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Abstract

In this paper, we propose a new, simple, and effective
Self-supervised Spatio-temporal Transformers (SPARTAN)
approach to Group Activity Recognition (GAR) using unla-
beled video data. Given a video, we create local and global
Spatio-temporal views with varying spatial patch sizes and
frame rates. The proposed self-supervised objective aims
to match the features of these contrasting views represent-
ing the same video to be consistent with the variations in
spatiotemporal domains. To the best of our knowledge, the
proposed mechanism is one of the first works to alleviate
the weakly supervised setting of GAR using the encoders in
video transformers. Furthermore, using the advantage of
transformer models, our proposed approach supports long-
term relationship modeling along spatio-temporal dimen-
sions. The proposed SPARTAN approach performs well on
two group activity recognition benchmarks, including NBA
and Volleyball datasets, by surpassing the state-of-the-art
results by a significant margin in terms of MCA and MPCA

metrics'.

1. Introduction

Group Activity Recognition (GAR) aims to classify the
collective actions of individuals in a video clip. This field
has gained significant attention due to its diverse applica-
tions such as sports video analysis, video monitoring, and
interpretation of social situations. Far apart from conven-
tional action recognition methods that focus on understand-
ing individual actions [11,51,59,62], GAR requires a thor-
ough and exact knowledge of interactions between several
actors, which poses fundamental challenges such as ac-
tor localisation and modelling their spatiotemporal relation-
ships. Most existing methods for GAR [16, 20, 26, 28,37,

,45,49,64,67,69] require ground-truth bounding boxes
of individual actors for training and testing, as well as their

IThe implementation of SPARTAN is available at https: //
github.com/uark-cviu/SPARTAN
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Figure 1. Visualization of attention captured by the model. (i)
The attention in this example focuses on how the relationship
is established between the actors. Original sequence from NBA
dataset [68] (top), Attention captured by DFWSGAR [30] (mid-
dle), and SPARTAN model (bottom). Red-colored actors are the
irrelevant information to determine the group activity, whereas
green-colored actors, including their positions, are the most rel-
evant. (ii) illustrates that DFWSGAR predicts the category wrong
due to the effects shown in (i) whereas SPARTAN is more confi-
dent in the prediction, which is further justified by the t-SNE plot
as shown in Fig. 5.

action class labels for training. The bounding box labels,
in particular, are used to extract features of individual ac-
tors, such as RolPool [52] and RolAlign [25], and precisely
discover their spatio-temporal relations; such actor features
are aggregated while considering the relationships between
actors to form a group-level video representation, which is
then fed to a group activity classifier. Despite the fact that
these approaches performed admirably on the difficult task,
their reliance on bounding boxes at inference and substan-
tial data labelling annotations makes them unworkable and
severely limits their application. To overcome this prob-
lem, one approach is to simultaneously train person detec-
tion and group activity recognition using bounding box la-
bels [7,72]. This method estimates the bounding boxes of
actors in inference. However, this method calls for individ-
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ual actor ground-truth bounding boxes for training videos.
Yan et al. [68] presented the Weakly Supervised GAR (WS-
GAR) learning approach, which does not need actor-level
labels in both training and inference, to further lower the
annotation cost. They generate actor box suggestions using
a detector that has been pre-trained on an external dataset in
order to solve the absence of bounding box labels. They
then learn to eliminate irrelevant possibilities. Recently,
Kim et al. [30] introduced a detector-free method for WS-
GAR task which captures the actor information using partial
contexts of the token embeddings. However, the previous
methods [30, 68] have various drawbacks as follows. First,
a detector [68] often leads to missing detection of people in
case of occlusion, which minimizes overall accuracy. Sec-
ond, partial contexts [30] can only learn if and only if there
is movement in consecutive frames. This can be inferred
from the illustration in Fig. 1. Third, the temporal informa-
tion among the tokens must be consistent, and [30] does not
consider different tokens.

In this paper, we introduce a new simple but effective
Self-Supervised Spatio-temporal Transformers (SPAR-
TAN) approach to the task of Group Action Recognition
that is independent of ground-truth bounding boxes, labels
during pre-training, and object detector. Our mechanism
only exploits the motion as a supervisory signal from the
RGB data modality. As seen in Fig. 1 (i), our model cap-
tures not only the key actors but also their positions, which
shows that our method is more effective in group activ-
ity classification than DFWSGAR [30]. Our approach is
designed to benefit from varying spatial and temporal de-
tails within the same deep network. We use a video trans-
former [8] based approach to handle varying temporal res-
olutions within the same architecture. Furthermore, the
self-attention mechanism in video transformers can cap-
ture local and global long-range dependencies in both space
and time, offering much larger receptive fields compared to
standard convolutional kernels [42]. The contributions of
this work can be summarized as follows.

¢ Instead of considering only motion features across
consecutive frames [30], we introduce the first training
approach to GAR by exploiting spatial-temporal cor-
respondences. The proposed method varies the space-
time features of the inputs to learn long-range depen-
dencies in spatial and temporal domains.

e A new self-supervised learning strategy is performed
by jointly learning the inter-frame, i.e., frame-level
temporal, and intra-frame, i.e., patch-level spatial, cor-
respondences further forming into Inter Teacher-Inter
Student loss and Inter Teacher-Intra Student loss. In
particular, the spatiotemporal features global, from the
entire sequence, and local from the sampled sequence
are matched by the learning objectives of the frame

level and the patch level in the latent space.

e With extensive experiments on NBA [68], and Vol-
leyball [28] datasets, the proposed method shows
the State-of-the-Art (SOTA) performance results using
only RGB inputs.

2. Related Work
2.1. Group Activity Recognition (GAR)

Due to the wide range of applications, GAR has recently
gained more attention. The initial approaches in the field
utilized probabilistic graphical methods [1-3, 32, 33, 63]
and AND-OR grammar methods [4, 54] to process the ex-
tracted features. As deep learning evolved over the years,
methods involving Convolutional Neural Networks (CNN)
[7,28], Recurrent Neural Networks (RNN) [7,13,27,28,38,

,55,60,66] achieved outstanding performance thanks to
their learning power of high-level information and temporal
context.

Recent methods for identifying group actions [16, 20,

,37,45,64,68,70] typically utilize attention-based mod-
els and require explicit character representations to model
spatial-temporal relations in group activities. Graph con-
volution networks, as described in [64, 70], are used to
learn spatial and temporal information of actors by con-
structing relational graphs, while Rui et al. [68] suggest
building spatial and temporal relation graphs to infer ac-
tor links. Kirill et al. [20] use a transformer encoder-based
technique with different backbone networks to extract fea-
tures for learning actor interactions from multimodal inputs.
Li et al. [37] use a clustered attention approach to capture
contextual spatial-temporal information. Mingfei et al. [23]
proposed MAC-Loss which is a combination of spatial and
temporal transformers in two complimentary orders to en-
hance the learning effectiveness of actor interactions and
preserve actor consistency at the frame and video levels.

Weakly supervised group activity recognition (GAR).
Several techniques have been developed to tackle weakly
supervised group activity recognition (GAR) with less su-
pervision, such as using bounding boxes to train built-in de-
tectors or activity maps. One approach is WSGAR, which
does not rely on bounding box annotations during training
or inference and incorporates an off-the-shelf item detec-
tor into the model. Another technique, proposed by Zhang
et al. [73], uses activity-specific characteristics to improve
WSGAR, but is not specifically designed for GAR. Kim
et al. [30] proposed a detector-free method that uses trans-
former encoders to extract motion features. Our proposed
method is a self-supervised training approach dedicated to
WSGAR, which does not require actor-level annotations,
object detectors, or labels.

Transformers in Vision. Vaswani et al. [58] introduced the
transformer architecture for sequence-to-sequence machine
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Figure 2. The proposed SPARTAN Framework samples gave input video into global and local views. The sampling strategy for
video clips results in different frame rates and spatial characteristics between global views and local views, which are subject to spatial
augmentations and have limited fields of view. The teacher model processes global views (g:) to generate a target, while the student model
processes local views (I & ls) where K1 < K. The network weights are updated by matching the online student local views to the
target teacher global views, which involves cross-view correspondences and motion correspondences. Our approach utilizes a standard
ViT backbone with separate space-time attention [8] and an MLP to predict target features from online features.

translation. This architecture has since been widely adopted
to many various natural processing tasks. Dosovitskiy et
al. [15] introduced a transformer architecture that is not
based on convolution for image recognition tasks. For dif-
ferent downstream computer vision tasks, these works [36,
40,61,71] used transformer architecture as a general back-
bone to make exceptional performance progress. In the
video domain, many works [5,9, 17,22, 34, 35,44, 48, 50]
exploited spatial and temporal self-attention to learn video
representation efficiently. Patrick et al. [44] introduce a
self-attention block that focuses on the trajectory, which
tracks the patches of space and time in a video transformer.

3. SPARTAN

The proposed method aims to recognize a group activity
in a given video without using person-bounding boxes or
a detector. The general architecture of our self-supervised
training within the teacher-student framework for group ac-
tivity recognition is illustrated in Fig. 2. Unlike the other
contrastive learning methods, we process two clips from the
same video by changing their spatial-temporal characteris-
tics, which do not rely on the memory banks. The proposed
loss formulation matches the features of the two dissimilar
clips to impose consistency in motion and spatial changes
in the same video. The proposed SPARTAN framework will

be discussed further in the following sections.

3.1. Self-Supervised Training

Given the high temporal dimensionality of videos, mo-
tion and spatial characteristics of the group activity will be
learned, such as 3p.-succ. (from NBA dataset [68]) or 1-
spike (from Volleyball dataset [28]) during the video. Thus,
several video clips with different motion characteristics can
be sampled from a single video. A key novelty of the pro-
posed approach involves predicting these different video
clips with varying temporal characteristics from each other
in the feature space. It leads to learning contextual informa-
tion that defines the underlying distribution of videos and
makes the network invariant to motion, scale, and viewpoint
variations. Thus, self-supervision for video representation
learning is formulated as a motion prediction problem that
has three key components: a) We generate multiple tem-
poral views consisting of different numbers of clips with
varying motion characteristics from the same video as in
Sec. 3.1.1, b) In addition to motion, we vary spatial char-
acteristics of these views as well by generating local, i.e.,
smaller spatial field, and global, i.e., higher spatial field, of
the sampled clips as in Sec. 3.1.2, and ¢) We introduce a loss
function in Sec. 3.2 that matches the varying views across
spatial and temporal dimensions in the latent space.
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3.1.1 Motion Prediction as Self-supervision Learning

The frame rate is a crucial aspect of a video as it can sig-
nificantly alter the motion context of the content. For in-
stance, the frame rate can affect the perception of actions,
such as walking slowly versus walking quickly, and can
capture subtle nuances, such as the slight body movements
in walking. Traditionally, video clips are sampled at a fixed
frame rate [47,65]. However, when comparing views with
different frame rates, i.e., varying numbers of clips, pre-
dicting one view from another in feature space requires ex-
plicitly modeling object motion across clips. Furthermore,
predicting subtle movements captured at high frame rates
compels the model to learn contextual information about
motion from a low frame rate input.

Temporal Views: We refer to a collection of clips sam-
pled at a specific video frame rate as a temporal view.
We generate different views by sampling at different frame
rates, producing temporal views with varying resolutions.
The number of temporal tokens (7") input to ViT varies in
different views. Our proposed method enforces the corre-
spondences between such views, which allows for captur-
ing different motion characteristics of the same action. We
randomly sampled these views to create motion differences
among them. Our ViT models process these views, and we
predict one view from the other in the latent space. In addi-
tion to varying temporal resolution, we also vary the resolu-
tion of clips across the spatial dimension within these views.
It means that the spatial size of a clip can be lower than the
maximum spatial size (224), which can also decrease the
number of spatial tokens. Similar sampling strategies have
been used [18,29] but under multi-network settings, while
our approach handles such variability in temporal resolu-
tions with a single ViT model by using vanilla positional
encoding [58].

3.1.2 Cross-View Correspondences

Our training strategy aims to learn the relationships between
a given video’s temporal and spatial dimensions. To this
end, we propose novel cross-view correspondences by alter-
ing the field of view during sampling. We generated global
and local temporal views from a given video to achieve this.

Global Temporal Views (g;): We randomly sample K,
(is equal to T') frames from a video clip with spatial size
fixed to Wyjopar and Hyjopai- These views are fed into the
teacher network which yields an output denoted by fgt.

Local Spatiotemporal Views (I; and [,): Local views
cover a limited portion of the video along both spatial and
temporal dimensions. We generate local temporal views by
randomly sampling several frames K; (< K ;) with a spatial
size fixed to Wj,eq; and Hjyeq;. These views are fed into the
student network which yields two outputs denoted by fi,
and f, respectively.

Augmentations: We apply different data augmentation
techniques to the spatial dimension, that is, to the clips sam-
pled for each view. Specifically, we apply color jittering
and gray scaling with probability 0.8 and 0.2, respectively,
to all temporal views. We apply Gaussian blur and solar-
ization with probability 0.1 and 0.2, respectively, to global
temporal views.

Our approach is based on the intuition that learning to
predict a global temporal view of a video from a local tem-
poral view in the latent space can help the model capture
high-level contextual information. Specifically, our method
encourages the model to model both spatial and temporal
context, where the spatial context refers to the possibilities
surrounding a given spatial crop and the temporal context
refers to possible previous or future clips from a given tem-
poral crop. It is important to note that spatial correspon-
dences also involve a temporal component, as our approach
attempts to predict a global view at timestamp ¢ = j from a
local view at timestamp ¢ = 4. To enforce these cross-view
correspondences, we use a similarity objective that predicts
different views from each other.

3.2. The Proposed Objective Function

Our model is trained with an objective function that pre-
dicts different views from each other. These views represent
different spatial-temporal variations that belong to the same
video.

Given a video X = {x;}_,, where T represents the
number of frames, let g;, I, and I, represent global tem-
poral views, local temporal and spatial views such that
g: = {mt}figl and l; = I, = {a:t}fgl, where g;, I; and
ls are subsets of video X and K; < K, where K, and
K are the number of frames for teacher and student (global
and local) inputs. We randomly sample K, global and K;
local temporal views as in Sec. 3.1.2. These temporal views
are passed through the student and teacher models to get the
corresponding class tokens or feature f, and f;. These class
tokens are normalized as follows.

exp(f@)/7
Y exp(f@) /1’

where 7 is a temperature parameter used to control the
sharpness of the exponential function [10] and £@ is each
element in £(¥) € R".

Inter Teacher-Inter Student Loss: Our g; have the
same spatial size but differ in temporal content because the
number of clips/frames is randomly sampled for each view.
One of the g; always passes through the teacher model that
serves as the target label. We map the student’s I, with the
teacher’s g, to create a global-to-local temporal loss as in
Eqn. (2).

FO =

ey

[’gt*lt = _fgt * log(flt)7 2
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Figure 3. Inference. We uniformly sample the video clip and pass
it through a shared network and generate feature vectors (class
tokens). These vectors are fed to the downstream task classifier.

where fgt and flt are the tokens of the class for g; and I,
produced by the teacher and student, respectively.

Inter Teacher-Intra Student Loss: Our [; have a lim-
ited field of vision along the spatial and temporal dimen-
sions compared to the g;. However, the number of local
views is four times higher than that of global views. All
l; are passed through the student model and mapped to g
from the teacher model to create the loss function as in

Eq. (3).
q -~ -~
Egt*ls = Z _fgt * lOg(fl(:L)), 3)
n=1

where fls are the tokens of the class for I produced by the
student and ¢ represents the number of local temporal views
set to sixteen in all our experiments. The overall loss to train
our model is simply a linear combination of both losses, as
in Eqn. (2) and Eqn. (3), given as in Eqn. (4).

[’ = [’gt—lt + ‘Cgt—ls (4)

3.3. Inference

Fig. 3 illustrates our inference framework. During this
stage, fine-tuning of the trained self-supervised model is
performed. We use the pre-trained SPARTAN model and
fine-tune the model with the available labels, followed by
a linear classifier. We use this on downstream tasks to im-
prove performance.

4. Experiments
4.1. Datasets

Volleyball Dataset [28] comprises 3,493 training and 1,337
testing clips, totaling 4,830 labeled clips, from 55 videos.
The dataset contains annotations for eight group activity
categories and nine individual action labels with corre-
sponding bounding boxes. However, in our WSGAR ex-
periments, we only use the group activity labels and ignore
the individual action annotations. For evaluation, we use
Multi-class Classification Accuracy (MCA) and Merged
MCA metrics, where the latter merges the right set and
right pass classes into right pass-set and the left set and left
pass classes into left pass-set, as in previous works such as

SAM [68] and DFWSGAR [30]. This is done to ensure a
fair comparison with existing methods.

NBA Dataset [08] in our experiment comprises a total of
9,172 labeled clips from 181 NBA videos, with 7,624 clips
used for training and 1,548 for testing. Each clip is an-
notated with one of nine group activities, but there is no
information on individual actions or bounding boxes. In
evaluating the model, we use the Multi-class Classification
Accuracy (MCA) and Mean Per Class Accuracy (MPCA)
metrics, with MPCA used to address the issue of class im-
balance in the dataset.

4.2. Deep Network Architecture

Our video processing approach uses a vision transformer
(ViT) [8] to apply individual attention to both the temporal
and spatial dimensions of the input video clips. The ViT
consists of 12 encoder blocks and can process video clips
of size (B x T x C x W x H), where B and C repre-
sent the batch size and the number of color channels, re-
spectively. The maximum spatial and temporal sizes are
W = H = 224 and T = 18, respectively, meaning that
we sample 18 frames from each video and rescale them to
224 x 224. Our network architecture (see Fig. 2) is de-
signed to handle variable input resolution during training,
such as differences in frame rate, number of frames in a
video clip, and spatial size. However, each ViT encoder
block processes a maximum of 196 spatial and 16 tempo-
ral tokens, and each token has an embedding dimension of
R™ [15]. Along with these spatial and temporal input to-
kens, we also use a single classification token as a charac-
teristic vector within the architecture [14]. This classifica-
tion token represents the standard features learned by the
ViT along the spatial and temporal dimensions of a given
video. During training, we use variable spatial and tempo-
ral resolutions that are W < 224, H < 224, and T' < 18,
which result in various spatial and temporal tokens. Finally,
we apply a projection head to the class token of the final
ViT encoder [10,21].

Self-Distillation. In our approach (shown in Fig. 2), we
adopt a teacher-student setup for self-distillation inspired
by [10,21]. The teacher model has the same architecture
as the student model, including the ViT backbone and pre-
dictor MLP, but it does not undergo direct training. Instead,
during each training step of the student model, we update
the teacher weights using an exponential moving average
(EMA) of the student weights [10]. This approach enables
us to use a single shared network to process multiple input
clips.

4.3. Implementation Details

For both the NBA and Volleyball datasets, frames are
sampled at a rate of T (/) using segment-based sampling
[59]. The frames are then resized to W, = 224 H, = 224
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Method | MCA  MPCA
Video backbone
TSM [39] 66.6 60.3
VideoSwin [41] 64.3 60.6
GAR model
ARG [64] 59.0 56.8
AT [20] 47.1 41.5
SACRF [45] 56.3 52.8
DIN [70] 61.6 56.0
SAM [68] 54.3 51.5
DFWSGAR [30] 75.8 71.2
Ours 82.1 72.8

Table 1. Comparisons with the State-of-the-Art GAR models and
video backbones on the NBA dataset [68].

for the teacher input and W; = 96 H; = 96 for the student
input, respectively. For the Volleyball dataset, we use K, =
5 (K; € 3,5), while for the NBA dataset, we use K, = 18
(K; € 2,4,8,16,18). We randomly initialize weights rele-
vant to temporal attention, while spatial attention weights
are initialized using a ViT model trained self-supervised
over ImageNet-1K [53]. This initialization setup allows us
to achieve faster convergence of space-time ViT similar to
the supervised setting [8]. We use an Adam optimizer [31]
with a learning rate of 5x 10~%, scaled using a cosine sched-
ule with a linear warm-up for five epochs [12,56]. We also
use weight decay scaled from 0.04 to 0.1 during training.
For the downstream task, we train a linear classifier on our
pretrained SPARTAN backbone. During training, the back-
bone is frozen, and the classifier is trained for 100 epochs
with a batch size of 32 on a single NVIDIA-V100 GPU us-
ing SGD with an initial learning rate of le-3 and a cosine
decay schedule. We also set the momentum to 0.9.

4.4. Comparison with state-of-the-art methods

NBA dataset We compare our approach to the state-of-the-
art in GAR and WSGAR, which leverage bounding box
recommendations produced by SAM [68], as well as to
current video backbones in the weakly supervised learn-
ing environment, using the NBA dataset. We exclusively
utilise RGB frames as input for each approach, including
the video backbones, to ensure a fair comparison. Table 1
lists the findings. Please take note that the reproduction of
the SAM [68] has greater scores than those listed in the orig-
inal article. With 6.3%p of MCA and 1.6%p of MPCA,
the proposed method outperforms existing GAR and WS-
GAR methods by a significant margin. Additionally, our
approach is contrasted with two current video backbones
utilised in traditional action detection, ResNet-18 TSM [39]
and VideoSwin-T [41]. These strong backbones perform
admirably in WSGAR, but ours is the finest.

Volleyball dataset. For the volleyball dataset, we com-
pare our approach to the most recent GAR and WSGAR
approaches in two different supervision levels: fully super-

Merged
Method Backbone MCA MCA
Fully supervised
SSU [7] Inception-v3 89.9 -
PCTDM [66] ResNet-18 90.3 94.3
StagNet [46] VGG-16 89.3 -
ARG [64] ResNet-18 91.1 95.1
CRM [6] 13D 92.1
HiGCIN [67] ResNet-18 91.4 -
AT [20] ResNet-18 90.0 94.0
SACRF [45] ResNet-18 90.7 92.7
DIN [70] ResNet-18 93.1 95.6
TCE+STBIiP [69] VGG-16 94.1 -
GroupFormer [37]|  Inception-v3 94.1 -
Weakly supervised
PCTDM [66] ResNet-18 80.5 90.0
ARG [64] ResNet-18 87.4 92.9
AT [20] ResNet-18 84.3 89.6
SACRF [45] ResNet-18 83.3 86.1
DIN [70] ResNet-18 86.5 93.1
SAM [68] ResNet-18 86.3 93.1
DFWSGAR [30] ResNet-18 90.5 94.4
Ours ViT-Base 92.9 95.6

Table 2. Comparison with the state-of-the-art methods on the Vol-
leyball dataset. [28]

vised and weakly supervised. The usage of actor-level la-
bels, such as individual action class labels and ground-truth
bounding boxes, in training and inference differs across the
two settings.

For a fair comparison, we report the results of previ-
ous methods [6, 7, 37,46, 67, 69] using only the RGB in-
put, and the reproduced results [20,45, 64,66, 70] using the
ResNet-18 backbone. Note that the first is from the origi-
nal papers, and the second is the MCA values of [70]. We
eliminate the individual action classification head and sub-
stitute an object detector trained on an external dataset for
the ground-truth bounding boxes in the weakly supervised
situation. Table 2 presents the results. Results from earlier
techniques in fully supervised and weakly supervised envi-
ronments are displayed in the first and second sections, re-
spectively. In weakly supervised conditions, our technique
significantly outperforms all GAR and WSGAR models,
outperforming them by 2.4% of MCA and 1.2% of Merged
MCA when compared to the models’ utilising ViT-Base
backbone. Our technique outperforms current GAR meth-
ods, such as [7,20,45,46,66], by employing more thorough
actor-level supervision.

4.5. Ablation Study

We perform a comprehensive analysis of the differ-
ent components that contribute to the effectiveness of our
method. Specifically, we evaluate the impact of five individ-
ual elements: a) various combinations of local and global
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lb—ge | la—ge | L1l | ge— 1 | NBA | Volleyball
v X X X 61.03 62.70
X v X X 62.59 65.40
v v X X 81.20 90.80
v v v X 72.11 77.62
v v X v 78.17 85.88
X X v v 64.36 71.87

Table 3. View Correspondences (VC). The most optimal combination for
predicting view correspondences involves predicting local-to-global (tempo-
ral) and local-to-global (spatial) views, outperforming other combinations.

Method | NBA | Volleyball
Ours + TIS [47] | 78.45 |  88.11
Ours + MC | 81.20 |  90.80

Table 5. Temporal Sampling Strategy . We evaluate the effec-
tiveness of our proposed temporal sampling strategy, called ”mo-
tion correspondences (MC)” (Sec. 3.1.1), by comparing it with
an alternate approach, the “temporal interval sampler (TIS)” [47],
used with CNNs under contrastive settings.

Patch size | NBA | Volleyball

8 78.71 87.10
16 81.20 90.80
32 72.56 79.21

Table 6. Spatial Augmentations (SA): Applying different patch
sizes randomly over the spatial dimensions for different views
leads to consistent improvements on both NBA and Volleyball
datasets.

Multi-view | NBA | Volleyball

X 76.17 88.35
v 81.20 90.80

Table 7. Inference: Providing multiple views of different spa-
tiotemporal resolutions to a shared network (multiview) leads to
noticeable performance improvements compared to using a single
view for both the NBA and Volleyball datasets.

view correspondences; b) different field of view variations
along the temporal and spatial dimensions; ¢) the choice of
temporal sampling strategy; d) the use of spatial augmenta-
tions; and e) the inference approach.

View Correspondences: We propose cross-view corre-
spondences (VC) to learn correspondences between local
and global views. To investigate the effect of predicting
each type of view from the other, we conduct experiments
presented in Table 3. Our results show that jointly predict-
ing Iy — g and Iy — g4 view correspondences leads
to optimal performance. However, predicting g¢ — [; or
ls — 1, views results in reduced performance, possibly
because joint prediction emphasizes learning rich context,

Spatial | Temporal | NBA | Volleyball

v X 69.38 78.59
X v 72.90 81.45
v v 81.20 90.80

Table 4. Spatial vs Temporal variations. The best results
are achieved by utilizing cross-view correspondences with

varying fields of view along both spatial and temporal di-
mensions. It is observed that temporal variations between
views have a greater impact on performance compared to
applying only spatial variation.

which is absent for individual cases. We also observe a
consistent performance drop for Iy — [, correspondences
(no overlap views), consistent with previous findings on the
effectiveness of temporally closer positive views for con-
trastive self-supervised losses [19,47].

Spatial vs. Temporal Field of View: We determine the op-
timal combination of spatio-temporal views in Table 3 by
varying the field of view (crops) along both spatial and tem-
poral dimensions (as described in Sec.3.1.2). To evaluate
the effects of variations along these dimensions, we con-
duct experiments as presented in Table4. Specifically, we
compare the performance of our approach with no variation
along the spatial dimension (where all frames have a fixed
spatial resolution of 224 x 224 with no spatial cropping)
and with no variation along the temporal dimension (where
all frames in our views are sampled from a fixed time-axis
region of a video). Our findings show that temporal varia-
tions have a significant impact on NBA, while variations in
the field of view along both spatial and temporal dimensions
lead to the best performance (as shown in Table 4).

Temporal Sampling Strategy: Our investigation examines
the possibility of replacing the temporal sampling strategy
for motion correspondences (MC) proposed in our study
with alternate sampling methods. To evaluate the effec-
tiveness of MC, we replace it with an alternative approach
within SPARTAN. Specifically, we test the temporal in-
terval sampling (TIS) strategy introduced in [47], which
has achieved state-of-the-art performance in self-supervised
contrastive video settings with CNN backbones. Our exper-
iments incorporating TIS in SPARTAN (Table 5) demon-
strate that our proposed MC sampling strategy offers supe-
rior performance compared to TIS.

Spatial Augmentations: We then investigate the impact of
standard spatial augmentations (SA) on video data by exper-
imenting with different patch sizes. Previous studies have
shown that varying patch sizes can enhance the performance
of CNN-based video self-supervision approaches. In our
study, we evaluate the effect of patch size on our approach
and present the results in Table 6, indicating that a patch
size of 16 yields the best improvements. Based on these
findings, we incorporate a patch size of 16 in our SPAR-
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Figure 4. Visualization of the Transformer attention maps for NBA dataset. (top) Original sequence from NBA dataset [68], (middle)
Attention maps from DFWSGAR [30] and (bottom) Attention maps from our SPARTAN model.

Base model VC

MC + VC

MC + VC + SA

2p-succ.
2p-fail.-off.
2p-fail.-def.
2p-layup.-succ.
2p-layup.-fail.-off.
2p-layup.-fail.-def.
3p-succ.
3p-fail.-off.
3p-fail.-def.

Figure 5. t-SNE [57] visualization of feature embedding learned by different variants of our SPARTAN model in the NBA dataset.

TAN training process.

Inference: To assess the impact of our proposed inference
method (Sec. 3.3), we analyze the results presented in Ta-
ble 7. Our findings demonstrate that our approach yields
greater improvements on the NBA [68] and Volleyball [28]
datasets, which contain classes that can be more easily dis-
tinguished using motion information [24].

4.6. Qualitative Results

We show the attention visualisations derived from the fi-
nal Transformer encoder layer on the NBA dataset in Fig. 4.
The results indicate that the model learnt to pay attention to
essential concepts, such as the position of the players, and to
follow the activity in a specific video clip. The ¢-SNE [57]
visualisation results of our model and its modifications are
shown in Fig. 5. Each model’s final group representation
on NBA is shown in two-dimensional space. The recom-
mended modules help to clearly separate each class.

5. Conclusion

Our work introduces SPARTAN, a self-supervised video
transformer-based model. The approach involves generat-
ing multiple spatio-temporally varying views from a single
video at different scales and frame rates. Two sets of cor-

respondence learning tasks are then defined to capture the
motion properties and cross-view relationships between the
sampled clips. The self-supervised objective involves re-
constructing one view from the other in the latent space
of teacher and student networks. Moreover, our SPAR-
TAN can model long-range spatio-temporal dependencies
and perform dynamic inference within a single architecture.
We evaluate SPARTAN on two group activity recognition
benchmarks and find that it outperforms the current state-
of-the-art models.

Limitations: Our paper investigates the application of
SPARTAN in the context of the RGB input modality. Cur-
rently, we do not utilize the additional supervision provided
by alternate modalities in large-scale multimodal video
datasets. However, in future work, we plan to explore ways
in which we can modify SPARTAN to take advantage of
multimodal data sources.
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