevent infec-
tions [7]. In addition, infants may be suffocated at birth,
requiring prompt cardiopulmonary resuscitation and medi-
cation. It can pose a safety risk to newborns if the procedure
of obtaining the anthropometric parameters is tedious and
inefficient [8].

Camera-based remote infant monitoring has been stud-
ied in the past decade, typically focused on vital signs mon-
itoring such as non-contact optical measurement of heart
rate and respiration rate of newborns [9–12]. It triggers our
thought if other semantic information like anthropometric
parameters (e.g. body height and weight) can be measured
by cameras as well in addition to physiological parameters.
In this field, almost all related works are about the image-
based body height and weight estimation of adults, not on
newborns or babies, though this group of the population has
a stronger desire on the frequent estimation of height and
weight for growth tracking. To estimate the body height,
some prior arts rely on the detection of reference length in
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Figure 2. The snapshots of 200 newborns in our created clinical dataset.

images [13, 14]. However, in practice, a reference length
may not be available. Some work rely on facial images to
estimate height and weight [15,16], which is convenient for
mobile phone applications as it does not require a long dis-
tance between the camera and subject to capture the full-
body image. However, for newborns, their bodies are rel-
atively small, and in order to prevent infections, it is pre-
ferred to keep the measurement at a distance. Thus record-
ing full-body images is more favored for infants. The RGB-
D cameras were also explored for 3D body data acquisi-
tion [17], where the depth information can provide more
accurate information for body size measurement. How-
ever, depth cameras are prone to sunlight or the distance
of measurement, making it difficult to be used in practical
scenarios like in clinics [18]. Therefore, recent advances
employed RGB images acquired by a consumer-grade cam-

era for body height and weight estimation [19], which is
considered to be more suitable for clinical usage such as
deploying the algorithms on the smartphone of nurses.

Inspired by the literature, we conducted a clinical study
in obstetrics as shown in Figure 1, and collected a dataset in-
cluding 200 newborns as shown in Figure 2. We proposed
to estimate the infant height and weight from a single 2D
body image by the convolutional neural network (CNN).
In particular, we benchmarked four different CNNs includ-
ing VGG16 [20], AlexNet [21], GoogleNet [22], and Mo-
bileNet V2 [23], and chose MobileNet V2 as the backbone
for height estimation due to its efficiency (aimed for mobile
phone applications). Background unrelated to the height es-
timation has been removed from the input image by setting
the pixels outside the mask to zero to eliminate the inter-
ference. To estimate the weight, we used three different
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Figure 3. The deep learning models developed for infant height and weight estimation. The system takes a single image as the input and
extracts deep features from background-removed version using MobileNet for height estimation. The weight is estimated by three different
models following the height estimation.

strategies as shown in Figure 3, i.e. use MobileNet to es-
timate the height and a linear regression model to estimate
the weight, use two MobileNets to estimate the weight and
height separately, and use a multi-task MobileNet to esti-
mate the weight and height jointly.

To our best knowledge, this is the first clinical study
that exploits the mobile phone camera for infant height and
weight estimation. The main contributions of this work are
as follows: (i) a clinical dataset was created to facilitate the
research on camera-based infant body weight and height es-
timation; (ii) three CNN-based frameworks were developed
to investigate the feasibility of this application. The bench-
mark results show that three MobileNet-based frameworks
have similar MAE for height and weight estimation with an
average MAE smaller than 1.1 cm and 0.28 kg for height
and weight estimation, respectively. The multi-task Mo-
bileNet shows better temporal stability of video-based mea-
surement in the benchmark.

2. Materials and methods

2.1. Clinical infant dataset

The main focus of this paper is to develop methods for
non-contact growth sign monitoring of infants. We first de-
scribe the clinical trial that created the benchmark dataset,

and then the network architectures for infant body height
and weight estimation.

The clinical study involves 200 newborns with < 1 hour
of birth (see Figure 2). The study was approved by the hos-
pital Institutional Review Board (IRB) and written consent
forms were obtained from the parents of infants. The videos
were recorded by the nurse of obstetrics in the Baoan Hos-
pital of Traditional Chinese Medicine in Shenzhen, China,
using the 48MP rear camera of a mobile phone in an uncon-
strained environment. To ensure adequate data sampling,
the video length of each newborn was between 20 and 35
seconds, with an average recording length of 30 seconds.
The reference height and weight values of each infant were
manually obtained by height and weight scales. The aver-
aged height and weight of 200 newborns are 50.0 cm and
3.5 kg, respectively (see their distributions in Figure 4).

As the pre-processing of the dataset, the videos were
split into frames and resampled to 224× 224 pixels (as the
input of CNN network) with the aspect ratio unchanged. As
the image background is irrelevant to the estimation of body
height and weight, it was segmented by YOLO-v7 [24] in
combination with Detectron2 [25], which is a flexible and
efficient approach for instance segmentation, and removed
before network training, i.e. the pixels outside the mask
contour are set to zero to attenuate the background.
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(a) The correlation and distribution of 200 infants’ height and weight. (b) The linear regression between 200 infants’ height and weight.

Figure 4. The analysis of benchmark dataset and the modeling between the infant’s height and weight.

2.2. Network architecture

Based on the background-removed infant body images,
three different network models were built to estimate height
and weight (see Figure 3): (i) a one-task MobileNet to pre-
dict height and a separate linear regression model to esti-
mate weight; (ii) two one-task MobileNets to predict height
and weight separately; and (iii) a multi-task MobileNet to
predict height and weight simultaneously. Three models are
described in detail in the following text.

Height estimation based on MobileNet and weight es-
timation based on linear regression: We applied the Mo-
bileNet V2, an effective and lightweight network, as the
backbone to extract features for height estimation. As
shown in Figure 3, it is composed of multiple bottelneck
residual block in series, and each bottelneck residual block
consists of three important layers: (i) expansion layer. It
expands the low-dimensional features to high-dimensional
features using pointwise convolution to enhance the under-
lying representation; (ii) depthwise convolution. It used
depthwise convolution to calculate the linear combination
of input channels to construct new features as deep fea-
tures; (iii) projection layer. It maps the features to the low-
dimensional space using pointwise convolution, and uses
linear transformation to replace ReLU calculation to elim-
inate the loss of information. We fine-tune the original
network by replacing the last 1000 output fully-connected
layer with the single output, for estimating the height. Since
the measurement of weight is less straightforward than that
of height in an image, we analyzed the relationship between
height and weight (see Figure 4a). The scatter plot shows
that the correlation between the height and weight of in-
fants is somewhat linear, which can be modeled using Pear-
son Correlation. We established a simple linear regression

equation in between as follows:

W = α ·H + β, (1)

where H and W denote height and weight respectively; α
and β are model parameters to be estimated by least-squares
regression.

Height and weight estimation based on one-task Mo-
bileNet separately: We developed two models based on Mo-
bileNet V2 to estimate height and weight separately. The
backbone used the same structure as the first model (Mo-
bileNet). To estimate the weight and height, we fine-tuned
the network in two separate models by using 1 output in-
stead of 1000 (Figure 3b) and we used separate MSE loss
function for each task.

Height and weight estimation based on multi-task net-
work: We established a multi-task model based on Mo-
bileNet V2 to estimate height and weight jointly. In the
model, we kept the original backbone and modified the
last layer with 2 outputs instead of 1000. One output is
for height estimation and the other is for weight estimation
(Figure 3c). In addition, we used separate MSE to calcu-
late the loss of height and weight. The loss of the model,
backpropagated to the input layer, is calculated by the sum
of height loss and weight loss. Therefore, we could balance
the learning between height and weight to avoid the case
that either task dominates the network weights [26].

3. Experiments and results

In this section, we evaluated the proposed methods on
the collected newborn dataset. The benchmark dataset in-
cludes 200 infants with 800 images for each on average.
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3.1. Implementation details

Network training procedures: In the MobileNet-based
deep feature extraction, the images need to be resized to
feed into the network. We downscaled the whole image di-
agonally and ensure the long side to be 224 pixels. Then,
we set the length of the short edge to 224 pixels by padding
with zeros. This generates an image with 224 × 224 pix-
els without the change of aspect ratio. Referring to Ima-
geNet [27], we normalize the image tensor with mean val-
ues of [0.485, 0.456, 0.406] and standard values [0.229,
0.224, 0.225] when sending it to the network. The learn-
ing rate is kept the same as [28] (0.0001) and the weight
decay is set to 1e-3. The MobileNet V2 was pre-trained on
ImageNet and fine-tune using the training data. All models
were evaluated using 5-fold cross-validation on our new-
born dataset. Here, the data from one infant only exist in
either the training set or the testing set. Depending on the
model structure, the output fully-connected layer is modi-
fied to either 1 or 2 outputs. All experiments were done by
Pytorch [29], the deep learning platform is implemented on
NVIDIA GeForce RTX 3050Ti Laptop GPU.

Network evaluation metrics: We adopted Mean Square
Error (MSE) as the loss function:

MSE =

∑N
i=1(yi − ȳi)

2

N
, (2)

where ȳi is the ground-truth value of infant weight or height
in the i-th image; yi is the estimated value for the i-th im-
age; N is the total number of training images. The criteria
for evaluating the quality of results are Mean Absolute Error
(MAE) and Mean Absolute Percentage Error (MAPE):

MAE =
1

N

∑N
i=1 |yi − ȳi|, (3)

MAPE =
100%

N

∑N
i=1

∣∣∣yi−ȳi

yi

∣∣∣. (4)

The larger values of MAE and MAPE mean larger errors
of predicted values. When the prediction perfectly matches
the reference, both are 0.

Linear equation fitting: Each fold creates a linear equa-
tion based on the current fold training data. The regression
model was figured out by scikit-learn [30]. The coefficient
of the regression model trained with 5-fold training data are
0.1680, 0.1717, 0.1639, 0.1635, and 0.1483 respectively.
The intercept of the regression model trained with 5-fold
training data are -5.1577, -5.3349, -4.9524, -4.9461, and -
4.1867, respectively. The example of regression line of the
equation is shown in Figure 4b.

3.2. Performance and discussion

Comparison of networks for feature extraction: Table 1
shows the quantitative comparison between the used Mo-
bileNet and the other three networks: VGG16, GoogleNet,

Table 1. MAE, MAPE(%), and number of parameters of different
CNNs for height estimation using 5-fold validation.

Method MAE (cm) MAPE (%) Param (M)

VGG16 [20] 1.008 2.128 14.74

GoogleNet [22] 1.021 2.418 5.60

AlexNet [21] 1.063 2.260 2.48

MobileNet [23] 1.068 2.440 2.23

and AlexNet. The results show that the performance of
MobileNet is similar to other networks, but it has the least
number of parameters, which is a lightweight and efficient
option preferred for embedded implementation on mobile
phones in the future work.

Background removal: To verify if background removal
has a positive effect on height and weight estimation, we
compared the MobileNet-based methods using images of
40 testing infants with and without background. The re-
sults show that using the same model, the MSE obtained
on images without background are clearly reduced, i.e. for
MobileNet with linear regression, the weight MSE reduced
20 g and the height MSE reduced 1.1 cm as compared with
the original images; for one-task MobileNet the height MSE
reduced 1.1 cm and weight MSE reduced 1 g, and for multi-
task MobileNet the weight MSE reduced 120 g and the
height MSE reduced 2.3 cm. The improvement of back-
ground removal is somehow expected and reasonable as it
can eliminate the interference that is not relevant to the es-
timation of body parameters. Some concrete examples on
the comparison of images with and without background can
be found in Figure 7.

Comparison of different models for height and weight
estimation: We compared three types of models as shown
in Figure 3. Table 2 shows that the three models have
rather similar performance in terms of MAE and MAPE,
i.e. MAE is < 1.1 cm and MAPE is < 2.2% for height
estimation, and MAE is < 0.28 kg and MAPE is < 9%
for weight estimation. The average MSE for 40 testing in-
fants is shown in Figure 5a and Figure 5b. Both show that
infants with lower and higher values of height and weight
have relatively poor results, which means that our network
has worse performance on underweight and overweight in-
fants due to the imbalanced distribution of training data.
Since an infant height and weight will not be changed in
a video though the prediction may vary, we analyzed the
temporal stability of three models using 40 infant videos,
where the temporal variation of prediction results given by
each video frame is used to quantify the stability. Figure 5c
and Figure 5d show that the multi-task model has the best
temporal stability as its variances are lowest in most cases,
which may be attributed to the mutual constraints between
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Table 2. MAE and MAPE (%) of height and weight obtained by different models in 5-fold cross-validation.

Model Height MAE (cm) Height MAPE (%) Weight MAE (kg) Weight MAPE (%)

MobileNet + Regression 1.041 2.086 0.239 7.518

One-task MobileNet 1.041 2.086 0.252 8.883

Multi-task MobileNet 1.086 2.176 0.233 7.261

(a) Height MSE of 40 infants. (b) Weight MSE of 40 infants.

(c) Height variance of 40 infants. (d) Weight variance of 40 infants.

Figure 5. MSE and variance of 40 testing infants processed by three different models. Infants with less training data distributed on either
side perform relatively poor. The multi-task MobileNet seems more stable in video-based estimation, as the relationship between height
and weight is exploited by the network to stabilize the prediction.

Figure 6. The intermediate activation heatmaps of three models,
where the redder areas denote the image parts that have higher
contributions to the estimation.

height and weight in the process of loss minimization that
makes the overall prediction more stable. To further analyze
this phenomenon, we visualize the intermediate activation
heatmaps of three methods in Figure 6, which can somehow
explain the better stability of the multi-task model. How-
ever, this is also counted for large errors in the multi-task

network in specific cases, as the prediction errors produced
by height or weight can affect each other.

Challenging factors for this application: In the bench-
mark, we found that some infants performed poorly on
height prediction (height MAE > 5.0 cm) regardless the
chosen model. We compared images of infants with high-
quality performance (height MAE < 3.5 cm) and images of
infants with low-quality performance (height MAE > 5.0
cm) at the same height, and compared infant images with
high-quality and low-quality performance under the similar
pose. The concrete examples are shown in Figure 8. Our
observations are follows: (i) camera tilting angle may lead
to the degradation in height and weight estimation as the
viewing angle is changed. We found that a large portion of
poor results are taken in a large tilted viewing-angle; (ii) it is
possible that the size of diaper may influence the estimation
of height and weight. We see that some poor measurements
are from the infants with longer diapers; (iii) in some of
examples showing dropped quality, we found that the in-
fant body was not fully captured by the camera. The in-
complete data could be a reason for poor results; (iv) back-
ground removal has a positive effect on the estimation. But
the segmentation errors may influence the estimation. The
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Figure 7. MSE of height and weight estimation from the images with and without background. Three MobileNet-based models are
compared. The darker the color, the better the result.

Figure 8. MSE of height and weight estimation from low-quality (height MAE > 5.0 cm) and high-quality (height MAE < 3.5 cm)
samples. Three MobileNet-based models are compared. The darker the color, the better the result.

images with clutter background that cannot be completely
removed by foreground segmentation may have larger er-
rors in height and weight estimation.

4. Conclusions
In this work, we created a clinical dataset with 200 new-

borns to validate the concept of using a single image for
infant body height and weight estimation. Based on the
background-removed body images, we investigated differ-
ent CNN structures and chosen MobileNet as the backbone
for deep feature extraction to estimate the height. Three
types of models were developed for weight estimation, in-
cluding linear regression model, one-task MobileNet, and
multi-task MobileNet. The benchmark shows that the MAE
of different models are similar, which are in a decent error
range, i.e. average MAE for height estimation is < 1.1 cm
and average MAE for weight estimation is < 0.28 kg. In
particular, multi-task MobileNet shows better temporal sta-
bility. In our future work, we may add attention modules to

the network to force CNN to focus on the image parts that
are more relevant to the measurement of body parameters
and deploy the verified model on mobile phones.
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