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Figure 1. Visualization of skiers’ trajectories in monocular videos. We present SkiTraVis, an algorithm to compute and visualize the
trajectory performed by an alpine skier in videos acquired by a single monocular camera. SkiTraVis takes in input a streaming video
capturing a skier and visualizes its past trajectory in each frame. In this picture, the first and third rows show the input frames, while the
second and fourth the trajectory computed by SkiTraVis. The interval in seconds from the start of the video is also reported.

Abstract

Trajectories are fundamental to winning in alpine skiing.
Tools enabling the analysis of such curves can enhance the
training activity and enrich broadcasting content. In this
paper, we propose SkiTraVis, an algorithm to visualize
the sequence of points traversed by a skier during its per-
formance. SkiTraVis works on monocular videos and
constitutes a pipeline of a visual tracker to model the skier’s
motion and of a frame correspondence module to estimate
the camera’s motion. The separation of the two motions
enables the visualization of the trajectory according to the
moving camera’s perspective. We performed experiments
on videos of real-world professional competitions to quan-
tify the visualization error, the computational efficiency,
as well as the applicability. Overall, the results achieved
demonstrate the potential of our solution for broadcasting
media enhancement and coach assistance.

1. Introduction

Due to the popularity of alpine skiing [60], the competi-
tive form of such a sport discipline is one of the most impor-
tant markets of the winter sports industry [12]. The interna-
tional regulations of alpine skiing competitions [54] require
the definition of a path of so-called turning gates down a
hill. Differing in the overall length of the course and in
the distance between the gates, four popular alpine skiing
sub-disciplines are present nowadays: Slalom (SL), Giant
Slalom (GS), Super-G (SG), and Downbhill (DH). In each of
these, the winning goal is the same: ski down through the
gates of the designed course in the shortest time possible.

To do so, an athlete should optimize its skiing trajectories
along the track. Indeed, in alpine skiing the turns performed
by an athlete form a trajectory of points on the slope sur-
face that if optimized to reduce the distance with the turn-
ing gates can lead to saved time during the descent [6, 7].
Toward such an objective, it becomes important to measure
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and analyze a trajectory in order to determine the specific
points of the performance affecting the overall time taken.
Machines able to perceive such evidence are valuable tools
to obtain increased knowledge of the skiing performance.
The currently available solutions to measure a trajectory of
an alpine skier make use of wearable devices (e.g. GNSS
trackers, IMUs) put on the body or skis, and of 3D terrain
models to position the data coming from the sensors at dif-
ferent time steps [24, 35]. The drawback of such an ap-
proach is the repeated time-consuming installation and cal-
ibration of the sensor device on the athlete’s body, and the
acquisition of a precise terrain model. Moreover, the con-
textual information influencing the skiing performance (e.g.
positions of the turning gates, conditions of slope surface,
weather, and visibility) is completely lost by such kinds
of system. Research on training process improvement for
skiing pointed out the opportunity for a post-performance
video review to overcome such limitations [44, 58].

The importance of video-based performance analysis
paves the way for training-assistive tools based on computer
vision. Indeed, computer vision applied to videos capturing
the athlete’s performance is a valid option to measure skiing
performance without the need for GNSS sensors or ground
surface models [44,55]. Previous work on this topic focused
on 3D skier pose estimation [|] on a motion capture system
comprising six manually-operated mutually-calibrated pan-
tilt-zoom cameras capturing a Giant Slalom track section of
three gates. By means of multi-view human pose estimation
algorithms [47,63,64], it was shown that the 3D pose of ath-
letes can be reconstructed at different time steps, and from
that time series, the skiing trajectory could be computed in-
side a virtual 3D environment. Despite proving the suit-
ability of computer vision for trajectory analysis, such work
has limited applicability in practice because of the complex
multi-camera setup.

In this paper, we aim for a different goal: to visualize,
directly inside the frames of a capturing monocular video,
the trajectory of a skier. We describe the attempt to design
and implement a computer vision algorithm to compute and
visualize the trajectory in real competition conditions. Our
approach, we refer to as SkiTraVis, enables the anal-
ysis of a trajectory in a qualitative way, meaning that the
trajectory can be visualized in relation to the visual appear-
ance of the context appearing in the video. SkiTraVis is
inputted with just a single video with sufficient contextual
details and works in a streaming fashion, i.e. in each video
frame it outputs the perspective-correct trajectory exploiting
the pixel information of the frame and the one occurring in
the previous frames. Our solution decouples the skier’s and
the camera’s motions between consecutive frames through
a visual object tracker [67] and an image key-point detec-
tion [53] and tracking algorithm [39]. The correspond-
ing key-points are used by RANSAC [23] to estimate the

perspective transformation between the frames, which in
turn is used to map the previous motion of the skier to the
camera’s changed perspective. We evaluated SkiTraVis
on multiple clips taken from broadcasting videos capturing
skier performance in real-world conditions. The qualitative
and quantitative results achieved suggest the applicability of
the method for augmented performance review and analysis
during training sessions, and also for enriched broadcasting
content. SkiTraVis works not only for alpine skiing but
even for snowboarding and for flight trajectory visualization
in ski jumping and freestyle skiing.

2. Related Work
2.1. Computer Vision Applications in Skiing

Thanks to the advancements in computer vision method-
ologies [9, 26, 34, 46], recently several applications have
been possible for vision-based performance analysis in ski-
ing. In [56], a dataset was proposed to evaluate object detec-
tion and tracking algorithms to localize recreational alpine
skiers in images and videos. The work described in [68]
evaluated object detection and human pose estimation algo-
rithms to recognize falls of alpine skiers. On a similar topic,
it has been discussed about the combination of 2D pose de-
tectors with kinematics models to distinguish normal skiing
situations from out-of-balance and fall ones in pictures cap-
turing competitive alpine skiers [69]. gtepec et al. designed
an algorithm based on 2D human pose trajectories to score
the style of jumps in ski jumping from a monocular video
[62]. Concerning the same skiing discipline, Ludwig et al.
designed improved vision transformer architectures [37] to
detect arbitrary key points on the human body [40] and on
the skis [41] in still frames of the jumps. For freestyle ski-
ing and snowboarding, Wang et al. developed a systematic
approach composed of a visual tracker, a human pose esti-
mator, and a pose classifier, to evaluate the quality of aerial
jumps in monocular videos [65]. In [43], research focused
on the design of an algorithm to synchronize, spatially and
temporally, two videos capturing snowboarders to compare
the timing and spatial extent of their maneuvers.

The proposed SkiTraVis shares some similarities
with [62, 65] in the systematic design based on a visual
object tracker [16, 17, 19, 67] to model the motion of a
skier. However, differently from all the other works, here
we tackle a different task that, to the best of our knowledge,
no other solution addressed before.

2.2. Vision-based Trajectory Analysis in Sports

Computer vision-based techniques have been success-
fully used in different sports disciplines to reconstruct the
trajectory of various elements [8, 10, 11,30,42]. Chen et
al. developed an algorithm to compute the 3D trajectory of
a volleyball ball in a static-camera video by transforming
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the output of the ball’s visual tracker with prior knowledge
of the volleyball court [10]. In similar capturing settings,
Calandre et al. reconstructed the trajectory of table-tennis
balls with a visual detection and tracking module, a registra-
tion between image and table coordinates, and a kinematic
ball motion model [8]. In [30], the tracking-by-deblatting
paradigm was introduced for better localize of — hence com-
pute better trajectories — fast-moving objects such as table-
tennis or tennis balls in static camera videos. In [42], Mixed
Integer Programming was used to track, under motion blur
conditions, the position of volleyball, basketball, and soccer
balls, with the goal of computing their motion trajectories.

In basketball analytics, different solutions have been
proposed to reconstruct the trajectories of moving play-
ers [11,28,38,45]. All these research endeavors presented
a pipeline composed of a visual tracking algorithm to get
player-specific localizations across video frames, and the
application of a homography transformation between frame
and court coordinates. Their differences lie in the tracking
principles used, such as histogram-based condensation [45],
Cam-Shift [28], deformable part models and kalman filters
[38], or deep learning methods [ ! 1], and in the homography
estimation, based either on manual annotation [45] or on the
matching of court lines and boundaries [1 1,28, 38]. Simi-
lar approaches have been also exploited in computer vision-
based applications for soccer [27] and ice-hockey [61].

The methodology described in this paper is similar to
[11,28,38,45] in the design of a system to track an athlete
(in our case a skier), and to compute key-point correspon-
dence from which to estimate a homography. Differently
from such solutions, we use a more recent transformer-
based approach [67] to implement the athlete tracking mod-
ule, and we do not compute key-point matches based on
some form of prior knowledge of the playing field. This
is because alpine skiing is performed on a course that not
only varies across competition locations but even across the
different sections of the same mountain slope (e.g. in the
width, steepness, and snow appearance). Hence, it is dif-
ficult to define a model of the playing field as in soccer,
basketball, or ice-hockey. For this motivation, in this work,
we explore the usage of generic key-point correspondence
algorithms [39,51,53,57] to compute the homography that
enables the computation of the skier trajectory.

3. Methodology

The goal of this paper is to develop an algorithm for
augmenting a video capturing the performance of an alpine
skier with the visualization of the trajectory he/she skied
from his/her position in the first frame up to his/her position
in each other frame. Qualitative examples of our intention
are presented in Figure 1.

Visual Object
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Figure 2. Pipeline of SkiTraVis. The algorithm processes each
frame F} in an online fashion. A visual tracker is run to model
the skier’s motion between the previous frame F;_; and F};. De-
tection and tracking of static key-points in the frames are run to
estimate the camera’s motion. Then, the homography between the
two frames is computed and used to transform the previous trajec-
tory 7; 1 into 7; according to the perspective change.

3.1. Preliminaries

The videos given as input to our SkiTraVis are con-
sidered to capture the performance of an individual skier
while he/she is constantly visible (at least partially) in the
scene. We do not put any constraints on the configuration
(intrinsic and extrinsic parameters) of the camera that cap-
tured the videos, if not the presence of a sufficient amount
of visual features in the scene (more details about this will

5190



be given in Section 4). Formally, we consider a video
Vv ={F € I};’FZO as a sequence of T € N frames F},

where Z = {0,---,255}w*"*3 i the space of RGB im-
ages. We use pgt) = (acgt)7 y,gt)) to denote the coordinates
of the point that summarizes the position of the athlete in
the image coordinate system of F} (e.g. the point of contact

between the skier and the snow surface).

Problem Formulation. The goal is to compute, at each
frame F3, a trajectory

mn=1{p\"}_,, (1)
which is the sequence of points pgt) traversed by the ath-
lete in the 2D space of previous frames, from F{y up to F3.
To respect an online processing modality, the algorithm is
not allowed to process I, t > t but just the pixel informa-
tion available in F} and eventual computations performed
in preceding frames. After its computation, the points in
7, are used to highlight the pixels of F}, hence showing
the trajectory performed by the skier. The online setting
aligns with the real-time requirements of different applica-
tions (e.g. broadcasting and coach assistance) because it
does not require waiting for the athlete’s exercise to be ter-
minated for the trajectory to be produced.

3.2. Pipeline of skiTravis

Figure 2 depicts the pipeline of the proposed
SkiTraVis. The algorithm processes each F; on-
line according to their temporal order. F; is first given to
a visual object tracking algorithm designed to model the

motion of the skier and to provide its position pﬁt). Then,
the pipeline estimates the camera’s motion between the
consecutive frames F;_;, F; by computing the homography
transformation H; € R3*3. This is found by detecting
and tracking static key-points present in the two frames
and by using RANSAC on the corresponding key-points.
H; is used to map the points of the trajectory available in
the previous frame, 7;_1, into the coordinate system of Fy.

After that, pgt) is appended to such a transformed trajectory
to obtain ¢, the list of all the points traversed by the athlete
with respect to F}’s perspective. We now describe the
different components of SkiTraVis in more detail.

Skier Motion Tracking. The first step of the pipeline is
to exploit a visual object tracker [16, 18, 31] to track the
motion of the athlete across all the frames up to F;. For

this, we used a tracker outputting a bounding-box b, =

(:cgb), yt(b), wt(b), hEb)) € R* enclosing the athlete’s appear-

(b)  (b)

ance at every F;. x;’,y, represent the coordinates of

the top-left corner of the box while wt(b), hgb) estimate the
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—

Figure 3. The points forming a trajectory. The points pi“ that
compose the trajectory 7 (represented here as red dots) are ex-
tracted from the bounding-box b; (represented by the blue rectan-
gles) outputted by the skier tracking algorithm. The points roughly
denote the skiers’ feet’ position.

width and height. We consider the position of the skier

P = (2", ") in F, as

ot =2 w05 )
v =y +h" -k 3)
ke [0,1]. @)

Given an accurate bounding-box and k£ = 0.9, we assume
pgt) to approximate the closest point of contact between
the skier’s feet and the snow, as shown by Figure 3.! The
tracker is initialized in the first frame Fg of the video with
the bounding-box by that outlines the appearance of the tar-
get skier. Such a piece of information can be obtained by
asking a human operator to provide the bounding-box for
the athlete of interest via some user-friendly annotation sys-
tem or by a skier-specific detection algorithm. Based on ex-
periments, we found the state-of-the-art transformer-based
single object tracker STARK [67] to provide a great bal-
ance between accuracy and efficiency. We fine-tuned the
pre-trained publicly-available model executing the original
training methodology on video data specifically designed
for alpine skier tracking.

Camera Motion Tracking. To render the trajectory of
the skier 7,_; into F}, we need to compute the perspective

"More information is given in Appendix A.1 of the supplementary doc-
ument.
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transformation occurring between F;_; and F;. To imple-
ment this step we make use of the homography matrix H,
mapping the pixel coordinates of F;_; into F;. To compute
H,, we match static key-points in the fields of view of F;_;
and F; through an off-the-shelf generic key-point detector
and tracker. Key-points are first detected in F;_, and then
the correspondences of such points are found in F; by local
tracking. This procedure computes an alignment between
the same semantic points of the images that express how
static objects in the scene have apparently moved between
the frames. Since the objects are static and do not actually
move, the camera’s motion is quantified [5,25]. Based on
experiments, we have found traditional methods [39, 53] to
work the best. The method of Shi-Tomasi [53] was used
to detect visual features in F;_7, and the Lucas-Kanade’s
optical flow method [39] to track such visual descriptors in
F;. The usage of such off-the-shelf instances is motivated
by the fact that alpine skiing is performed on courses that
change a lot, across competition locations and even across
the different sections of the same mountain slope. Hence,
it is not trivial to define a generally applicable model of the
playing field, which we leave for future investigations.

Trajectory Computation. With the alignments of cor-
responding key-points, we compute the homography ma-
trix H; through the RANSAC algorithm [23], which ap-
plies an iterative optimization procedure on the correspon-
dences in order to find the best homography matrix that ex-
plains them. We excluded the key-points in F; within the
bounding-box b, because they belong to the skier which is a
non-static object. If present, we also discarded all the key-
points lying on the superimposed virtual graphics showing
the characteristics of the athlete’s performance (e.g. the run-
ning time). After H; is computed, it is used to map the
points pl(-tfl) of 7._1 in the new frame F}. In more detail,
at each F}, 1,1 consists of all the skier positions tracked
in the preceding ¢ — 1 frames and transformed according to
the perspective of F;_;. The trajectory 7, for the latest F

is obtained by the multiplication of the homogeneous coor-
dinates of each pgt_l) € T1¢—1 with the homography matrix,

such that
t
= {pl('t)}i:O’ %)
p ="y 0< a2l <w o<y <h o (©)

1] =

[Il(-t_l) y(t—l)] _ pl(t—l)' 8)

?J

¢V )T H,, 7

3

As can be noticed by Eq. (5), 7 also includes the point
pgt) extracted by the tracker’s bounding-box for F;. This
is achieved by appending such a point to 7 after the ap-

plication of H; to 7,—;. Eq. (6) specifies that only the

transformed points falling inside the F}’s image coordinate
system are retained in 7.
More concretely, at the first time step in which the frame

matching procedure is executed, i.e. t = 1, 79 = {p(()o)}
consists only of the point extracted by the bounding-box
(detected or manually labeled) highlighting the target skier
in Fj. To obtain the transformation of p(()o) in F}, its ho-
mogeneous representation is multiplied by H; to compute

the homogeneous vector [x(()l), y(()l), 1], from which pél) is

extracted. 7, = {pél), pgl)} is obtained by appending pgl).

The process is repeated until the end of the video.

4. Experimental Settings’
4.1. Data and Annotations

To determine the quality of SkiTraVis’s trajectories,
we make use of a dedicated evaluation dataset represent-
ing real-world application scenarios. The videos belong-
ing to this dataset appear in the test-set of SkiTB, a video
dataset designed for the development of athlete tracking
methods in different skiing disciplines.’ Such a dataset fea-
tures 100 multi-camera broadcasting videos (60 videos for
training and 40 for testing) that capture completely, from
the start to the finish line, the performance of professional
alpine skiers. Each frame of each video is manually an-
notated with a bounding-box containing the appearance of
the athlete’s body and equipment. Manually annotating the
trajectories performed by skiers in each frame of the video
clips is a challenging task other than very time-consuming.
Indeed, it is hard to visually identify the specific points at
which the skier passed since the whitish appearance of the
snow’s surface does not show easily identifiable reference
points to localize them. We hence exploited an automatic
annotation procedure followed by manual verification. We
executed the state-of-the-art LOFTR image matching algo-
rithm [57] to detect and match key-points of consecutive
frames of SkiTB’s monocular test videos. RANSAC [23]
was then used to compute homographies on the matches.
The homographies were used to map the skier localization
points extracted from the manual bounding-box annotations
into trajectories for each frame, in a similar fashion as de-
scribed for SkiTraVis. The videos with the generated
trajectories have been visually assessed and selected by our
team, after being instructed by two professional alpine ski-
ing coaches on meaningful trajectory visualizations. Over-
all, this procedure allowed us to obtain 233 monocular clips
whose characteristics are reported in Table 1.

Leveraging the proposed semi-automatic annotation pro-
tocol limits the validity of the proposed SkiTraVis to the
videos whose frames are successfully processed by LOFTR

2Detailed information is provided in the Appendix B.
3SKiTB is developed by our research team and it will be released soon
with a separate publication.
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Table 1. Statistics of the dataset used to evaluate SkiTraVis.
The first block of rows gives details about the characteristics of
the video clips, while the second provides information about the
featured real-world application scenarios.

# monocular video clips 233

# frames 25783
Video clip length in # frames (min, avg, max) 30, 111, 354
Video clip length in seconds (min, avg, max) 1.0,3.7,11.8
Resolution, frame-rate 720p, 30 FPS
T¢ length in # points (min, avg, max) 1,25, 229
# clips for alpine skiing sub-discipline (SL, GS, SG, DH) 35,55,71,72
# athletes (men, women) 23 (13, 10)

# locations 29
# weather conditions (clear, overcast, fog, snowing) 200, 30, 2, 1

[57]. We tried to quantify the conditions in which such an
algorithm works by analyzing the difference between used
and discarded video clips. As can be noticed by the width of
the RGB histograms in Figure 4, the suitable videos include
frames with a generally larger image contrast. We also eval-
uated the number of features per-frame discovered by the
Shi-Tomasi algorithm [53], resulting in an average number
of 1430 (median 1219) for suitable clips and 1126 (median
811) for unsuitable ones. These differences are mostly due
to the appearance of winter scenarios in images, which pro-
vide whitish textures containing few visual anchors that fea-
ture detection algorithms can exploit.

4.2. Evaluation Protocol

The protocol used to execute SkiTraVis for evalua-
tion is similar to the One-Pass Evaluation for visual track-
ing [66]. The algorithm is run on each video separately, and
it is given the first frame and the respective ground-truth
bounding-box to initialize the visual tracker on the skier.
Then, SkiTraVis is inputted with each of the remaining
frames F; iteratively, it processes the frames according to
the described methodology and returns each 7. To compute
quantitative results, each 7, is compared with the respective
reference trajectory oy, created as described in the previous
sub-section. In addition, we evaluate the bounding-boxes
b; predicted by the visual tracker and the homographies H;
generated after the frame matching step, in order to under-
stand the impact of different implementations.

4.3. Evaluation Measures

To quantify the distance between 7, and o, we compute
the average Euclidean pixel distance between the points
of the reference o, with the respective, ordered based on
the insertion time step, of .. We refer to this measure
as Mean Per Point Trajectory Error (MPPTE |). In addi-
tion, we report the pixel values of Dynamic Time Warp-
ing (DTW |) [50], a popular measure in trajectory analy-
sis. To evaluate the skier tracking, we employ the Area Un-
der the Curve (AUC 1) of the success plot which is equiv-
alent to the average bounding-box overlap [66]. For the
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Figure 4. RGB color distributions for the applicability of
SkiTraVis. The top plot shows the average RGB values distri-
bution and an example (with the generated reference trajectory) of
the frames belonging to the evaluation set used for SkiTraVis,
while the bottom one shows the RGB values distributions and
an example (with a wrongly generated trajectory) of unsuitable
frames. As can be noticed, suitable clips include frames that have
a larger image contrast.

frame matching module, we evaluate the mean squared er-
ror (MSE |) between the estimated homographies and the
respective LOFTR-validated ones.

Besides the error, we also rated the efficiency of
SkiTraVis under different configurations of visual track-
ers and frame matching methods. For both categories, we
report the average module-specific running speed in mil-
liseconds (ms |) and in Frames-Per-Second (FPS 1), and
the average delay in seconds (Delay |) between the time in-
stant of the video clip’s end and the end instant of the whole
SkiTraVis pipeline’s processing time. This value mea-
sures the average overall delay in visualizing the trajectory
for the entire video clip, and it can be used to understand
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Table 2. SkiTraVis’s performance with different visual
trackers for skier motion modeling. The STARK tracker [67]
fine-tuned for skier tracking presents great accuracy coupled with
a good running time. In all of these experiments, the ST + LK
key-point detector and tracker were used.

Tracker | MPPTE| DTW ] | AUCT | ms| FPST Delay |
Oracle 9.8 278 100 - - -
STARK-ft 12.1 313 90.1 29 34 6
STARK 19.3 484 73.2 29 34 6
SuperDiMP 21.2 479 67.6 89 12 11
SiamRPN++ 31.6 791 62.8 20 49 5
MOSSE 76.1 1075 37.0 9 117 3

how much time has to be waited to obtain the trajectory af-
ter the observation of the skier’s performance.

4.4. Evaluated Implementations

To the best of our knowledge, SkiTraVis is the first
algorithm for skier trajectory visualization in monocular
videos, and there is no comparable solution present in the
literature. Thus, to provide useful insights, we evaluate
the performance of our algorithm under different config-
urations of state-of-the-art visual trackers and frame cor-
respondence algorithms. For the visual tracker, we evalu-
ated: the deep learning-based methodologies STARK [67],
SuperDiMP [2, 32], SiamRPN++ [36], trained for generic
object tracking; and the traditional method MOSSE [3].
We also fine-tuned STARK with the aforementioned SkiTB
training data. For key-point detection and matching, we
evaluated: the learning-based method of SuperPoint (SP)
[13] and SuperGlue (SG) [51], and the Recurrent All-pairs
Field Transform (RAFT) dense optical flow method [59];
and the traditional methods as the Shi-Tomasi (ST) [53] de-
tector with the optical flow algorithm Lucas-Kanade [39],
and the Oriented FAST and Rotated BRIEF (ORB) descrip-
tor [49] with the brute force (BF) matcher. Code was im-
plemented in Python and run on a machine with an Intel
Xeon E5-2690 v4 @ 2.60GHz CPU, 320 GB of RAM, and
an NVIDIA TITAN V GPU.

5. Discussion

In this section, we discuss the results achieved by
SkiTraVis. Overall, by looking at the numbers in Ta-
ble 2 and 3, we observe that the configuration with the
fine-tuned STARK-ft tracker and the ST + LK key-point
detector and tracker has the best balance between trajec-
tory error and processing speed. A visualization of the
MPPTE | and DTW | errors, as presented in Figure 5
demonstrate that MPPTE | and DTW | values lower than
15 and 400 pixels lead to a consistent perception of the
trajectory. Some demonstrative videos are available at
tinyurl.com/2raemvf5. The MPPTE | score is less
than the 10% of the average skier appearance’s height
which is 123 pixels (computed from the manually annotated

Table 3. SkiTraVis’s performance with different frame
matching algorithms. The ST + LK [ ] combination shows
the greatest balance between accuracy and processing speed. In all
of these experiments, the STARK-ft visual tracker was used.

Detection & Matching | MPPTE || DTW | | MSE | | ms | FPS1 Delay |

LOFTR 4.8 101 0 801 1 90
ST + LK 12.1 313 9952 42 24 6
SP + SG 15.1 352 25.7 135 7 15
ORB + BF 28.7 836 111732 | 783 1 84
RAFT 39.8 807 22 641 2 73

bounding-boxes). The running time of the STARK-ft ST
+ LK configuration has an average Delay | of 6 seconds
which is promising for usage in broadcasting applications
(e.g. for replays) and during training activities (as the real-
time requirement is not so strict).

Skier Motion Tracking. Table 2 reports the accuracy of
SkiTraVis when different visual trackers are employed.
Of the models trained for generic object tracking (shown in
rows 3-6), STARK results in the best performing under the
MPPTE | and AUC 1 measures, while SuperDiMP achieves
the lowest DTW | score. SiamRPN++ and MOSSE fall
behind in all the scores, apart from the processing speed
where they result better. Considering this aspect, it is worth
noticing that STARK presents a great balance between ac-
curacy and efficiency. For this motivation, we fine-tuned it
(as STARK-ft, second row of Table 2) with the alpine skier-
specific training-set of SkiTB. Such a version reduces the
MPPTE | and DTW | of 37% and 35%, respectively, and
presents an MPPTE | error higher only of 2.3 pixels with
respect to the trajectories extracted by the manually labeled
bounding-boxes (denoted as Oracle, first row).

Camera Motion Tracking. Table 3 presents the perfor-
mance of SkiTraVis under different frame matching
strategies. The ST detector and the LK optical-flow method
(ST + LK, row two) results in the closest to LOFTR in the
quality of the trajectories, and the best in the computational
efficiency. The SG strategy (SP + SG, row three) follows
shortly in MPPTE | and DTW |, while it is much slower
in the computation. We observe a good trajectory compu-
tation by ST + LK even though its computed homographies
present a larger MSE | to those of the latter strategy. The
remaining tested methods, ORB + BF and RAFT, show a
much larger error in all the considered measures. Table 3
also reports the results achieved with the LOFTR method
(row one) used to generate the reference trajectories. When
run in this configuration with STARK-ft as the skier tracker,
the MPPTE | and DTW | decrease by 60% and 68% re-
spectively. By comparing these improvements with those
given by the Oracle tracker, we can conclude that most of
the SkiTraVis’s error is due to the frame matching mod-
ule. Due to its good MPPTE | and DTW | values, as well as
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Figure 5. Visualizations of trajectory errors. Here we provide visual demonstrations of how the MPPTE | and DTW | values represent
the quality of the trajectory visualizations. The first two rows show frames where the reconstruction is visually consistent, while the last

row presents video frames with a large error.
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Figure 6. Generalization to other skiing disciplines. We found
SkiTraVis to work well for the generation of trajectories in
other skiing disciplines such as snowboarding, and for the visual-
ization of the flight trajectory in ski jumping and freestyle skiing.

considering the discussion in Section 4.1, the results of the
STARK-ft and LOFTR configuration demonstrate its appli-
cability in practice, but when the processing time is not an
issue since LOFTR is the slowest frame matching strategy.

Generalization. Our algorithm generalizes to other ski-
ing disciplines. Figure 6 shows qualitative examples of
SkiTraVis applied to the generation of the trajectory per-
formed by alpine snowboarders, and to the visualization of
the flight trajectory in ski jumping and freestyle skiing.

6. Conclusions

In this paper, we present SkiTraVis, an algorithm to
visualize the trajectories performed on an alpine skier in
a monocular video. The solution uses a skier-specific vi-
sual tracking algorithm to model its motion, and an image-
generic key-point-based frame matching algorithm to es-
timate the camera motion and the consequent transforma-
tion between the video frames. Thanks to the separation
of the two motions, it is possible to relocate the previ-
ous skier positions according to the captured perspective,
hence obtaining a visualization of the trajectory performed
by the athlete. The experimental campaign focused on an-
alyzing the algorithm’s accuracy and efficiency, as well as
the conditions of applicability. Under some circumstances,
we believe that SkiTraVis can be used in broadcasting
and coach assistive applications, and more generally, it will
serve as a baseline for future research on trajectory visual-
ization for computer vision-based skiing analytics.
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