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Abstract

Association football is a complex and dynamic sport,
with numerous actions occurring simultaneously in each
game. Analyzing football videos is challenging and re-
quires identifying subtle and diverse spatio-temporal pat-
terns. Despite recent advances in computer vision, current
algorithms still face significant challenges when learning
from limited annotated data, lowering their performance in
detecting these patterns. In this paper, we propose an ac-
tive learning framework that selects the most informative
video samples to be annotated next, thus drastically reduc-
ing the annotation effort and accelerating the training of
action spotting models to reach the highest accuracy at a
faster pace. Our approach leverages the notion of uncer-
tainty sampling to select the most challenging video clips
to train on next, hastening the learning process of the al-
gorithm. We demonstrate that our proposed active learning
framework effectively reduces the required training data for
accurate action spotting in football videos. We achieve sim-
ilar performances for action spotting with NetVLAD++ on
SoccerNet-v2, using only one-third of the dataset, indicat-
ing significant capabilities for reducing annotation time and
improving data efficiency. We further validate our approach
on two new datasets that focus on temporally localizing ac-
tions of headers and passes, proving its effectiveness across
different action semantics in football. We believe our ac-
tive learning framework for action spotting would support
further applications of action spotting algorithms and ac-
celerate annotation campaigns in the sports domain.

1. Introduction

Video analysis is a rapidly evolving field with numerous
applications in various domains, such as surveillance [50],
sports [53], and autonomous driving [39]. One of the essen-
tial tasks in video analysis is action spotting, which aims
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Figure 1. Active learning for action spotting. Given a video

clip dataset, our active learning framework iteratively (i) trains a
deep learning model on the labeled clips, and (ii) selects the next
video clips to be labeled by an oracle. By actively selecting the
most informative video samples to annotate next, we accelerate the
tagging of unlabeled datasets for training action spotting models.

at identifying and precisely localizing specific actions an-
chored with a single timestamp in video sequences. This
task has gained considerable attention in recent years due
to its importance in various applications, such as video
search [15, 48], video summarization [7, 13], and activity
recognition [3,25].

Traditionally, action spotting is addressed using super-
vised learning techniques, where a labeled dataset is used to
train a classifier that can recognize actions and temporally
localize them in the videos. However, annotating large-
scale video datasets is time-consuming and expensive, lim-
iting the scalability and applicability of supervised learning
approaches. Active learning comes as a promising approach
that can mitigate the need for completely annotating large
datasets by selecting the most informative samples needed
for labeling.

In this paper, we propose an active learning framework
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for action spotting in association football videos, which
aims to reduce the annotation effort and improve the over-
all performance of the system with respect to the number
of annotations. Our framework, illustrated in Figure 1, in-
tegrates active learning with state-of-the-art action spotting
methods, where the labeled set is iteratively expanded with
informative samples selected from an unlabeled dataset. We
evaluate our approach on several benchmark datasets and
compare it with a naive random selection approach that does
not leverage active learning. We also analyze the impact of
different query strategies on the performance of the system.

Contributions. Our contributions may be summarized as
follows: (i) We propose the first active learning framework
for the task of action spotting that iteratively selects rele-
vant clips to be annotated next. (ii) We compare a couple
of active learning selection strategies based on uncertainty
sampling on several benchmark datasets with state-of-the-
art action spotting methods. (iii) We provide a compre-
hensive analysis showing the capability of our framework
to significantly reduce the quantity of annotation needed to
reach desired performances.

2. Related work
2.1. Sports video understanding

The challenging and nuanced nature of sports video anal-
ysis has made it an increasingly popular research topic in re-
cent years [30,53]. The availability of large-scale datasets
has played a crucial role in enabling progress in these tasks.
Examples of such large-scale datasets include those de-
veloped by Pappalardo et al. [38], Yu et al. [64], Soc-
cerDB [29], SoccerTrack [42], and DeepSportRadar [57].
The SoccerNet dataset, introduced by Giancola et al. [17],
has become the most comprehensive resource for labeled
data related to video understanding in football. It includes
benchmarks for ten different tasks, such as action spot-
ting [| 1], camera calibration [6], and player tracking [8].

Lately, deep learning-based methods have become the
go-to approach for many sports video analysis tasks, thanks
to their remarkable performance and ability to extract high-
level features from raw data. For instance, automatic meth-
ods based on deep learning have shown impressive results
in tasks such as player tracking [35] and re-identification
with occlusion [49], 3D shuttle trajectory reconstruction
in badminton [34], medical risk assessment in rugby [37],
tactics analysis [52], pass feasibility [1], and talent scout-
ing [10]. Additionally, deep learning-based methods have
also allowed researchers to leverage large-scale datasets
effectively. Despite their successes, deep learning-based
methods still face several challenges, such as dealing with
noisy and incomplete data, accounting for complex game
scenarios, and generalizing to new domains. As such, there
is still ample room for improvement and research in the field

of sports video understanding. Furthermore, annotating
large-scale datasets for sports video analysis tasks is a time-
consuming and expensive process, requiring significant hu-
man resources and expertise. As a solution, Vandeghen et
al. [58] proposed a semi-supervised method for player de-
tection, leveraging a large unlabeled dataset. Vats ef al. [01]
propose a weakly supervised approach for player identifi-
cation using transformers. To address this data issue, we
propose an active learning approach for action spotting in
football that aims at reducing the amount of annotated data
needed while maintaining high task performance.

2.2. Action spotting

Action spotting is an important task in football video un-
derstanding, as it involves localizing specific events in an
untrimmed football broadcast video, including, for instance,
penalties, goals, or corners. Unlike temporal activity local-
ization [3], action spotting describes events using a single
timestamp, following the definition of actions defined in the
football rules [27]. Recent studies have explored the use
of large-scale datasets such as SoccerNet [17], which has
been expanded from 3 to 17 classes to encompass all possi-
ble actions that occur during a game [ |]. This dataset has
generated significant interest in the research community, as
evidenced by the open challenges [ | 8], showing that action
spotting is currently experiencing a high level of activity
and attention in the research and industrial communities.

The first method for action spotting was proposed by
Giancola et al. [17], which is based on temporal pooling.
Later, they refined their method by aggregating the tempo-
ral context [19]. Rongved et al. [41] proposed an approach
based on applying a 3D ResNet directly to the video frames
in a 5-second sliding window fashion. Vanderplaetse et
al. [59] and Xarles et al. [18] combined visual and audio
features in a multimodal approach. Cioppa et al. [7] intro-
duced a context-aware loss function to model the tempo-
ral context surrounding the actions. Vats et al. [60] used
a multi-tower CNN that accounts for the uncertainty of the
action locations, and Tomei et al. [55] fine-tuned a feature
extractor and used a masking strategy to focus on the frames
after the actions.

The current state-of-the-art on SoccerNet-v2 is held by
Soares et al. [46,47], who won the SoccerNet 2022 chal-
lenge by proposing an anchor-based approach. They de-
fine an anchor as a pair formed by a time instant and an
action class, with time instants sampled densely. For each
anchor, both a detection confidence and a fine-grained tem-
poral displacement are inferred, with the displacement indi-
cating exactly when an action is predicted to happen. Their
approach results in a substantial improvement in temporal
precision. Hong et al. [24], the runner-ups of the 2022 chal-
lenge, proposed the first precise temporal spotting (PTS)
method where both the feature extractor and the spotting
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head are trained in an end-to-end fashion. They rely on
a light-weight RegNet architecture, including a GSM [51]
module and a GRU [5] module on top that classifies each
frame into an action class or background. Other methods
also focused on spatio-temporal encoders [9], graph-based
architecture [4], or transformer architectures [65].

Despite their impressive performance, all state-of-the-art
methods rely on supervised learning, which requires a large-
scale annotated dataset. However, in sports video analysis,
the actions to spot may change over time, which would re-
quire re-annotating the dataset. In this work, we study how
to efficiently re-annotate such datasets with active learn-
ing techniques, which aim at selecting the most informative
samples for annotation, thereby minimizing the annotation
effort while maintaining high task performance.

2.3. Active learning

Active Learning has been successfully applied in a
wide range of applications, including image understand-
ing [16,26], video understanding [22], natural language pro-
cessing [54], speech recognition [21], and chemistry [12].
The main objective of active learning is to select the most
informative unlabeled samples for annotation and use the
minimal amount of label data to achieve specific perfor-
mance. The main strategies for active learning include un-
certainty sampling [30, 33, 56], diversity maximization [43,

1, query-by-committee [14, 20, 28, 45], and expected er-
ror [23,31,32,63]. We refer to [40,44] for a comprehensive
and more generic literature review on active learning.
Uncertainty sampling. Those methods sample the unla-
beled data that confuses most of the action spotting mod-
els trained thus far. Tong et al. [56] proposed the use of a
support vector machine algorithm for conducting effective
relevance feedback for image retrieval. The active learn-
ing method introduced by Joshi ef al. [30] selects unlabeled
data that the model finds hardest to classify. The selection
is based on the entropy of the output of the classifier or a
“Best versus Second Best” (BvSB) paradigm.

Diversity maximization. Those active learning approaches
select samples that best represent the whole space of the
available unlabeled set. Yang et al. [62] proposed a method
that maximizes the diversity of the samples. They inves-
tigated this approach on diverse visual recognition tasks,
including action recognition, object classification, scene
recognition, and event detection. Similarly, Sener et al. [43]
modeled the selection process as a core-set problem. They
sample representative subsets of images by minimizing the
L2 distance with the remaining samples in the dataset.

Query-by-committee. In this paradigm, the next batch to
annotate is chosen according to the principle of maximal
disagreement between a committee of student algorithms
trained on the same labeled dataset. Seung et al. [45] intro-
duced this approach, further analyzed in a Bayesian frame-

work by Freund et al. [14]. Houlsby et al. [26] further in-
vestigate the relationship of Query-by-Committee with in-
formation gain theory.

Expected error. Those methods attempt to learn a metric
that correlates with the error of classifying specific samples.
Learning Active Learning (LAL) [32] learns to regress the
error reduction for a candidate sample. The active learning
scores are learned in a supervised fashion on the error loss
in the training dataset. Similarly, Yoo et al. [63] also learn
a “loss prediction module” agnostic to any task. By doing
s0, they actively select samples with higher predicted loss,
expecting those samples to provide significant novel infor-
mation to minimize for on the next train step.

Active learning for temporal video analysis. While ac-
tive learning has been extensively analyzed on generic se-
tups, only a few works apply those approaches to tempo-
ral video analysis. Brandla er al. [2] proposed an active
learning method for temporal activity localization (TAL) al-
gorithms, based on uncertainty sampling [33]. Heilbron et
al. [22] further investigated active learning in TAL with an
empirical study of different active learning paradigms, with
LAL [32] performing best.

Following the previous literature, we formalize the first
active learning workflow for action spotting. We analyze a
couple of uncertainty sampling methods and set the ground
for more active learning approaches for action spotting.

3. Active learning for action spotting

We propose the first active learning framework for the
task of action spotting. Our framework aims at training an
accurate action spotting model using a minimal amount of
labeled data. Following the literature on uncertainty sam-
pling active learning, we identify three key steps to achieve
this objective: (1) Train an action spotting model on a la-
beled dataset that grows at each active learning step. (2) Se-
lect the most informative data from an unlabeled pool using
an active learning algorithm. (3) Label the selected clips
by an oracle and include the new data and annotations in
the labeled set. An overview of our complete framework is
depicted in Figure 2.

Formally, given a video v, the task of action spotting is to
identify all action spots S = {s1, ..., sps } inside that video.
A spot s, comprises the action class (e.g. penalty, goal,
etc.) and a temporal anchor. At each active learning step
T, an action spotting model, whose inference function is de-
noted f-, is trained using a set of labeled samples £,. The
model details and training procedure are described in Sec-
tion 3.1. Then, an active learning algorithm g selects an
optimal set of unlabeled samples C* from a pool U,. Sev-
eral active learning algorithms are presented in Section 3.2.
Subsequently, an oracle, described in Section 3.3, provides
the ground-truth annotations of the actions spots (i.e. action
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Figure 2. Active learning pipeline for action spotting. We start from a small labeled dataset £ on which we train an action spotting
model whose inference function is denoted f. With the trained model, we select from an unlabeled dataset ¢/ which sample to annotate
next. For that, we first collect the prediction of the model f (/) for each clip and pass the predictions through our selection function g that
ranks the clips to select C*. All selected clips are then passed to the oracle (human annotator) to provide both the class and localization
of all actions within that clip. These new annotated data are then added to the labeled dataset and used for the next training iteration. The
process is repeated iteratively until the desired performance is reached or the unlabeled dataset is empty.

classes k and temporal anchors t) for the selected samples
C*. The labeled set £ is then augmented with these newly
labeled clip instances C* following £, = £, U C*. This
process is repeated until the model reaches a desired perfor-
mance or the set I/, is exhausted. Since the most expensive
step consists in labeling the samples, the objective of our
framework is to minimize the number of times the oracle is
queried by proposing an efficient active selection algorithm.

3.1. Model training step

Datasets. The datasets for action spotting typically con-
sist of a list of L untrimmed videos V = {vy, ..., vp }, each
video being annotated with a set S of action spots s = {k, ¢}
of class k among K classes, anchored with a single times-
tamp ¢. Since training action spotting models on long
untrimmed video is not yet possible due to hardware con-
straints (e.g. GPU memory or computation time), they are
typically trained on clips extracted from the video. In this
work, we consider that each video v; can be viewed as a set
of N fixed-length non-overlapping clips C; = {c},...,c] }.
Each clip ¢}’ can be annotated with a list of temporally-
anchored action spots S{' = {s7';, ..., s7'5}-

Video encoder. Typical action spotting models are com-
posed of a video encoder H followed by an action spotting
head A. Given a trimmed video clips ¢;* composed of J
frames, a video encoder extracts a compact features repre-
sentation H(cf') = {h}'y,...,h}’;} for each frame. This
frame feature encoder is usually pre-trained on an external
dataset and then either frozen or fine-tuned on the action
spotting dataset. Due to the diversity of features dimension,

it is common to homogenize their dimensionality with PCA
to produce an even more compact and standardized frame
representation. Also, these feature encoders can either be
applied on the entire video clip, leveraging the temporal
information, or independently on each frame of the clip,
commonly requiring less computational power and mem-
ory. A typical choice for action spotting baselines is to ex-
tract frame features with a learnable CNN-based encoder
such as the frame-based ResNet encoder, or the video-based
I13D/C3D encoders [17].

Action spotting head. Given a set of compact frame fea-
tures representation H(cy') = {h}';,...,h]’;}, an action
spotting head A temporally combines the descriptors and
outputs a list of predicted action spots S = A(H(c])) =
{8715+, 87" a0 } for the current clip ¢f'. This list of predic-
tions can be obtained in two ways. A first category of action
spotting models [7] directly regresses the predicted location
and class. In this work, we focus on a second category, that
first outputs K + 1 class scores (including the background)
per frame or per clip. The exact localizations ¢ of the ac-
tions are then extracted using a non-maxima-suppression
algorithm on the predicted class scores over time. The com-
plete mathematical function of action spotting methods f;
can therefore be expressed as A o H.

Training. We define the labeled dataset L, at
the active learning step n of size |L,] as L, =
{(ct"™, 81),y (]2, S, )} At each active learning
step, the action spotting baseline is trained on £,. In our
framework, we consider several training paradigms. The
first one consists in training the action spotting module from
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scratch at each active learning step. This training may be
done until convergence or on a particular number of epochs.
The advantage is that the deep learning model usually trains
better as it. However, the drawback is that it may require a
lot of time to train each epoch. A faster training paradigm
consists in fine-tuning the model obtained at the previous
active learning step, either until convergence or for a fixed
number of epochs. This reduces the training time but does
not ensure convergence. For instance, if the network di-
verges during the first steps due to the low amount of train-
ing data, it may be unable to recover later on. We study
these training paradigms in the experimental section.

Inference. At test time, the model produces the predictions
over a full video while it has been trained only on clips. One
common way to solve this mismatch is to split the video
into overlapping or non-overlapping clips. Each clip is pro-
cessed independently and the results are aggregated along
the video. The spotting performances are evaluated using
the mean average precision (mAP) from successfully spot-
ting an action within a given temporal tolerance §. The main
associated metric is the Avg-mAP, where the mAP are aver-
aged for various values of §-tolerance between ground truth
and predicted action spots. We use the typical metrics [ 18]
tight Avg-mAP (with ¢ ranging from 1 to 5 seconds) and
loose Avg-mAP (with § ranging from 5 to 60 seconds).

3.2. Active selection step

The next step consists in selecting clips from the un-
labeled dataset, defined as a set of unlabeled video clips
U, = {c, ..., CTZ{T‘} of size [U,|. The objective of the ac-
tive selection step is to create a function g that selects a
new set of clips C* from U/. The main challenge is to en-
sure that the function chooses samples that are likely to have
the greatest impact on improving the action spotting model.
As described in Section 2, there exists many active learning
workflows. In this work, we focus on the particular case
of uncertainty sampling. In particular, we analyze the pre-
dictions of the action spotting model trained at the previous
active learning step. The predictions are a set of (K + 1)
probability values for each class, either per frame or per
clip. In the case of black-box models, the class confidence
scores are the sole uncertainty information returned by a
prediction. Following the literature on active learning for
image classification, we construct two selectors leveraging
the Uncertainty Measure (UM) and the Entropy Measure
(EM). In the following, we show how to implement these
methods for action spotting predictions.

Uncertainty measure. The Uncertainty Measure (UM)
solely considers the confidence scores associated with each
clip or frame. Given a confidence score py, the active learn-
ing score is inversely proportional to its distance to a con-
fused confidence of 0.5. The Entropy Measure is formally

defined as follows:
UM =1-2x|ps —0.5]. (1)

In the particular case of action spotting, this score is com-
puted per frame and then averaged or max pooled over all
frames.

Entropy measure. The Entropy Measure (EM) considers
the distribution of the confidence for all the classes. Such
estimation requires access to the confidence score for all
classes, which might not be accessible in the case of black-
box algorithms, that only returns the highest confidence for
the selected class. Based on the list of confidence scores
p1,---, DK, WE extract an active learning score inversely pro-
portional to the uniformity of the distribution between the
predictions. The Entropy Measure is formally defined as:

K
EM = —> " p;log(p;) - )
=1

Selecting samples. We leverage the function g to select
the top-k most informative clips C* with the highest active
score. In this work, we study several approaches to select
the number of clips |C*| at each active learning step. A
first approach consists in selecting a fixed number of clips
at each active learning step. A second approach consists in
selecting an increasing number of clips. This has the advan-
tage of selecting only relevant clips at the beginning, when
the model still requires highly informative clips.

3.3. Annotation step

Once the clips have been selected by the active learn-
ing step, they need to be annotated by an oracle (which is
a human annotator in a real scenario), that will provide the
ground-truth action spots. The set of clips C* is manually
annotated and both the clips and their corresponding anno-
tations are added to £,. In a passive learning setup, the
oracle would usually randomly select a few clips in U, po-
tentially annotating redundant information. In this work, we
show that our active learning framework allows us to select
relevant clips that increase the performance compared to a
random selection, therefore saving time and money.

4. Experiments
4.1. Experimental setup

Our active learning framework is agnostic to the datasets,
action spotting training parameters, and active learning se-
lection algorithms. In this section, we provide the technical
details describing our experiments in various settings.
Datasets. In this study, we leverage three datasets to eval-
uate our active learning framework for action spotting in
football videos: SoccerNet-v2, SoccerNet-ball (public), and
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Dataset H Games ‘ Annotations ‘ Classes ‘ Density
SoccerNet-v2 550 110,458 17 2.23/min
SoccerNet-ball 9 11,041 2 | 13.62/min
FWWC19-header 52 6,527 1 1.39/min

Table 1. Datasets. We investigate our active learning framework
on three datasets for action spotting on football videos.

FWWCI19-header (private). Table 1 provides an overview
of the main characteristics of each dataset.

SoccerNet-v2 consists of 550 games annotated with
110,458 action spots from 17 classes of generic actions
such as goals, penalties, cards, and free-kicks. These times-
tamped annotations provide a comprehensive understanding
of the actions that occur in football videos.

SoccerNet-ball consists of 9 public games annotated
with 11,041 ball-related events such as passes and drives.
This dataset provides valuable information on the actions
related to the ball, which is a crucial aspect of the game.
Moreover, the density of the events in the game requires
precise temporal spotting capabilities.

FWWCI19-header is a private dataset of 52 games from
the FIFA Women World Cup 2019 (FWWC19), annotated
for 5 classes of head impacts, including purposeful headers,
unintentional headers, header duels, attempted headers, and
other head impacts. This dataset provides insights into the
events surrounding head impacts, which are a significant
medical concern in football and other contact sports.
Action spotting methods. In this study, we investi-
gate two action spotting baselines to support our active
learning framework for action spotting in football videos:
NetVLAD++ [19] and PTS [24]. Table 2 provides an
overview of the main characteristics of each baseline.

Baseline ‘ ‘ Encoder ‘ AS Head ‘ Training
NETVLAD++ || ResNet152 | NetVLAD Head
PTS ResNet18 GRU Encoder+Head

Table 2. Action spotting baselines for football videos. We inves-
tigate our active learning framework on two baselines for action
spotting on football videos, namely NetVLAD++ and PTS.

NetVLAD++ [19] learns to pool temporally contiguous
frame features to identify which action class occurs in a clip.
Since the feature encoder is frozen and the spotting head
is lightweight, it is very fast to train in an active learning
fashion. One major feature is that it is trained in a weakly
supervised manner that does not take into account the pre-
cise localization of the action in the clip, which significantly
speeds up the annotation process by the oracle. However,
the drawback is that it is less precise in spotting actions.

Precise Temporal Spotting (PTS) [24] learns to combine
dense frame features with a GRU, to identify if specific ac-
tions occur on specific frames. The compact encoder is

trained end-to-end with the GRU, producing state-of-the-art
performances on SoccerNet-v2. In this work, we select the
ResNet 18 feature encoder that runs on a single GPU, as it
is much faster than the RegNet encoder with GRU.

Metrics. For action spotting, we rely on the loose Avg-
mAP [17], unless stated otherwise. For active learning,
we analyze the learning curve of the action spotting per-
formance as a function of the ratio of data used to train the
model, i.e. the size of the labeled dataset. Following [22],
we estimate the Area Under the Learning Curve (AULC).
A good active learner is expected to have higher AULC
than a random sampler. Moreover, we propose two more
metrics: (i) MX0%: the Avg-mAP performance when us-
ing only 10% of the data, and (ii) Mgg:/?f: the ratio of data
required to reach 90% of the final Avg-mAP performance.

Technical details. Unless specified otherwise, We
focus our experiments on the action spotting model
NetVLAD++ [19] with the ResNET_PCAS512 features and
train the model until convergence using the same training
parameters as defined in the original implementation. At
each active learning iteration step, we select an amount of
sample |C*| equivalent of 1% of the dataset. At each action
spotting training step, we restart the training from scratch.

4.2. Initial results

We first compare our framework with two active learning
selection algorithms: the Uncertainty Measure (UM) and
Entropy Measure (EM), against a random sampler (RS).
Figure 3 shows the action spotting performances (loose
Avg-mAP) as a function of the labeled dataset size. Ta-
ble 3 reports the main metrics AULC, M?ata and M7
The initial results show that our learning framework sig-
nificantly accelerates the training. With Entropy Measure
(EM), the performance of the model converges at a faster
pace, thus requiring less annotated data to reach higher per-
formance. In particular, our setup with EM leads to an
AULC metric of 47.96% vs. 45.11% with RS. Moreover,
the Mgg?f of 16% for EM vs. 45% for RS indicates that we
only need a third of the data to reach 90% of the action spot-
ting performance. Finally, the ngf;:a shows that with only
5% of the data, we reach an action spotting metric Avg-
mAP of 37.24% vs. 32.06% when sampled randomly. In-
terestingly, the Uncertainty Measure (UM) provided only a
limited improvement compared to Random Sampling (RS).

4.3. Accelerating the active learning framework

In this section, we share a few findings that speed up our
active learning framework. In particular, (i) we introduce
a faster scheduler for NetVLAD++ that lead to similar per-
formance, (ii) we introduce an Adaptive Active Learning
scheduler (AdapAL), (iii) we investigate a continual train-
ing that fine-tunes the model instead of training from scratch
at each active learning step.
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Figure 3. Active learning vs. random sampling. Our uncertainty
sampling using the Entropy Measure (EM) converges to the opti-
mal solution at a faster pace, using fewer data. In practice, active
learning only needs 36% of the data needed by a random sampler
to reach similar performances (M?,gjf‘f), and a similar amount of

data could lead to up to 18% performance improvement (./\/lg”m).

Method || RS | UM | EM
AULC (1) || 45.11 | 46.24 | 47.96

M92 () || 45.00 | 31.00 | 16.00
o (¢) 99.00 | - | 64.00
fgga ) | 32.06 | 34.64 | 37.24

MI% 4y || 37.98 | 38.38 | 42.79

Table 3. Active learning vs. random sampling. Our proposed ac-
tive learning framework based on Entropy Measure (EM) outper-
forms Random Sampling (RS) and Uncertainty Measure (UM).

Faster model training. First, we leverage a faster sched-
uler for the learning rate. Instead of starting from 103, and
reducing the learning rate on each validation loss plateau
with a ratio of 10, until we reach 10~8, we start with a
learning rate of 10~2 and reduce it down to 10~%. Also,
we reduce the patience to identify the plateau from 10 to
5 epochs. By doing so, we practically cut the training time
by two, still producing performance on par with the original
training scheduler, as shown in Figure 4.

Adaptive active learning scheduler. Second, we adapt the
active learning (AL) steps, gradually increasing the number
of samples selected and annotated per AL step. At regime,
we can increase the dataset £, by more than only 1% of the
dataset. In practice, we chose to increment 2% after 15% of
the dataset, 5% after 25% of the dataset, and 10% after 40%
of the dataset. By doing so, we reduced the AL steps from
100 to 30, saving 70% of the time. Figure 4 illustrates that
the Adaptive AL step size does not impact the performance
of the training of NetVLAD++ on SoccerNet-v2.

Continual training. Third, we investigate whether resum-
ing the training from the previous active learning step would
be beneficial to reduce the training time. The stopping se-

== Random Sampling (RS)
EM (Faster)

0.6

== Entropy Measure (EM)
A RS (Faster AdapAL) A EM (Faster AdapAL)

Spotting mAP

0% 25% 50% 75% 100%
Ratio dataset

Figure 4. Faster training and adaptive active learning (Ada-
pAL) paradigms. We show here that we can significantly de-
crease the active learning time for our experiments without reduc-
ing in any way the performance of the active learning training.

== Random Sampling (RS)
A RS (FineTuning)
== RS (FineTuning-5ep)

0.6

== Entropy Measure (EM)
A EM (FineTuning)
== EM (FineTuning-5ep)

o
3

Spotting mAP
o
~

©
w

o
o

0% 25% 50% 75% 100%
Ratio dataset

Figure 5. Effect of fine-tuning a limited number of epochs.
Fine-tuning from a model with a limited number of epochs leads
to more stability in the training for the next active learning step.

AL Setup | Train || AULC (1) | M©% (1) | MOO% (1)
RSy orig. 45.11 37.98 45.00
EM; orig. 47.96 42.79 16.00
EM o fast 48.28 43.68 14.00
RS Adapar | fast 44.64 34.91 40.00
EMagapar, | fast 48.01 43.06 13.00
RSAdapAL 5 €p. 44.13 37.78 40.00
EMpdapar | 5 ep. 46.94 42.30 19.00

Table 4. Ablation. Our proposed active learning framework based
on Entropy Measure (EM) outperforms Random Sampling (RS)
on all active learning setups.

ries of triangles in Figure 5 illustrates that a naive imple-
mentation of continual training with the original parame-
ters leads to a divergent loss that impedes any further fine-
tuning. Instead, we propose to bootstrap the training with
20 epochs and fine-tune the model for 5 epochs at each ac-
tive learning step, with a LR fixed at 10~2. We can see that
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Data | Metric || RS | EM | UM

SoccerNet-ball AULC (1) || 40.47 | 42.18 | 42.88
SoccerNet-ball MIO% 4y | 36.55 | 42.41 | 41.88

data
SoccerNet-ball M?)gf’f @) || 23.00 | 8.00 | 9.00
FWWC19-header

AULC (1) || 42.67 | 44.28 | 44.59
FWWC19-header | M7 (1) || 35.18 | 42.32 | 42.39

FWWC19-header Mggj{of ) || 35.00 | 12.00 | 12.00

Table 5. Dataset generalization. EM and UM outperform RS on
the other two datasets. With less class diversity, the gap between
EM and UM is smaller.

continuing the training for 5 epoch in every active learning
step still preserve the same trend of EM outperforming RS.

Table 4 summarizes how (i) training faster, (ii) adapting
the active learning scheduler, and (iii) continuing the train-
ing actually performs in terms of metrics. Despite the mini-
mal difference in the performances, the gap between RS and
EM is maintained. Most importantly, those tricks lead to an
order of magnitude acceleration in running the experiments.

4.4. Generalization analyses

Datasets generalization. We successively experimented
our framework on two other datasets, namely SoccerNet-
ball and FWWC19-header. Since SoccerNet-ball has denser
actions, the hyper-parameters of NetVLAD++ were refined
with a temporal window of 1s and an NMS of 1s. We
chose the accelerated active learning settings, with a faster
training scheduler, adaptive active learning step, and con-
tinual fine-tuning for 5 epochs per active learning step, af-
ter a bootstrap of 20 epochs. Table 5 details the results
and shows, in particular, that UM and EM significantly ac-
celerate the training efficiency for both datasets compared
to Random Sampling. Interestingly, the gap between UM
and EM is smaller in these two datasets than it was on
SoccerNet-v2. We hypothesize that this behavior originates
from the lower number of classes in SoccerNet-Headers and
FWWCI19-Header, respectively 2 and 1 (see Table 1). In
fact, the ranking for the samples from UM and EM are ac-
tually similar in the case of a binary classifier (see Equa-
tions (1) and (2)).

Architecture generalization. We analyzed the generaliza-
tion capability of our active learning framework to other
action spotting methods, in particular PTS [24]. Unlike
NetVLAD++, PTS produces class prediction scores per
frame instead of per clip. To estimate an active learn-
ing score per clip, we aggregate the active learning score
per frame with mean or max pooling. The former will
consider an average uncertainty along all frames of the
clip, the latter will sample clips containing single uncer-
tain frames to train next. Similarly, we chose the same
accelerated active learning settings, as PTS is way slower

Dataset AL || AULC (1) | MY () | MO% (1)

ata perf

SoccerNet-v2 RS 27.76 13.59 60.00
SoccerNet-v2 mean-EM 28.53 16.14 50.00
SoccerNet-v2 max-EM 28.83 17.62 50.00
SoccerNet-v2 mean-UM 28.26 13.58 60.00
SoccerNet-v2 max-UM 28.80 15.64 50.00
SoccerNet-ball RS 56.37 52.28 19.00
SoccerNet-ball mean-EM 54.26 46.57 40.00
SoccerNet-ball max-EM 57.64 51.79 25.00
SoccerNet-ball mean-UM 54.92 49.53 35.00
SoccerNet-ball max-UM 58.48 53.80 12.00
FWWC19-header RS 29.77 21.77 -

FWWC19-header | mean-EM 34.81 18.45 40.00
FWWC19-header | max-EM 33.92 23.43 70.00
FWWCI19-header | mean-UM 35.93 19.14 50.00
FWWC19-header | max-UM 35.26 24.86 40.00

Table 6. Architecture generalization. The EM and UM active
selection function also outperform the RS selection when coupled
with PTS [24].

to train than NetVLAD++. Aligned with the findings from
NetVLAD++, we show in Table 4 that UM and EM out-
perform RS on all three datasets. Moreover, we identify a
similar trend showing that with a lower number of classes,
UM tends to outperform EM. Finally, max pooling appears
to work better, which means that clips with single uncertain
frames are generally more informative to train the model.

5. Conclusion

In conclusion, our proposed active learning framework
selects the most informative video samples to be annotated
next, thus reducing the annotation effort and accelerating
the training of action spotting models. We leveraged un-
certainty sampling to select the most challenging video clip
to train on next, which speeds up the learning process of
the models. We show that our framework effectively re-
duces the required training data for accurate action spot-
ting in football videos, achieving similar performance with
NetVLAD++ on SoccerNet-v2 using only one-third of the
dataset. This indicates significant capabilities for reducing
annotation effort. Furthermore, we validated our approach
on two new datasets that focus on localizing in time the ac-
tions of headers and passes. In future works, we will inves-
tigate the use of other active learning paradigms for the task
of action spotting, such as diversity maximization, query-
by-committee, and expected error.
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