
NeighborTrack: Single Object Tracking by Bipartite Matching with Neighbor
Tracklets and Its Applications to Sports

Yu-Hsi Chen1, Chien-Yao Wang1, Cheng-Yun Yang2, Hung-Shuo Chang1, Youn-Long Lin3,
Yung-Yu Chuang4 and Hong-Yuan Mark Liao1

Institute of Information Science, Academia Sinica, Taiwan1

Department of Electrical Engineering, Purdue University2

Department of Computer Science, National Tsing Hua University3

Department of Computer Science and Information Engineering, National Taiwan University4

{franktpmvu,kinyiu,jonathanc,liao}@iis.sinica.edu.tw1

yang2316@purdue.edu2, ylin@cs.nthu.edu.tw3, lcyy@csie.ntu.edu.tw4

Abstract

We propose a post-processor, called NeighborTrack, that
leverages neighbor information of the tracking target to val-
idate and improve single-object tracking (SOT) results. It
requires no additional data or retraining. Instead, it uses
the confidence score predicted by the backbone SOT net-
work to automatically derive neighbor information and then
uses this information to improve the tracking results. When
tracking an occluded target, its appearance features are
untrustworthy. However, a general siamese network often
cannot tell whether the tracked object is occluded by read-
ing the confidence score alone, because it could be mis-
led by neighbors with high confidence scores. Our pro-
posed NeighborTrack takes advantage of unoccluded neigh-
bors’ information to reconfirm the tracking target and re-
duces false tracking when the target is occluded. For the
VOT challenge dataset commonly used in short-term object
tracking, we improve three famous SOT networks, Ocean,
TransT, and OSTrack, by an average of 1.92% EAO and
2.11% robustness. For the mid- and long-term tracking ex-
periments based on OSTrack, we achieve state-of-the-art
72.25% AUC on LaSOT and 75.7% AO on GOT-10K. Most
of the tracking examples we have used are related to sports.

1. Introduction
Single Object Tracking (SOT) is a fundamental com-

puter vision task that establishes the correspondence of
an arbitrarily specified object along time [22]. There
are numerous applications for it, including video surveil-
lance [18, 25], video annotation [1], human-computer in-
teraction [17], etc. An SOT network takes a user-specified
target of interest in the first frame and then tracks its po-

sition in subsequent frames. In contrast to multi-object
tracking (MOT), which knows the target classes in advance,
SOT is unaware of the target classes. The current SOT ap-
proaches use various algorithms derived from the Siamese
network [2]. With the help of a deep learning network,
they extract the appearance feature of the target object and
then use that feature to locate the positions of objects with
similar features in subsequent frames. Using pairwise ap-
pearance feature alignment, the same network can be used
to track multiple objects with different appearance features
without retraining.

In sports-related tasks, the trajectories of objects and
players are often used as features connecting time and
space, such as in the cases of tactics analysis, event detec-
tion, or activity recognition, are all good examples of this
sort. In order to obtain the trajectory of moving objects, a
common way is to create a dedicated dataset for each object
to be tracked, and train on MOT network in a supervised
learning manner. However, MOT networks trained in this
way are often only effective for a single type of motion.
Looking at SOT from another perspective, it can help track
objects of interest without knowing the object category and
help build trajectories for unspecified sports.

This approach, however, might fail to track when the ap-
pearance characteristics of either side change.

To address the challenges caused by appearance changes,
we propose a post-processor named NeighborTrack. The
main idea is to verify the correctness of the tracking result
using the spatial-temporal trajectories of the neighbors of
the target. NeighborTrack simultaneously tracks the target
and its neighbors. When the target is occluded, it reduces
the number of matching errors by involving neighbors in the
matching process.

Consider the example in Figure 1. In the current frame

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5139



Figure 1. An illustrative example of how neighbor information can be used to correct tracking results.

It, there are two candidates for the tracking target. Num-
bers on the edges indicate the similarity between two ob-
jects. In frame It, the target object is occluded. When only
considering appearance cues (Figure 1(a)), the target is in-
correctly matched to the wrong candidate2 because of oc-
clusion. Aside from visual and spatiotemporal cues, Neigh-
borTrack makes use of neighbors in the previous frame in
order to resolve ambiguities caused by occlusions. Neigh-
bors are objects that are similar to the target object. Often,
they are the source of ambiguity. By considering neighbors
(Figure 1(b)), we construct a bipartite graph with two sets
of nodes: one for the hypothesis of matches (candidates)
and one for the source of ambiguity (neighbors) and the
target. After bipartite matching, since the neighbor is not
occluded, it can be correctly matched with candidate2. The
target should therefore choose candidate1 (the correct one),
even if their similarity remains low due to occlusions. Our
experiments indicate that NeighborTrack effectively miti-
gates the problems caused by occlusion and increases track-
ing accuracy.

We propose NeighborTrack, a post-processor for im-
proving SOT, and have made the following contributions.

• We formulate the association problem as a bi-
partite matching problem between candidate and
neighbor tracklets. Unlike attention-based methods
that strengthen single-target appearance features, our
method uses neighbor information to help correct
wrong tracking when appearance features change.

• Based on cycle consistency, we calculate Intersection
over Union (IoU) between two tracklets as a more ro-
bust measure of similarity. Both spatiotemporal and
visual cues are considered in the measurement.

• Our approach is not in conflict with, and it can com-
plement, methods for enhancing appearance features

or enhancing object localization, such as DIMP [3]
and the Alpha-refine [28]. The agnostic nature of
our method enables it to be combined with most SOT
methods.

• Our method does not require additional training data
or retraining or fine-tuning, and neighbor information
is readily available from the network-generated confi-
dence scores without additional computation.

• We achieved state-of-the-art 72.25% AUC on the La-
SOT [7] dataset. For the GOT-10K [9] dataset, we
achieved 75.7% AO. On the bbox and mask datasets
of VOT challenge [12], our method increases EAO and
robustness by 2.11% and 1.92%, respectively.

2. Related Work

SOT methods based on Siamese networks [2] have been
continuously refined and improved. The majority of re-
search has focused on improving the header function by
adding more effective tracking mechanisms. Some meth-
ods [14,15] borrow the region proposal network mechanism
from Faster R-CNNs [21] to make a network more adaptive
to target size changes. Wang et al. [22] propose a method
that generates a mask for tracking the target while training
the tracker in order to enable the network to track targets
more accurately and interpretably when used in real scenes.
Ocean [31] replaces anchor-based headers with anchor-free
ones to alleviate issues associated with overlapping tracked
targets and anchors in a crowded scene. Aside from the
header issue, effective extraction of appearance features
has always been a focus of SOT research. Recent meth-
ods [5,6,29] achieve breakthrough performance by employ-
ing a transformer network to simultaneously track the target
and all the surrounding backgrounds, and then establishing

5140



an appearance feature model covering both self-attention
and cross-attention.

Although the above-mentioned methods improve object
tracking, they cannot overcome the tracking difficulties
caused by occlusion [13]. Siamese network-based meth-
ods often fail when appearances change; therefore, relying
solely on appearances is not unreliable. The confidence
score predicted by a siamese network is a good indicator
of appearance similarity, and objects with a similar appear-
ance to the target will have high confidence scores. Accord-
ing to the tracking results on VOT challenge [12] reported
by Zhang et al. [31], when non-tracking objects occlude
the target object, the target appearance will change signif-
icantly, and this will greatly reduce the confidence score
of the target position. It is therefore necessary to consider
other information to overcome the challenge of occlusion.

The use of neighboring information is common in most
multi-object tracking (MOT) systems. Even though the
MOT task must consider multiple-to-multiple tracking, it
is actually equivalent to taking into account the time-space
matching relationship of all objects in the search range at
the same time. There are, however, two differences be-
tween SOT and MOT. (1) Most MOT networks such as Fair-
MOT [30] only track certain pre-determined classes. In con-
trast, a general SOT system should be able to track virtually
any type of object. The feature space of an MOT model can
be pre-trained on a class-specific Re-ID task to distinguish
objects within a class, which is not applicable to objects out-
side the class. As for SOT, it does not have the above class
information, and the requirements for appearance charac-
teristics must be universal. Therefore, it is more susceptible
to occlusion problems. (2) In the design of an MOT system,
objects of the same class are tracked together. This is ac-
tually beneficial to tracking because the matching relation-
ship between multiple objects and the background or other
objects can be easily defined and then used to correct the
tracking results. As for SOT, it does not have direct access
to information about object adjacency. This paper presents
a systematic approach to utilizing neighbor information for
SOT.

Some methods [19, 32] take into account multiple ob-
jects in the SOT task. In comparison with these meth-
ods that utilize information across objects or frames, our
method offers the following advantages: (1) Our method is
a post-processing method. Thus, unlike these methods, our
method does not require an additional network and retrain-
ing to obtain neighbor information, making it more flexible
to use. (2) These methods only take into account informa-
tion from two adjacent frames. Whenever a target is oc-
cluded, at least one frame’s target appearance features will
be unreliable. As a result of incorporating past information
for a period of time, our method is able to better reduce
tracking inaccuracies resulting from occlusions or changes

in appearance over time.

3. NeighborTrack
This paper proposes NeighborTrack for improving the

tracking results of an SOT network Φ as long as it meets
two requirements. First, given a target template patch z, its
bounding box b0 specifying its position at the first frame
I0, and a sequence of frames (I1, · · · , IT ), the network Φ
can generate a tracking result (b1, · · · , bT ) where bt is the
bounding box indicating the position of the target object at
frame It. Second, for a frame It, the network can generate
a set of candidate bounding boxes Bt and their confidence
scores St. The two requirements are met by the majority of
SOT networks.

To determine the bounding box of the target object at
the current frame It, NeighborTrack produces a set of can-
didate bounding boxes Ct. These are the hypotheses that
the target matches. Among the candidates, we are seek-
ing to identify the best match for the target. To have a
more robust similarity measurement, NeighborTrack is in-
spired by the principle of cycle consistency [23]: an object
tracked forward along a time line should be able to return
to its original position when tracked backwards along time.
In the current frame It, we have a forward-tracking track-
let (bt−τ , · · · , bt−1) for the target object. For the purpose
of utilizing cycle consistency for similarity, we backtrack
each candidate using Φ for τ frames in order to extract its
backward-tracking tracklet. A candidate tracklet pool Pc is
formed by these tracklets. Similarity between two tracklets
is determined by their intersection over union (IoU) value.
The measurement considers both visual and spatiotempo-
ral cues since IoU takes the spatiotemporal cue into ac-
count, while visual cues are considered when tracklets are
formed through forward/backward tracking. By measuring
the similarity between the forward-tracking target tracklet
and the backward-tracking candidate tracklet, we can ver-
ify how closely a candidate matches the target object using
forward/backward tracking and cycle consistency. Figure 2
illustrates a real example of how a tracker can eliminate in-
correct matches by ensuring cycle consistency.

NeighborTrack also maintains a neighbor tracklet pool
Pn which contains neighbors that are similar to the tar-
get. Since neighbors are similar to the target (visually and
spatiotemporally), they can cause false matches, particu-
larly when the target’s appearance changes or when it is ob-
scured. As illustrated in Section 1, the neighbors are used
to resolve ambiguity.

3.1. Candidate and neighbor tracklets

Candidate set. As one of the requirements, given the pre-
vious tracking results (b1, · · · , bt−1) for (I1, · · · , It−1), the
SOT network can generate a list of nt candidate bounding
boxes B̃t = {b̃t1, · · · , b̃tnt

} and their corresponding con-

5141



Figure 2. A real example of using cycle consistency to eliminate
incorrect candidates. The example is from VOT [12]. Based on
the target template at I0, the tracker (OSTrack [29] in this exam-
ple) tracks it until the frame It−1 and produces a target tracklet
(magenta boxes). For the current frame It, it selects the incor-
rect candidate due to severe view changes from the template. As
a result of backtracking the candidate, we are able to obtain its
backward-tracking candidate tracklet (cyan boxes). After calculat-
ing its similarity to the forward-tracking target tracklet, it is clear
that the candidate does not match the target well. Using the pro-
posed measure, we are able to verify matches better by utilizing
the spatiotemporal relationship.

fidence scores S̃t = {s̃t1, · · · , s̃tnt
} for the current frame

It. Most SOT methods find the bounding box b̃timax
with

the highest confidence score as the tracking result of It,
where imax = argmaxi s̃

t
i. Instead of picking up the

most confident one, NeighborTrack maintains a candidate
set of bounding boxes Ct and finds the match within Ct. We
first filter out bounding boxes with insufficient confidence
scores:

(B̂t, Ŝt) = {(b̃ti, s̃ti) | b̃ti ∈ B̃t and s̃ti > αs̃timax
)}, (1)

where α ∈ [0, 1] is a hyperparameter for the threshold con-
fidence ratio, B̂t is the set of candidate bounding boxes with
sufficient confidence and Ŝt are their confidence scores.
Next, we perform non-maximum suppression on the re-
maining bounding boxes:

(Bt, St) = SoftNMS(B̂t, Ŝt), (2)

where SoftNMS is an improved version of non-maximum
suppression [4], Bt and St respectively contain the bound-
ing boxes and adjusted scores after SoftNMS.

If the target object is severely occluded, the correct
match may not be included in the candidate set even if a
loose threshold is applied. Thus, we also apply a Kalman
filter to predict the candidate bounding box bκ without rely-
ing on appearance features. The candidate set Ct is formed
by adding bκ into Bt, i.e., Ct = Bt ∪ {bκ}.
Candidate tracklet pool. For each candidate bti ∈ Ct, we
generate its tracklet ξti by backtracking for τ frames. We
set the patch zti as the target template which is the patch
cropped from using the bounding box bti and use the SOT
network Φ for backtracking, i.e.,

ξti = Φ(zti , b
t
i, (It−1, · · · , It−τ )). (3)

The tracklet ξti is a sequence of bounding boxes indicating
the positions of the target template zti from time t− 1 to
time t−!τ . The set of all candidate tracklets is referred to
as the candidate tracklet pool Pc. Intuitively, the candidate
tracklet pool contains the backtracking tracklets of objects
that could potentially be the target object.
Neighbor tracklet pool. NeighborTrack also maintains an-
other tracklet pool called the neighbor pool Pn. Neighbor
tracklets are essentially the candidate tracklets from the pre-
vious frame. By applying the method described in section
Section 3.2, NeighborTrack selects a bounding box btm in
the candidate set Ct as the tracking result for It. After-
wards, NeighborTrack updates the neighbor pool Pn using
the current candidate tracklet pool Pc. In the first step, the
selected tracklet ξtm is removed from Pc. For each tracklet
ξti remaining in Pc, we adjust its time span from [t−1, t−τ ]
to [t, t−τ+1] to be ready for the next frame It+1. This is
accomplished by appending the associate candidate bound-
ing box bti at the head and removing the last bounding box:

ζt+1
i = (bti)

⌢ρ(ξti), (4)

where ⌢ is the concatenation operator of two sequences and
ρ(s) removes the last element from the sequence s. The
neighbor tracklet Pn is updated by {ζt+1

i |i ̸= m} for the
next frame It+1. As a result, the neighbor tracklets are the
unselected candidate tracklets from the previous frame (af-
ter aligning the time span to the current frame).

We maintain the neighbor tracklets because they belong
to neighbors of the target object in the tracking space. They
are similar to the target object either visually or spatiotem-
porally and may cause ambiguity to the SOT network, par-
ticularly when the target object is obscured. By bipartite
matching with those neighbors (Section 3.2), the ambiguity
could be better resolved.

We only retain neighbor tracklets from the previous
frame, not those from earlier frames. There are several rea-
sons for this. To begin with, tracking accuracy degrades
over time as outdated neighbor tracklets rarely provide use-
ful information. Additionally, if a neighbor tracklet contin-
ues to survive, it should be possible to find the correspon-
dence at the most recent time. Finally, retaining more track-
lets will increase computation overhead. Thus, to avoid
filling the pool with outdated neighbor tracklets that slow
down computation speed, we only retain candidate tracklets
from the previous time instance.

3.2. Tracking by bipartite matching

Through the process introduced in Section 3.1, we have
the candidate pool Pc and the neighbor pool Pn. The candi-
date pool contains hypothesis of tracking results while the
neighbor pool contains the source of potential ambiguity.
Given the target tracklet η = (bt−1, · · · , bt−τ ) which is the

5142



Figure 3. An illustration of the candidate and neighbor tracklets.
The blue boxes represent the target tracklet (η), while the yellow
boxes represent a neighbor tracklet (ζt1). For the current frame
It, the tracker Φ generates a set of candidates (the white boxes),
bt1 and bt2, in It. Using Φ for backtracking, we obtain their can-
didate tracklets (ξt1 and ξt2). Note that since the target object is
occluded in It, the confidence score of the correct candidate (bt1)
is lower than that of the incorrect candidate (bt2). However, as bt2’s
candidate tracklet (ξt2) matches very well with the neighbor track-
let (ζt1), bipartite matching decides to match it with the neighbor
rather than the target. Therefore, the target η has to be matched
with the candidate ξt1, thus correcting the false tracking. The ex-
ample is from VOT [12].

tracking results for the previous τ frames, our goal is to find
the association of η among hypothesis Pc while verifying
with the source of ambiguity Pn.

We cast the association problem into a bipartite match-
ing problem. We have two sets of tracklets: Sc = Pc

and Sn = Pn ∪ {η}. Each tracklet in Sc and Sn can be
taken as a node. Thus, we have a bipartite graph whose
two independent sets of nodes formed by Sc and Sn. It is
a complete bipartite graph since every node of the first set
Sc is connected to every node of the second set Sn. The
weight wij associated with the edge between two nodes,
ξti ∈ Sc and ζtj ∈ Sn, is defined as the average IoU values
between two tracklets. That is, if ξti = (bct−1, · · · , bct−τ )
and ζtj = (bnt−1, · · · , bnt−τ ), then we have

wij =
1

τ

t−1∑
k=t−τ

IoU(bck, b
n
k ), (5)

where IoU calculates the IoU values between two bounding
boxes. The weight reflects the trajectory similarity between
two tracklets. We employ the Hungarian algorithm [20]
to find the maximum matching for the resultant bipartite
graph. Suppose that the candidate tracklet ξtm is paired with
the target tracklet η, its corresponding candidate bound-
ing box btm is selected as the tracking result for frame It.
When the target tracklet η is not matched, we select the
non-matched candidate tracklet with the highest IoU values
with η. If the highest IoU is zero, we select the candidate
bκ predicted by the Kalman filter.

It is important to note that, although we only take the
match of the target tracklet as the tracking result, all neigh-
boring tracklets serve as a means of verifying the tracking
result. If a candidate tracklet has a high IoU similarity to
the target tracklet, it is likely to be the target. In contrast,
if it has a high IoU similarity with any neighbor tracklet,
it is likely to be associated with another object rather than
the target. In this way, neighbor tracklets contribute to the
matching process and assist in resolving ambiguities.

Tracking is significantly hampered by occlusions. Since
the appearance feature is unreliable, it is easy to lose track
of a target that has been occluded in the current frame.
NeighborTrack addresses this issue with the help of neigh-
bor tracklets. Assuming that the target object is occluded
in the current frame, the correct candidate tracklet will have
a lower similarity to the target tracklet. However, Neigh-
borTrack can still find the correct tracking result as long as
the objects in the candidate set are not occluded. Since the
candidate objects are not occluded, their candidate tracklets
can find excellent matches among the neighbor tracklets and
will not select the target tracklet as their matches. Figure 3
gives an example on how bipartite matching works.

Our edge weight only considers the similarity of bound-
ing boxes, and not the visual similarity of patches. There
are two reasons for this. First of all, the appearance feature
of an occluded target is less unreliable. In the event that the
target is occluded, its appearance may resemble that of the
occluder. Thus, visual similarity could mislead the results.
Secondly, we construct candidate tracklets by backtracking
patches of the candidate objects. In this way, the appearance
features of candidates have already been implicitly consid-
ered in the tracklets.

4. Experiments
We begin by discussing the details of implementation in

this section. Then, we apply NeighborTrack to improve sev-
eral SOT networks and report the results on the VOT [12],
LaSOT [7] and GOT-10K [9] datasets. We separate the
sports-related videos in VOT and LaSOT datasets into two
subsets: VOT-sports and LaSOT-sports, and use them to
verify the effectiveness of our developed method in the do-
main of sports.

4.1. Implementation details

We used the following parameters in all experiments. A
threshold ratio of α = 0.7 is used to select candidate bound-
ing boxes. For SoftNMS [4], the IoU threshold is set to
0.25, and σ is set to 0.01 for the Gaussian penalty function.
The time period τ of backtracking tracklets is 9. In order to
maintain neighbor information and enforce bipartite match-
ing, our method slightly lowers the frame rate, as shown in
Table 1. The hardware used in the experiment is 8 GTX
1080ti and 2 Intel E5 2620v4 CPU. When the time period τ

5143



Table 1. The effect of changing τ on the calculation speed/AUC:
Take for example the experiments on NeighborTrack on LaSOT
benchmark [7] using OSTrack as the basis. From the table, we can
see that the frame rate decays as τ increases. In addition, the track-
ing effect is slightly reduced if Kalman filter is not introduced, but
at the same time, the frame rate is slightly improved.

LaSOT
model name AUC↑ FPS(Hz)↑

OSTrack384 [29] 0.711 3.63
OSTrack384 [29]+ours τ=3 0.714 2.40
OSTrack384 [29]+ours τ=9 0.722 1.58

OSTrack384 [29]+ours w/o Kalman filter τ=9 0.720 1.71
OSTrack384 [29]+ours τ=27 0.720 0.75
OSTrack384 [29]+ours τ=36 0.721 0.6

Table 2. Results of applying NeighborTrack to three different SOT
methods on the VOT benchmarks [12]. Green numbers indicate
that the original model has been improved.

VOT2020
model name accuracy↑ robustness↑ EAO↑

Ocean [31]+AR [28] 0.757 0.810 0.515
Ocean [31]+AR [28] +ours 0.755 0.807 0.516

TransT [5]+AR [28] 0.769 0.775 0.490
TransT [5]+AR [28] +ours 0.768 0.816 0.523

OSTrack [29]+AR [28] 0.770 0.812 0.526
OSTrack [29]+AR [28] +ours 0.769 0.844 0.553

VOT2021

Ocean [31]+AR [28] 0.756 0.803 0.510
Ocean [31]+AR [28] +ours 0.754 0.803 0.515

TransT [5]+AR [28] 0.768 0.775 0.494
TransT [5]+AR [28] +ours 0.767 0.809 0.519

OSTrack [29]+AR [28] 0.770 0.810 0.528
OSTrack [29]+AR [28] +ours 0.769 0.843 0.556

VOT2022bbox

Ocean [31] 0.703 0.823 0.484
Ocean [31] +ours 0.703 0.822 0.486

TransT [5] 0.780 0.775 0.493
TransT [5] +ours 0.781 0.808 0.519

OSTrack [29] 0.779 0.824 0.538
OSTrack [29] +ours 0.779 0.845 0.564

Average

+ours −0.07% +2.11% +1.92%

is equal to 9, the frame rate is 43% of the baseline. Also, not
including Kalman filter will slightly reduce the performance
of our method (0.722 → 0.720) when setting the same τ .
As for the frame rate, it will increase slightly (1.58 → 1.71)
due to the number decrease of the neighbors.

Because NeighborTrack requires extra computation, it is
only activated when tracking results become unstable. We
consider tracking results stable and will not activate Neigh-
borTrack if two conditions are met. (1) If there is only one
candidate in the set Ct, there is no other option to match ex-
cept btimax

. (2) If the average IoU between the target tracklet
η and the most confident candidate tracklet ξtimax

is higher
than a threshold, then the tracking result is stable.

4.2. Datasets and competing methods

We conduct experiments on both short-term and long-
term tracking. For short-term tracking, we use the VOT
challenge [12] datasets including VOT2020, VOT2021, and
VOT2022bbox [10–12]. These sequences feature multiple
objects and many occlusions, which are the scenarios we
wish to address. The NeighborTrack algorithm can be used
with various S-networks, such as Ocean [31], TransT [5]
and OSTrack [29], to effectively overcome appearance
changes and occlusions. In addition, we use the mainstream
medium and long-term datasets of the SOT field, including
LaSOT [7] and GOT-10K [9], to verify NeighborTrack with
the state-of-the-art method, OSTrack [29]. VOT2020 and
VOT2021 are mask datasets, while LaSOT, VOT2022bbox,
and GOT-10K are bbox datasets. We apply NeighborTrack
to three previous models: a traditional attention-based net-
work Ocean [31], a transformer-based network TransT [5],
and a state-of-the-art network OSTrack [29].

4.3. VOT datasets

Table 2 shows the results of the proposed Neighbor-
Track. NeighborTrack is used to augment three representa-
tive models, Ocean, TransT, and OSTrack. Overall, Neigh-
borTrack improves EAO by 1.92% and robustness by 2.11%
on average. The accuracy decreases slightly at −0.07% be-
cause this metric only considers the average IoU of suc-
cessful tracking, while the frames that fail to track do not
participate in its calculation.

Figure 4 illustrates the tracking results for some exam-
ples. In the figure, the green box represents the ground
truth; the magenta box represents the original results of
the baseline, OSTrack [29];and the red box represents the
NeighborTrack-corrected results. In the example of bas-
ketball, the players of the same team all wear the same
color jerseys, and the angle of camera often causes occlu-
sion problems. These reasons can easily lead to tracking the
wrong target. In the Gymnastics3 example, the deforma-
tion of the gymnast’s movement will cause a large change
in the appearance characteristics, and the system will there-
fore mistakenly track the jumping platform and the referee.
In the last example, Bolt1, multiple similar targets are on
the screen at the same time, which makes the baseline mis-
takenly track other runners. After the correction of Neigh-
borTrack, the correct targets of the above three examples
can be tracked.

4.4. LaSOT and GOT-10K datasets

For the experiments of medium-term and long-term
tracking, we used two datasets, LaSOT [7] and GOT-
10K [9]. We use the metrics suggested by each dataset.
Table 3 summarizes the results. The top three results
are colored red, green, and blue, respectively. For La-
SOT, OSTrack384 [29] leads all other methods. When

5144



Figure 4. Examples of tracking results with and without NeighborTrack from VOT2022 [12]. We use OSTrack [29] as a baseline and
correct its results using NeighborTrack. Ground truth is indicated by the green boxes. Magenta boxes represent baseline results, while red
boxes represent results after applying NeighborTrack. Basekitball are examples that the baseline is unable to track because there are other
object that resemble the target. In the case of Gymnastics3, deformation cause severe appearance changes, leading to the failure of the
baseline. Whereas in Bolt 1, there are multiple similar targets in the frame, and when the target’s angle changes, it can cause the baseline
tracker to incorrectly track other similar-looking targets. In most cases, tracking errors are corrected after NeighborTrack has been applied.

Figure 5. Examples of tracking results with and without NeighborTrack from LaSOT [7]. We apply NeighborTrack to correct the tracking
results of OSTrack [29]. Ground truth is indicated by the green boxes. OSTrack’s results are represented by magenta boxes, while
NeighborTrack’s results are represented by red boxes. OSTrack fails to track Bicycle-9, Pool-7 and Volleyball-1 due to the occlusion of the
target, Kalman filter can prevent the tracker from being confused by neighbors similar to the target when the target is completely occluded,
so as long as the target reappears, it can quickly return to the correct tracking position.

NeighborTrack is applied to OSTrack384, its performance
is further improved, and OSTrack384+NeighborTrack out-
performs all other methods in all metrics. The perfor-
mance of OSTrack384 on GOT-10K is substantially in-
ferior to MixFormer-L [6], the best method excluding
ours. OSTrack384+NeighborTrack, however, outperforms
MixFormer-L, because NeighborTrack boosts OSTrack384
significantly. Accordingly, NeighborTrack achieves state-

of-the-art results for both the LaSOT and GOT-10K
datasets.

Figure 5 provides examples of tracking results for La-
SOT. In Bicycle-9, a bicycle is tracked as it travels in an
array of vehicles. When a white car obscures the bicycle,
the tracker tracks a similar-looking black motorcycle, since
it loses its target. NeighborTrack recognizes that the black
motorcycle is not the intended target, so it is set up to re-

5145



Table 3. Comparisons of NeighborTrack (applied to OSTrack384)
and other leading methods on the LaSOT [7] and GOT-10K [9]
datasets.

LaSOT
model name AUC↑ Norm-Precision↑ Precision↑

OSTrack384 [29] +ours 0.722 0.818 0.780
OSTrack384 [29] 0.711 0.811 0.776

SwinV2-L 1K-MIM [24] 0.707 — —
SwinTrack-B-384 [16] 0.702 0.784 0.753

MixFormer-L [6] 0.701 0.799 0.763
AiATrack [8] 0.690 0.794 0.738
Unicorn [26] 0.685 0.766 0.741

KeepTrack [19] 0.671 0.772 0.702
DMTrack [32] 0.574 — 0.580

GOT-10K
model name AO↑ SR0.5 ↑ SR0.75 ↑

OSTrack384 [29] +ours 0.757 0.8572 0.733
MixFormer-L [6] 0.756 0.8573 0.728
OSTrack384 [29] 0.737 0.832 0.708

SwinV2-L 1K-MIM [24] 0.729 — —
SwinTrack-B-384 [16] 0.724 0.805 0.678

AiATrack [8] 0.696 0.800 0.632
STARK [27] 0.688 0.781 0.641

track the target at a later time. Our method has succeeded
in this example by introducing the Kalman filter, which pro-
vides candidates independent of appearance features, thus
providing a greater range of options to the tracking system.
Although the Kalman filter is not extremely accurate, it can
serve as a guide to prevent the tracker from becoming out-
rageous. Pool-7 is another example of specifying that the
tracked object is fully occluded. In this example, the base-
line selects the wrong target with a similar appearance when
the pool ball is occluded by a player. And the Kalman filter
keeps the tracking result near that position when the target
disappears, and stops there until the target reappears. The
volleyball-1 example is tracking the ball. When the ball is
occluded by a player, the baseline method tracks to another
volleyball at the next court. If we use our method, good
tracking results can be obtained as long as one of the dis-
tractor and the target is not occluded.

4.5. LaSOT and VOT2022 sports dataset

We cut out two sports sub-datasets from short-term
dataset VOT2022 and long-term dataset LaSOT. VOT2022-
sports contains 21 videos, which are: {ball2 to 3, basketball,
bolt1, diver, gymnastics1 to 3, handball1 to 2, iceskater1
to 2, marathon, motocross1, polo, rowing, soccer1 to 2,
surfing, tennis, wheel}, and LaSOT-sports contains 32
videos, which are: {basketball-1, basketball-6, basketball-
7, basketball-11, bicycle-2, bicycle-7, bicycle-9, bicycle-
18, surfboard-4, surfboard-5, surfboard-8, surfboard-12,
pool-3, pool-7, pool-12, pool-15, skateboard-3, skateboard-
8, skateboard-16, skateboard-19, yoyo-7, yoyo-15, yoyo-
17, yoyo-19, motorcycle-1, motorcycle-3, motorcycle-9,

Table 4. LaSOT and VOT2022 sports dataset: We cut out the
videos about sports in the original dataset as sub-dataset, then
based on OSTrack384, added NeighborTrack and then made a
comparison.

LaSOT-sports
model name AUC↑ Norm-Precision↑ Precision↑

OSTrack384 [29] 0.694 0.809 0.823
OSTrack384 [29]+ours 0.702 0.819 0.831

VOT2022bbox-sports
model name accuracy↑ robustness↑ EAO↑

OSTrack384 [29] 0.787 0.854 0.525
OSTrack384 [29]+ours 0.790 0.867 0.539

motorcycle-18, volleyball-1, volleyball-13, volleyball-18,
volleyball-19}. The results of our experiments are shown in
Table 4. From Table 4, we found that the main indicators of
baseline model, AUC and EAO, have decreased to a certain
extent compared with the original dataset (AUC 0.711 →
0.694,EAO 0.538 → 0.525), which shows that the dif-
ficulty of sports-subset is higher than that of the original
dataset. Under these circumstances, our method improves
all metrics on both subsets, which proves that our proposed
method is effective for sports.

5. Conclusion
We propose NeighborTrack, a post-processing scheme

that is agnostic and can be applied to state-of-the-art sin-
gle object tracking methods provided that confidence scores
are available. Through the use of neighbor information,
NeighborTrack effectively mitigates the appearance change
problem caused by occlusion or deformation. Our approach
can be applied to both non-transformer-based methods [31]
and transformer-based methods [5, 29]. Extensive experi-
ments demonstrate that the proposed method is capable of
improving the tracking performance of various SOT meth-
ods. There is no need to collect any additional training data
for the proposed method. Furthermore, there is no need to
retrain the SOT network. In summary, NeighborTrack com-
plements most current state-of-the-art SOT algorithms and
improves their accuracy.

6. Acknowledgement
The authors gratefully acknowledge the financial support

provided by the Taiwan National Science and Technology
Council (NSTC111-2634-F-002-023 and NSTC111-2634-
F-002-022) and the ELAN Microelectronics (5T-1100309-
1Q), which significantly contributed to the success of this
research.

References
[1] Amanda Berg, Joakim Johnander, Flavie Durand de Gevi-

gney, Jorgen Ahlberg, and Michael Felsberg. Semi-

5146



automatic annotation of objects in visual-thermal video. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV) Workshops, Oct 2019. 1

[2] Luca Bertinetto, Jack Valmadre, João F. Henriques, Andrea
Vedaldi, and Philip H. S. Torr. Fully-convolutional siamese
networks for object tracking. In Gang Hua and Hervé Jégou,
editors, Computer Vision – ECCV 2016 Workshops, pages
850–865, Cham, 2016. 1, 2

[3] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu
Timofte. Learning discriminative model prediction for track-
ing. In 2019 IEEE/CVF International Conference on Com-
puter Vision (ICCV), pages 6181–6190, 2019. 2

[4] Navaneeth Bodla, Bharat Singh, Rama Chellappa, and
Larry S. Davis. Soft-NMS – improving object detection with
one line of code, 2017. 4, 5

[5] Xin Chen, Bin Yan, Jiawen Zhu, Dong Wang, Xiaoyun Yang,
and Huchuan Lu. Transformer tracking. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 8126–8135, June 2021. 2, 6, 8

[6] Yutao Cui, Cheng Jiang, Limin Wang, and Gangshan Wu.
Mixformer: End-to-end tracking with iterative mixed atten-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 13608–
13618, June 2022. 2, 7, 8

[7] Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia
Yu, Hexin Bai, Yong Xu, Chunyuan Liao, and Haibin Ling.
Lasot: A high-quality benchmark for large-scale single ob-
ject tracking. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June
2019. 2, 5, 6, 7, 8

[8] Shenyuan Gao, Chunluan Zhou, Chao Ma, Xinggang Wang,
and Junsong Yuan. AiATrack: Attention in attention for
transformer visual tracking. In European Conference on
Computer Vision, pages 146–164. Springer, 2022. 8

[9] Lianghua Huang, Xin Zhao, and Kaiqi Huang. Got-10k: A
large high-diversity benchmark for generic object tracking
in the wild. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 43(5):1562–1577, 2021. 2, 5, 6, 8

[10] Matej Kristan, Alan Lukeziˇ c, Martin Danelljan, Luka Ce-
hovin Zajc, and Jiri Matas. The new VOT2020 short-
term tracking performance evaluation protocol and mea-
sures, 2020. 6

[11] Matej Kristan, JirıMatas, Aleš Leonardis, Michael Felsberg,
Roman Pflugfelder, Joni-Kristian Kamarainen, Hyung Jin
Chang, Martin Danelljan, Luka Čehovin Zajc, Alan Lukežič,
Ondrej Drbohlav, Jani Kapyla, Gustav Hager, Song Yan,
Jinyu Yang, Zhongqun Zhang, Gustavo Fernandez, and et.
al. The ninth visual object tracking VOT2021 challenge re-
sults, 2021. 6

[12] Matej Kristan, Jiri Matas, Aleš Leonardis, Tomas Vojir, Ro-
man Pflugfelder, Gustavo Fernandez, Georg Nebehay, Fatih
Porikli, and Luka Čehovin. A novel performance evaluation
methodology for single-target trackers. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 38(11):2137–
2155, Nov 2016. 2, 3, 4, 5, 6, 7

[13] B Y Lee, L H Liew, W S Cheah, and Y C Wang. Occlusion
handling in videos object tracking: A survey. IOP Confer-

ence Series: Earth and Environmental Science, 18:012020,
feb 2014. 3

[14] Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing,
and Junjie Yan. SiamRPN++: Evolution of siamese vi-
sual tracking with very deep networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019. 2

[15] Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu.
High performance visual tracking with siamese region pro-
posal network. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8971–8980, 2018. 2

[16] Liting Lin, Heng Fan, Yong Xu, and Haibin Ling. Swintrack:
A simple and strong baseline for transformer tracking. arXiv
preprint arXiv:2112.00995, 2021. 8

[17] Liwei Liu, Junliang Xing, Haizhou Ai, and Xiang Ruan.
Hand posture recognition using finger geometric feature. In
Proceedings of the 21st International Conference on Pattern
Recognition (ICPR2012), pages 565–568, 2012. 1

[18] Akshay Mangawati, Mohana, Mohammed Leesan, and
H. V. Ravish Aradhya. Object tracking algorithms for video
surveillance applications. In 2018 International Conference
on Communication and Signal Processing (ICCSP), pages
0667–0671, 2018. 1

[19] Christoph Mayer, Martin Danelljan, Danda Pani Paudel, and
Luc Van Gool. Learning target candidate association to keep
track of what not to track. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 13444–
13454, 2021. 3, 8

[20] J. Munkres. Algorithms for the assignment and transporta-
tion problems. Journal of the Society of Industrial and Ap-
plied Mathematics, 5(1):32–38, March 1957. 5

[21] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R-CNN: Towards real-time object detection with re-
gion proposal networks. In Advances in Neural Information
Processing Systems, volume 28, 2015. 2

[22] Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, and
Philip HS Torr. Fast online object tracking and segmentation:
A unifying approach. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 2019. 1, 2

[23] Xiaolong Wang, Allan Jabri, and Alexei A. Efros. Learn-
ing correspondence from the cycle-consistency of time. In
CVPR, 2019. 3

[24] Zhenda Xie, Zigang Geng, Jingcheng Hu, Zheng Zhang, Han
Hu, and Yue Cao. Revealing the dark secrets of masked im-
age modeling, 2022. 8

[25] Junliang Xing, Haizhou Ai, and Shihong Lao. Multiple hu-
man tracking based on multi-view upper-body detection and
discriminative learning. In 2010 20th International Confer-
ence on Pattern Recognition, pages 1698–1701, 2010. 1

[26] Bin Yan, Yi Jiang, Peize Sun, Dong Wang, Zehuan Yuan,
Ping Luo, and Huchuan Lu. Towards grand unification of
object tracking. In European Conference on Computer Vi-
sion(ECCV), 2022. 8

[27] Bin Yan, Houwen Peng, Jianlong Fu, Dong Wang, and
Huchuan Lu. Learning spatio-temporal transformer for vi-
sual tracking. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 10448–10457, 2021.
8

5147



[28] Bin Yan, Xinyu Zhang, Dong Wang, Huchuan Lu, and Xi-
aoyun Yang. Alpha-refine: Boosting tracking performance
by precise bounding box estimation. In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2021, vir-
tual, June 19-25, 2021, pages 5289–5298. Computer Vision
Foundation / IEEE, 2021. 2, 6

[29] Botao Ye, Hong Chang, Bingpeng Ma, and Shiguang Shan.
Joint feature learning and relation modeling for tracking: A
one-stream framework. In European Conference on Com-
puter Vision(ECCV), 2022. 2, 4, 6, 7, 8

[30] Yifu Zhang, Chunyu Wang, Xinggang Wang, Wenjun Zeng,
and Wenyu Liu. Fairmot: On the fairness of detection and
re-identification in multiple object tracking. International
Journal of Computer Vision (to appear), August 2021. 3

[31] Zhipeng Zhang, Houwen Peng, Jianlong Fu, Bing Li, and
Weiming Hu. Ocean: Object-aware anchor-free tracking. In
Computer Vision - ECCV 2020 - 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part XXI,
volume 12366 of Lecture Notes in Computer Science, pages
771–787. Springer, 2020. 2, 3, 6, 8

[32] Zikai Zhang, Bineng Zhong, Shengping Zhang, Zhenjun
Tang, Xin Liu, and Zhaoxiang Zhang. Distractor-aware fast
tracking via dynamic convolutions and mot philosophy. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 1024–1033,
June 2021. 3, 8

5148


