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Abstract

There is a need in the sports and fitness industry for a
practical system that can identify and understand human
physical activity to enable intelligent workout feedback and
virtual coaching. Such a system should be able to clas-
sify an athlete’s actions from only limited examples since
it is not feasible to collect a large quantity of human data
for every action of interest. In this paper, we present SU-
EMD, a novel dataset of skeleton motion sequences of seven
common strength and conditioning exercises as captured by
both a markerless and marker-based motion capture sys-
tem. We then formulate the one-shot skeleton action recog-
nition problem as a deep metric learning problem. We use
the state-of-the-art graph convolutional network (GCN) to
project dissimilar actions further away and similar actions
closer together in the learned metric space. By training on
NTU RGB+D 120, the metric GCN achieves a one-shot per-
formance of 87.4% on all seven never-before-seen actions.
In addition, an ablation study reveals the effect of differ-
ent losses, embedding sizes and augmentations. Our results
show that one-shot metric learning method can be used as
a means to classify sports actions in a virtual coaching sys-
tem where users cannot provide many expert examples for
the enrolment of new actions.

1. Introduction

In many sports, strength and conditioning exercise is
an imperative facet of competition and training [32]. Be-
sides for sports that directly involve strength training like
Olympic weightlifting, bodybuilding and CrossFit, many
competitive team sports such as football [26], hockey [4]
and rugby [10] require athletes to undergo plyometric and
weightlifting exercises prescribed by coaches for functional
fitness or injury rehabilitation [6].

Foremost, our research is predicated on the larger prob-
lem of developing a virtual fitness instructor that provides

athletes and gym-goers with automatic exercise monitor-
ing and performance feedback. By using observations from
multiple cameras, such a system could automatically recog-
nise an individual’s performance of a specific strength and
conditioning exercise, provide feedback and recommenda-
tions, and notify users of dangerous movements that might
cause injury. Since 3D skeleton motion (the motion se-
quence of keypoints of interest of the human body) is a com-
pact representation of a physical action performed by an in-
dividual and contains the motion data of important joints of
the human body, it will be particularly suitable as a modal-
ity for an AI-enabled coaching system. This is especially
useful in scenarios where no trainers or fitness instructors
are available to correct form and advise on routines, mak-
ing expert guidance more accessible. Large datasets com-
prised of skeleton motion sequences are available, such as
NTU RGB+D [25] and Kinetics 400 [11]. However, no
skeleton motion dataset of strength and conditioning actions
is available in the literature. To solve this shortcoming, we
developed a markerless 3D pose estimation system and col-
lected 840 skeleton motion sequences of seven exercise ac-
tions as performed by four subjects. The pose data for the
dataset is specially designed to be compatible with a large-
scale dataset like NTU RGB+D. This dataset is the first of
its kind and we have released it to researchers. 1

Using this data, we consider the utility of a skeleton-
based action recognition (SBAR) system in the context of
low training resources by tackling the one-shot classifica-
tion problem, where a model is given only one prior exam-
ple of an action. Such a system should have prior knowl-
edge of human actions. It should be able to extract spatial-
temporal features and recognize these features to classify
newly enrolled actions. Along with this observation, we are
also inspired by the success of ImageNet as a source for
pre-training for convolutional neural networks (CNNs) on
image data to test if this success can be paralleled for large-
scale skeleton-based action datasets and GCNs. We trained

1https://github.com/michaeldeyzel/SU-EMD/
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Figure 1. The metric ST-GCN model. Illustration of the spatial-temporal GCN feature extractor as a feature encoder in a metric learning
paradigm. The model learns to distinguish between spatial-temporal features in the skeleton sequence even among never-before-seen
actions.

a spatial-temporal graph convolutional neural network (ST-
GCN) [31] as a feature extractor on NTU RGB+D with a
metric learning paradigm to classify actions. Our metric
GCN approach is shown in Figure 1. We then test the one-
shot performance of the metric GCN on our novel dataset
by providing only one example of each action class and de-
termining the nearest class neighbour for all the samples in
the dataset. The model achieves an accuracy of 87.4% on
the seven never-before-seen classes.

Furthermore, we performed an ablation study that com-
pares the use of triplet margin and multi-similarity loss, dif-
ferent mining strategies for metric learning and the effects
of varying embedding sizes. We further investigated the ef-
fect of a reduction of the test set size and compare our model
to the models found in the literature.

2. Related work

Skeleton motion sequences as a modality for action
recognition has gained significant attention in recent years
following the popularity of the Microsoft Kinect RGB-D
camera, which allowed for easy 3D skeleton extraction us-
ing the Kinect SDK. This device was used to collect the
state-of-the-art large-scale NTU RGB+D [16, 25] dataset
which consists of 114,480 skeleton motion sequences of
120 different classes of actions. Since the release of
this dataset, many deep learning architectures have been
proposed to classify human action from pose sequences.
Since skeleton motion sequence data is inherently spatial-
temporal, models are tasked with the problem of fusing spa-
tial and temporal information in the data for classification.

Many past works have proposed transforming skele-
ton sequences into pseudo-images in order to leverage the
proven power of CNNs [1, 12, 13, 15, 19]. Notably, Liu et
al. [15] arrange the skeleton joint indices into several 2D

grids (skepxels) of different fixed orders that encode rep-
resentations for the positions and velocities of joints in a
frame. For the CNN input, they concatenate all the skepxel
grids from a frame along the entire sequence. Caetano et
al. [1] use a representation that encodes the magnitude of
the temporal differences and orientation (angles) of joints
in the sequences. Other works tackle the temporal mod-
elling problem with recurrent network architectures [17,27],
where frame-wise joint data is supplied to an RNN/LSTM
unit sequentially and predictions are made on the output of
the last frame given memory of previous frames.

However, current top-performing models are dominated
by the graph convolutional network (GCN) architecture.
In these approaches, convolution operations are performed
on the skeleton directly by treating a skeleton sequence as
a graph with joints and nodes. Yan et al. [31] proposed
the first of these with the spatial-temporal graph convolu-
tional network (ST-GCN), where the node vectors are the
spatial coordinates of all joints in the sequences and the
edges are both the semantic intra-frame connections and the
temporal inter-frame connections. They experiment with
different joint neighbour sampling strategies for convolu-
tional kernels. Li et al. [14] achieved improved perfor-
mance by adapting the graph edge formation to both seman-
tic and action-based inference connections. Zuo et al. [33]
achieved further improvements by dividing the skeleton
data into several sub-graphs to learn spatial-temporal fea-
tures at different part scales.

Much less research focus has been placed on train-
ing skeleton sequence action recognition models with lit-
tle training resources such as a one-shot learning scenario.
One-shot classification aims to classify novel, unseen ex-
amples given only a single reference example. Popular so-
lutions to one-shot learning problems are meta-learning [5]
and metric learning [8, 24].
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With the release of NTU RGB+D, 120 [16] introduced
a spatial-temporal LSTM module to extract feature embed-
dings from body parts and compare their similarity with Eu-
clidean distance to make classifications. The authors also
provide their one-shot test setup that researchers often copy
to make fair performance comparisons. We also use this
setup in our experiments.

Sabater et al. [23] presented a solution based on a tem-
poral convolutional network (TCN). They calculate second-
order features (bone angles and keypoint distances) and use
a TCN to generate motion descriptors embeddings. They
then perform a similarity evaluation between the embedding
on the final frame of the anchor action and all the frames
from a target motion sequence to detect when an action has
occurred.

The only other work to use a metric learning approach
for one-shot action recognition on skeleton data has been
Memmesheimer et al. [20]. They follow the pseudo-image
approach with a novel image representation which projects
joint values for all axes into blocks over the width of the
image which keeps joint spatial values grouped locally per
axis. This results in a more compact representation which
they use as input to a ResNet18 model trained in a triplet
learning and multi-similarity learning paradigm. Metric
learning has the added benefit of providing a similarity
score, which is useful to detect anomalies or unknown ac-
tion classes. All past works on one-shot skeleton-based ac-
tion recognition have performed training and evaluation on
the same dataset (NTU RGB+D and/or Kinetics 400) and
none have considered using a large-scale dataset as a source
for knowledge transfer of human action features represen-
tations. Since a system that can identify human action from
one example can be so impactful in sport and fitness, we
investigate one-shot action recognition on skeleton-based
strength and conditioning actions.

3. Dataset
Our novel dataset, which we call the Stellenbosch Uni-

versity Exercise Motion Dataset (SU-EMD), uses the Vicon
Vantage motion capture system and our markerless motion
capture system to construct a labelled multimodal dataset
of common exercise actions. The dataset comprises corre-
sponding (i) multi-view RGB video clips, (ii) Vicon mo-
tion capture trajectory data, and (iii) markerless 3D pose
estimation data, of five reps of seven different exercises be-
ing performed by four different subjects at three different
speeds. It is designed for training and testing machine learn-
ing models for action recognition and analysis of gym ex-
ercises from human pose. This study was approved by the
research ethics committee with which the authors are affili-
ated and participants provided their informed consent. Four
male participants were recruited as subjects in the dataset.

For the markerless system, the 2D keypoint coordinates
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(d) Markerless pose

Figure 2. Reconstructed 3D pose. The sample S1A1D2R4 in our
novel dataset at frame 70 with visualizations of the associated pose
data.

of subjects are detected from video streams of four hard-
ware synchronized cameras using OpenPose [2] and used
to triangulate for their respective 3D locations in the world
coordinate system using the direct linear transformation
(DLT) and the projection matrices of each camera. For the
marker-based motion capture, we use a gold-standard Vi-
con Vantage system. Retroreflective markers were placed
on subjects such that the midpoints of pairs of markers de-
note the keypoints of interest, i.e. the OpenPose skeleton
keypoints.

Table 1 outlines the matrix of the dimensions of data that
were captured. We collected seven common strength and
conditioning exercises: barbell back squat, barbell dead-
lift, dumbbell biceps curl, dumbbell lateral raise, kettlebell
swing, jump rope, and jumping jacks. To add temporal vari-
ance to the data, we require subjects to vary action perfor-
mances by performing actions at three different speeds: nor-
mal, fast and slow. For each of these actions and speeds, we
captured five repetitions and sometimes more. This allows
for at least 15 samples of an action which implies that any
one subject performs 105 repetitions. Since we record ac-
tions with both our markerless motion capture system and
the Vicon motion capture system, there are more than 840
data points. Inspired by NTU RGB+D [16], each sample di-
mension has a code which allows a unique and descriptive
label for every sample. Sample S1A1D2R4 in the dataset is
visualized in Figure 3.

3.1. Human pose data

Choosing a skeleton model similar to that of a large-
scale labelled pose dataset that is already openly available
is useful. If this is the case, these datasets can be inter-
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(a) Jumping jack
(S4A7D1R4)

(b) Deadlift
(S1A2D1R1)

(c) Lateral raise
(S3A4D1R4)

(d) Kettlebell swing
(S2A5D1R1)

Figure 3. Visualizations of four of the seven strength and conditioning exercise actions available in our novel dataset. Blue shows the skele-
ton formed by the marker-based Vicon motion capture skeleton output and red shows the skeleton formed by the triangulated markerless
pose estimation system at the same frame.

Table 1. Captured motion samples. The matrix of dimensions
that are captured in the SU-EMD dataset along with their codes.

Action Subject Duration Rep

Back squat (A1) Male 1 (S1) Normal (D1) 1 (R1)
Deadlift (A2) Male 2 (S2) Fast (D2) 2 (R2)
Biceps curl (A3) Male 3 (S3) Slow (D3) 3 (R3)
Lateral raise (A4) Male 4 (S4) 4 (R4)
Kettlebell swing (A5) 5 (R5)
Jump rope (A6)
Jumping jack (A7)

operable. NTU RGB+D is such a dataset and is popu-
lar in the pose-based action recognition literature. It uses
the Microsoft Kinect skeleton which is comparable to the
BODY 25 arrangement from OpenPose. Based on these
specifications, we choose our keypoint set to be the intersec-
tion of the BODY 25 arrangement and the Microsoft Kinect
arrangement as illustrated in Figure 4. A skeleton sequence
X ∈ RT×J×D consists of T frames of J joints in D spatial
dimensions.

4. Approach
We propose to train a state-of-the-art graph convolu-

tional architecture as an encoder model on the large-scale
NTU RGB+D skeleton data. The GCN model learns to
extract spatial-temporal features directly from skeleton se-
quence data and project them into an embedding space that
clusters similar actions.

4.1. Spatial-Temporal GCN

Our metric GCN encoder is composed of a sequence of
ST-GCN blocks as introduced by Yan et al. [31]. Figure 5
illustrates the model. The input to the GCN is shown, which
is the skeleton motion sequence matrix, the ST-GCN blocks
along with their residual skip connections, and the inter-
mediate activation map dimensions. Similar to a CNN, the

    0:   Spine base
    1:   Mid-shoulders
    2:   Head
    3:   Left shoulder
    4:   Left elbow
    5:   Left wrist
    6:   Right shoulder
    7:   Right elbow
    8:   Right wrist
    9:   Left hip
    10: Left knee
    11: Left ankle
    12: Left foot
    13: Right hip
    14: Right knee
    15: Right ankle
    16: Right foot

BODY_25
(OpenPose)

Microsoft Kinect
(NTU RGB+D)

SU-EMD
(Ours) 

Figure 4. SU-EMD pose keypoints. Our simple skeleton model
is intended to be compatible with both the OpenPose and the
NTU RGB+D formats.

depths of the activation maps are increased as the network
deepens.

The ST-GCN blocks apply batch normalisation inter-
nally. Along with the residual connections, this helps con-
trol vanishing or exploding gradients as the network be-
comes deeper. At the head of the model, after the feature
extractor section fΘ, a 2D global average pooling operation
pools all the T × J activations down to a V -size vector z.
Different designs for V are described in Section 5. For the
metric learning approach, the feature vector is used directly
as a learned embedding.

4.2. Metric Learning

An overview of our metric learning approach is shown
in Figure 1. We train a feature embedding z = fΘ(X)
which projects a skeleton sequence X to a vector represen-
tation z ∈ RV where V is the target embedding size. In
this V -dimensional space, we wish for projections of ex-
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Figure 5. The GCN feature extractor. The ST-GCN blocks from Yan et al. [31] perform simultaneous spatial and temporal graph
convolutions on the skeleton data.

amples from the same class to be closer together or have
a higher vector similarity and for examples from different
classes to be further away or have a lower similarity. The
measure of distance between two projections zi and zj is
defined as the Euclidean distance between the projections:
d(zi, zj) = ∥zi, zj∥2. A measure for the similarity sij be-
tween two embeddings is taken as the dot product of the
vectors: s(zi, zj) = ⟨zi, zj⟩. Two embeddings should have
a low distance dij or high similarity sij for the samples (Xi,
Xj) if their associated class labels are equal (yi = yj) and
should have a high distance or low similarity if they are not
equal (yi ̸= yj). A model that generalizes well to the train-
ing set and is able to extract useful features from the data
modality should be able to cluster these unseen classes in
the metric space.

For their work on one-shot SBAR with metric learn-
ing, Memmesheimer et al. [20] experiment with both the
Triplet Margin loss [24] and Multi-similarity loss [29].
Memmesheimer et al. is the only other work to use metric
learning for one-shot SBAR. To have a more fair compari-
son, we also experiment with these two loss functions.

Firstly, for the triplet learning approach, we construct
triplets from the B samples found in a mini-batch during
training. Each triplet consists of a reference sample (an-
chor), a same-class sample (positive) and a different-class
sample (negative). For a triplet consisting of embeddings
za, zp and zn for the anchor, positive and negative sample
respectively, the triplet margin (TM) loss [24] is defined as:

LTM = max{d(za, zp)− d(za, zn) + α, 0} (1)

where α is a margin hyperparameter greater than 0 which
the model should learn as a sufficient separation between
positive and negative embeddings. Therefore, the net-
work is trained to minimize this loss function that penalises

learned embeddings where the anchor-positive distance is
not sufficiently smaller than the anchor-negative distance.
For the mining of triplets, computing the loss from triplets
containing either a hard negative or a semi-hard negative re-
sults in the best convergence [7]. A hard negative is defined
as having been projected closer to the anchor than the posi-
tive and a semi-hard negative is one that has been projected
further than the positive, but still within the margin α from
the positive. Additionally, work by Xuan et al. [30] has
shown the benefit of using easy positive sampling (EPS).
In this strategy, only the most similar example of the same
class is mined as a positive example. This loosened mining
strategy is intended to avoid over-clustering and allow the
model to learn more general features that associate exam-
ples for their semantic similarity instead of their class label.

Secondly, for the multi-similarity approach, we con-
struct anchor-positive pairs and anchor-negative pairs
whose contribution to the loss function is weighted de-
pending on their similarities. We calculate all the similar-
ities s between all the B samples in a mini-batch and col-
lect them into a B × B matrix S that can be indexed as
Sij = s(zi, zj). The anchor-positive pairs for some anchor
zi comprise Pi and its anchor negative pairs comprise Ni.
The multi-similarity (MS) loss applies a weighting to every
pair based on their similarity and is computed as:

LMS =
1

B

B∑
i=1

{
1

β
log[1 +

∑
k∈Pi

e−β(Sik−λ)]

+
1

γ
log[1 +

∑
k∈Ni

eγ(Sik−λ)]

}

where the β and γ hyperparameters are the weights applied
to the positive and negative pairs respectively and λ is the
offset applied to the exponent which can be interpreted as
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a similarity margin. For the multi-similarity approach, we
also use the mining strategy proposed in original the pa-
per [29]. To ensure that there are sufficient within-class
samples to mine in a batch, we sample the training sub-
set with the requirement that for a batch of size B samples,
there must be M samples per class present in the batch. This
implies that there can only be B

M classes in a batch.

4.3. One-shot protocol

A one-shot classification setting uses a test set T that
contains N novel classes such that none of the classes in
C are in N . Additionally, one random exemplar for each of
the N new classes is separated from the test set T to be used
as a reference. There are N classes that the model has never
been trained on and only one example per class is provided
as a reference representation of those unseen classes. Since
a labelled reference set is provided to obtain a class mean or
‘centroid’ for every class in N , the projected test sample is
classified as belonging to the class with the nearest centroid
in the embedding space. During the testing phase and for
inference, we therefore use a k-nearest neighbour (k-NN)
classifier implemented in the Faiss library [9]. From the
k-NN, the top-k accuracy or accuracy@k is calculated as:

Accuracy@K =
#correct
∥T ∥

(2)

where #correct is the total number of true positives, i.e.
how many test samples had their own class among their
k nearest neighbours. The authors for the NTU RGB+D
dataset document the one-shot protocol that they used in
their experiments. They split the dataset into a training set
D with C = 100 classes and a test set T with the remaining
N = 20 unseen classes. We use this same partitioning for
our experiments so that results can be compared fairly. In
our problem setting, we use this as a validation set to design
the hyperparameters for the model architectures and train-
ing, before performing final one-shot testing on the held-out
SU-EMD data. Finally, once we have the top-performing
model on the NTU RGB+D validation set T , we perform
final one-shot testing on all the SU-EMD data by choosing
one random exemplars from each class. Since this has been
held out from training and validation and contains com-
pletely unique classes from a different dataset, it will give
an accurate measure of the one-shot capabilities of the met-
ric GCN.

5. Experiments

5.1. Training

We train the ST-GCN embedder in Figure 5 as a fea-
ture extractor in a one-shot setting. We train the model on
the NTU RGB+D training subset D for 100 epochs, which

in our experiments have proven to be the point where the
models converge on a validation accuracy.

We experiment with the multi-similarity (MS) approach
and triplet margin (TM) approach. We also experiment with
training with the easy positive sampling (EPS) strategy with
the TM loss. Throughout training with TM, we start with a
semi-hard mining approach for the first 80 epochs and use
hard mining for the final 20 epochs. This applies for both
positive and negative samples unless using EPS.

Like Roth et al. [22], we also experiment with varying
embedding vector sizes. A larger embedding size will allow
a greater number of dimensions to encode features, but a
reduced embedding will create the information bottleneck
required to force the model to learn more general features.
We experiment with a small embedding size V = 128 and
a large embedding size V = 512. Like Liu et al. [16],
we investigate the effect of varying the number of training
classes in D.

We do not perform any other optimisation of hyperpa-
rameters. The learning hyperparameters in the loss func-
tions are kept as the values used in the original papers. The
dropout probabilities for the ST-GCN blocks remain at 0.5
throughout as in the original implementation [31].

5.2. Skeleton sequence data

Where the NTU RGB+D has J = 25 keypoints in their
skeleton model, we have J = 17. For the datasets to be in-
teroperable, it is necessary to subsample the NTU RGB+D
keypoints to match our skeleton model by omitting the hand
tip, wrist and thumb keypoints from the data (refer to Fig-
ure 4).

Furthermore, the skeleton motion sequences from these
two datasets have different projections of the captured data.
The distance units for NTU RGB+D correspond to real-
world metres and the SU-EMD distances correspond to mil-
limetres. Action samples are recorded in dynamic environ-
ments from different camera viewpoints and subjects may
move around freely. This causes vastly different joint coor-
dinate magnitudes and spatial relationships across data sam-
ples even for the the same action classes. These discrepan-
cies can be factored out during skeleton normalization. We
perform instance normalization on the data samples by sub-
tracting the per-dimension means µd and dividing by the
per-dimension standard deviations σd:

x̂<t>
j,d =

x<t>
j,d − µd

σd

which can be calculated with each skeleton sequence sam-
ple as

µd =
1

T × J

J−1∑
j=0

T−1∑
t=0

x<t>
j,d
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and

σd =
1

T × J

J−1∑
j=0

T−1∑
t=0

(x<t>
j,d − µ̄d)

2.

Additionally, we apply augmentations to the skeletons
during training. We experiment with random rotations,
where the entire skeleton is rotated by random angles about
the X and Y world axes. We also implement random mov-
ing, where the Gaussian noise is added per joint across time.
To add temporal variation, we use random frame dropping
with a 10% probability. Lastly, we introduce a novel aug-
mentation called random pivoting. In most circumstances,
slight pivoting of parts about certain joints will clearly rep-
resent the same action but in a different posture, which adds
more variation to the data. For example, a lateral raise
will still be considered a lateral raise even if the knees are
slightly bent. These augmentations aim to guide the model
to learn that motion patterns of certain parts of the body
across time are more important for the action classes in
question than others. To implement these, we define unit
quaternions for rotation of the vectors. The use of quater-
nions allows for simple compounding of rotations and along
arbitrary axes. Part pivoting differs from rotation in that the
pivoting is done independently for every joint and the pivot
is a parent joint given the natural hierarchical structure of a
skeleton (e.g. hip −→ knee −→ ankle −→ foot tip), whereas the
rotation is done for all joints about the world axes. All rota-
tions are independently sampled from a zero-mean normal
distribution with standard deviation π

7 radians and transla-
tion likewise with standard deviation 15mm.

5.3. Ablation study

Table 2 shows the validation test results under dif-
ferent architecture and training settings in our experi-
ments. Shown are the accuracy@1 values on the 20 unseen
NTU RGB+D one-shot test classes. From the results, it is
clear that the multi-similarity loss approach outperforms the
triplet loss approach. Similar to the findings of [20], the top-
performing model was the MS loss approach with full aug-
mentation, which classifies a sample from an unseen class
correctly 46.2% of the time. Skeleton augmentation appears
to be conducive to the learning of useful discriminative fea-
tures and generalisation for the MS loss approach. It can
also be seen that the embedding size does not have a sig-
nificant impact on the learning. The easy positive sampling
for the triplet margin mining showed only modest improve-
ments in test accuracy.

5.4. Results

Table 3 shows the effect of taking the top-performing
model and reducing the size of the training set. Also shown
are the comparisons to other models in the literature. Note
that this is not a fair comparison since we do not use all the

Table 2. Ablation study for the metric GCN. The validation
results on the NTU RGB+D dataset are shown for different em-
bedding sizes (V ) under different loss approaches (TM = triplet
margin, MS = multi-similarity) and data augmentation strategies.
Rot = Random rotation, Pivot = Random pivoting, Drop = Frame
dropping, Move = Random Moving.

Accuracy@1 [%]

Loss EPS Augmentations 128 512

TM No Rot, Pivot, Drop, Move 36.6 36.7
TM Yes Rot, Pivot, Drop, Move 37.0 37.7
TM Yes None 37.9 37.5
MS — Rot, Pivot, Drop, Move 46.2 45.8
MS — None 44.1 43.8

Table 3. Effect of training set size reduction on the NTU RGB+D
dataset with one-shot protocol testing with comparisons to other
models in the literature. All values are the one-shot test accuracy
results in %.

# Training classes 20 40 60 80 100

APSR [16] 29.1 34.8 39.2 42.8 45.3
ST-LSTM [18] — — — — 42.9
TCN [23] — — — — 46.5
SL-DML [21] 36.7 42.4 49.0 46.4 50.9
Skeleton-DML [20] 28.6 37.5 48.6 48.0 54.2
JEANIE [28] 38.5 44.1 50.3 51.2 57.0
Part-aware PGN [3] 43.0 50.3 55.7 56.5 65.6

Metric GCN 28.8 34.8 39.1 43.3 46.2

skeletal joints in the NTU RGB+D skeleton model (we have
sub-sampled the skeleton data to fit our SU-EMD skeleton
model) but displaying these results provides an indication
of the relative performance of the metric GCN approach.

The top-performing model is then tested on all the SU-
EMD data samples, where only one exemplar was removed
per class and used as reference embeddings for each. The
model achieved an accuracy of 87.4% on these never-
before-seen classes. Figure 7 shows the confusion matrix
for the one-shot tests. There was high confusion for the
squat and deadlift actions. There was also a high confusion
for the jumping actions: the jump rope and jumping jack
actions. In Figure 6, we provide the UMAP projection vi-
sualizations of both the validation samples and the final test
samples.

The model is able to learn features that cluster the
seven never-before-seen exercise classes in the SU-EMD
test dataset very well. The NTU RGB+D test set contains
20 novel classes whereas the SU-EMD test set contains only
seven novel classes, which is an easier task. This means
the test accuracies cannot be fairly compared. Future work
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Figure 6. UMAP visualizations of projections by the metric GCN model of never-before-seen test samples. (a) shows projections among
the 20 NTU RGB+D classes for one-shot validation and (b) shows the projections of seven SU-EMD classes. Projections are coloured by
their true class labels.

should add more samples to SU-EMD so that there are 20
exercise actions.

The better performance on SU-EMD can be interpreted
to suggest that exercise repetitions in the skeleton sequence
modality have much lower intra-class variance in their
spatial-temporal features as compared to the daily actions
present in NTU RGB+D. Since an exercise (e.g. a biceps
curl) is a series of motions with strict parameters for its per-
formance, it should be performed similarly by all subjects.
This restriction contrasts with a ‘daily’ action present in the
training dataset (e.g. put object into bag). This is a welcome
conclusion to our objective of creating a one-shot classifier
for exercise actions and for exercise recognition systems in
general. However, it could also imply that the SU-EMD
dataset is not challenging enough in its current state and re-
quires additional expansion; or that the reconstruction inac-
curacies and noise present in the the NTU RGB+D dataset
make the learning of discriminative features of actions par-
ticularly difficult. To support this, consider that it is chal-
lenging even for the authors to classify the action being per-
formed in a visualization of an NTU RGB+D data sample.

6. Conclusion

This work contributes to the development of a practi-
cal action recognition system for strength and condition-
ing movements in sports. We presented a novel dataset
of skeleton-based strength and conditioning actions. Our
dataset comprises of 840 samples of seven exercise action
classes and we have made it available to researchers to study
action recognition in sport, health and fitness.

We used our dataset as a one-shot test set and trained
on a separate large-scale dataset to examine the feasibil-
ity of knowledge transfer of spatial-temporal features using
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Figure 7. Confusion matrix for the final one-shot tests in the seven
SU-EMD classes.

the state-of-the-art ST-GCN architecture. We have shown
that skeleton augmentations (random moving, rotation and
frame dropping and pivoting) and the multi-similarity loss
achieve the top performance on our validation set. Our find-
ing is that a regular ST-GCN trained as a feature embedding
in a metric learning paradigm competes with but does not
improve on the state-of-the-art.

Yet, we have shown for the first time that spatial-
temporal features can be easily learned and transferred to
classify never-before-seen classes of exercise with high ac-
curacy. This method can be used as a means to classify
sports actions in a virtual coaching system where users can-
not provide many expert examples for the enrolment of new
actions.
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