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Abstract

The Video Assistant Referee (VAR) has revolutionized as-

sociation football, enabling referees to review incidents on

the pitch, make informed decisions, and ensure fairness.

However, due to the lack of referees in many countries and

the high cost of the VAR infrastructure, only professional

leagues can benefit from it. In this paper, we propose a

Video Assistant Referee System (VARS) that can automate

soccer decision-making. VARS leverages the latest findings

in multi-view video analysis, to provide real-time feedback

to the referee, and help them make informed decisions that

can impact the outcome of a game. To validate VARS, we in-

troduce SoccerNet-MVFoul, a novel video dataset of soccer

fouls from multiple camera views, annotated with extensive

foul descriptions by a professional soccer referee, and we

benchmark our VARS to automatically recognize the char-

acteristics of these fouls. We believe that VARS has the po-

tential to revolutionize soccer refereeing and take the game

to new heights of fairness and accuracy across all levels of

professional and amateur federations.

1. Introduction

Over the past decades, the technology used by refer-

ees in soccer has undergone a drastic evolution. Before

the beginning of this century, referees and their assistants

only relied on their own judgment, and the communica-

tion between them was based on eye contact and body

language. The French and Scottish refereeing trios were

the first ones to be linked through wireless mini-earphones

during league matches, facilitating communication among

them [56]. Nowadays, wireless headsets are essential pieces

of equipment for referees worldwide, made mandatory for

high-level competitions. Another important breakthrough

in professional soccer was the introduction of goal-line

(*) Denotes equal contributions
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Figure 1. Video Assistant Referee System (VARS). We propose

an automated VARS for automatically classifying whether an ac-

tion is a foul, determining the type of foul (e.g., ‘Tackling’, ‘Push-

ing’, etc.), and the appropriate punishment the player should re-

ceive for the foul (i.e., ‘No card’, ‘Yellow card’, or ‘Red card’)

from a multi-view camera setup.

technology, which uses a combination of cameras and sen-

sors to determine whether the entire ball has crossed the

goal line or not. This technology aims to prevent controver-

sial goals such as the famous ªghost goalº scored by Geoff

Hursts in the 1966 World Cup final against Germany, where

the ball may not have fully crossed the line and led to Eng-

land receiving the world champion title [17]. Successively,

the International Football Association Board (IFAB) ap-

proved the introduction of extra referees, namely the video

assistant referees (VAR), to prevent game-changing errors.

More recently, artificial intelligence systems appeared for

the first time during the World Cup 2022 in Qatar. Semi-
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automated offside technology now supports the VAR to help

referees make faster, more accurate, and more reproducible

offside decisions [18]. This new system relies on 12 well-

calibrated cameras to track the ball and the player’s body

pose, sending an automated offside alert to the video assis-

tant referee inside the video operation room. This shows

that soccer is moving towards more assistance or even auto-

mated systems to help referees make better decisions.

However, despite its intention to improve the accuracy

of referee decisions, VAR has become a source of frustra-

tion and anger for many football fans around the world.

Since we have a different video assistant referee for each

game, we do not always have consistent decisions. Some-

times the VAR predicts different outcomes for similar sit-

uations in different games and leagues. Moreover, the im-

plementation of the VAR technology and infrastructure re-

quires a substantial financial investment, limiting its acces-

sibility to only the top-tier leagues and clubs. As a result,

semi-professional or amateur leagues are unable to bene-

fit from the VAR due to financial constraints. Additionally,

the shortage of referees worldwide makes it impossible in

staffing additional referees as Video Assistant Referees, ex-

cept for the professional leagues.

In this work, we propose a first step towards a fully au-

tomated ªVideo Assistant Referee Systemº (VARS) which

could support or replace the current VAR. We attempt to

automatically predict all fouls and suggest appropriate sanc-

tions to the players. In case the on-field referee makes a sig-

nificant mistake, our VARS could intervene to suggest a re-

vision. It is intended that, just like regular VAR, our VARS

serves as a support system for the referee, but the final deci-

sion remains in the hands of the on-field referee. To achieve

this objective, we rely on multi-view uncalibrated camera

video streams, which are already leveraged to edit broad-

cast games. Specifically, we release a new dataset compris-

ing 3,901 actions with multi-view clips of 5 seconds around

the action, annotated by a professional referee. We focus

our analysis on the classification of foul types and evaluate

their severity to identify the sanction for the player. Prac-

tically, our VARS analyses the different streams and com-

bines the information from the multiple cameras. We show

that using a multi-view system largely improves the perfor-

mance compared to a single view and that we reach good

performance on our video recognition tasks.

Contributions. We summarize our contribution as follows:

(i) We publicly release SoccerNet-MVFouls, a new multi-

view video dataset containing video clips captured by mul-

tiple cameras, annotated with 10 properties. (ii) We pro-

pose VARS, a new multi-camera video recognition system

for classifying fouls and their severity. (iii) We propose

a thorough study of using multiple views and how differ-

ent types of camera views can influence the performance of

VARS on two new video recognition tasks.

2. Related work

Sports understanding. As a research topic, sports video

understanding has increased in popularity thanks to its chal-

lenging and fine-grained nature [41, 54]. Nowadays, most

state-of-the-art automatic methods are based on deep learn-

ing and have shown impressive performance on tasks such

as player detection and tracking [7, 39, 58], tactics analy-

sis [53], pass feasibility [2] and prediction in soccer [25],

talent scouting [11], or player re-identification in occluded

scenarios [50]. Video classification started as a key area

of research in this field [65], with approaches proposed to

recognize specific actions [32, 45] or distinguish between

different game phases [8]. With the growing interest in

temporal activity localization [3], the task of action spot-

ting [4,6,10,26,48,49,67] has gained interest as it provides

precise localization of specific actions within a soccer game.

The progress in those tasks was made possible thanks to

the availability of large-scale datasets [28,43,46,57,66]. Gi-

ancola et al. [20] introduced the SoccerNet dataset, which

has grown to be the most extensive collection of data and

annotations for video understanding in soccer, including

benchmarks for 10 different tasks, ranging from broadcast

understanding [12], field understanding [5] and player un-

derstanding [9]. The SoccerNet team also organizes yearly

competitions on these different tasks to foster research in

the field [21]. The dataset presented in this paper extends

SoccerNet by proposing a novel multi-view video collec-

tion including foul annotations for video recognition tasks.

Video understanding. For a long time, video understand-

ing lagged behind image understanding due to the lack of

large-scale video datasets such as ImageNet or CIFAR-

100 [13, 34] in the video domain. However, the release of

large video understanding datasets such as UCF101 [51],

ActivityNet [3], YouTube-8M [1], and Kinetics [31] has led

to a surge in popularity and interest in the field. Video un-

derstanding tasks include video classification [16, 30, 42],

action recognition [47, 61], video captioning [19, 33, 63],

and video generation [36].

The interest in developing video classification models

that capture spatio-temporal information has significantly

grown. Temporal Segment Network (TSN) [62] aggregates

features across multiple temporal video segments to im-

prove recognition performance. Tran et al. [55] proposed a

new spatio-temporal convolutional block R(2+1)D and an-

alyze its effect on action recognition models. Recently, the

Multiscale Vision Transformer (MViT) [15, 37] came as a

way to combine the strengths of both convolutional neural

networks (CNNs) and transformers for video classification,

capturing both spatial and temporal attentions. In this work,

we train different video representations to learn per-clip fea-

tures that we aggregate from multiple views to identify the

different properties of the fouls.
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Dataset Context Task Videos/Images View Type

Kinetics 400 [31] Human actions Classification 650,000 Single-view Videos

NTU RGB+D 120 [38] Human actions Classification 114,480 Multi-view Videos

Northwestern-UCLA Multiview [60] Human actions Classification 1,493 Multi-view Videos

UWA3D Multiview II [44] Human actions Classification 900 Multi-view Videos

SoccerNet-v2 (Actions) [21] Soccer Classification 110,458 Single-View Videos

SoccerNet-v3 (Re-id.) [5] Soccer Re-identifcation 33,986 Multi-View Images

SoccerNet-MVFouls (Ours) Soccer (Fouls) Classification 8,923 Multi-view Videos

Table 1. Video action understanding datasets. Comparative overview of relevant datasets for multi/single-view action recognition in

videos/images. Our dataset is the only one providing multi-view videos for classification in sports, with 10 annotated properties per action.

Multi-view understanding. Su et al. [52] introduces

the idea of training image encoders to recognize 3D ob-

jects from multiple views, benefiting from the mature 2D

computer vision. Most effort focused on informative ag-

gregation between views, introducing cross-view confi-

dence [29], group convolutions to learn rotation-equivariant

representations [14], graph convolutions to learn view ag-

gregation [64]. Alternatively, MVTN [23] predicted the

viewpoints from a differentiable 3D renderer. In the video

domain, synthetic views (e.g. 3D motion or optical flow) are

created for single-stream videos as a way to obtain better

representation learned in a self-supervised fashion [35, 59].

In this work, we leverage a simple multi-view pipeline for

video understanding, trained in a fully supervised fash-

ion, that incorporates multiple replay streams from soccer

broadcast videos.

3. SoccerNet-MVFouls dataset

In this section, we introduce our novel multi-view foul

classification soccer dataset, called SoccerNet-MVFouls.

Table 1 presents an overview of our dataset and compares

it with other datasets that propose action recognition using

either single or multiple views. Our dataset is the only one

for multi-view video action recognition in sports, and the

first dataset to focus specifically on referee’s decisions.

SoccerNet-MVFouls gathers 3,901 actions extracted

from 500 soccer games from six main European leagues,

covering three seasons from 2014 to 2017, extracted from

the SoccerNet dataset [12, 20]. Each action is composed of

at least two videos depicting the live action and at least one

replay. The actions are annotated with 10 different proper-

ties describing the characteristics of the foul from a referee’s

perspective (e.g. the severity of the foul, the type of foul,

etc.). To ensure high-quality annotations, all these proper-

ties were manually annotated by a professional soccer ref-

eree with 6 years of experience and more than 300 official

games. The referee watched the videos from all available

views at any speed to accurately characterize the foul.

Figure 2. Example of a multi-view sequence from our dataset.

Each foul has at least (a) one live-action clip (usually taken from

the main camera) and (b) one synchronized replay clip (usually a

close-up view). We annotate the exact frame where the point of

contact happens (red box). The ground-truth properties for this

example are: ªOffenceº, ªChallengeº, ªNo cardº, ªWith contactº,

ªUpper bodyº, ªUse of shoulderº, ªBall is not playedº, ªTried to

play the ballº, ªNo handballº, and ªNo handball offenceº.

3.1. Dataset collection

The dataset was collected in three steps: (i) we extracted

the relevant action clips from soccer broadcast videos,

(ii) we temporally aligned the clips related to the same ac-

tion, and (iii) we annotated several foul properties.

Clip extraction. As a starting point, we used the

SoccerNet-v2 dataset [12], which contains timestamp anno-

tations of fouls for 500 full broadcast games. Furthermore,

the SoccerNet dataset also provides annotations of the re-

plays of some of the fouls, allowing us to retrieve, for the

same action, different viewpoints. Since our goal is to de-

sign a multi-view video assistant referee system, we only

keep actions for which we have access to at least two differ-

ent points of view. In most cases, the extracted clips should

cover sufficient information to determine all the foul prop-

erties. Also, to prevent bias towards the on-field referee’s

decision, the 5 second clips should not contain the deci-

sion of the referee (e.g. if the player is given a yellow card).

Therefore, we extracted 5 second clips per action, starting

3 seconds before and ending 2 seconds after the timestamp



annotation. In the following, ªlive action clipº will refer to

the clips taken from the main camera, while ªreplay clipsº

will denote all the replay clips typically taken from closer

shots. Figure 2 shows an example of such extracted clip.

Clips alignment. We build a Multi-View Foul Annotator

tool with a similar interface to a VAR room to ensure the

quality of the annotations performed by our referee. At first,

the referee is presented with all available clips of an action

simultaneously on a grid layout. Our annotator tool enables

users to modify the annotated point of contact (see Figure 2)

for each clip individually and adjust the speed and offset

of the clips to align them temporally, taking into account

the fact that replays are frequently broadcasted at a slower

speed. The referee may browse simultaneously the synchro-

nized videos either at regular speed or frame by frame to

accurately understand and describe the properties of the ac-

tion. More information and an example of annotation using

our annotator may be found in the supplementary material.

Property annotations. The SoccerNet-v2 dataset provides

annotations for fouls and yellow/red cards given by the ac-

tual game referee. However, the on-field referee has only his

own point of view to characterize the foul. Judging foul play

incidents from the referee’s position at playing time leads to

an average error rate of 14% [40]. Our referee annotator has

no time pressure and access to multiple perspectives, which

results in more accurate decisions compared to the on-field

referee who has to take a quick decision and only has a sin-

gle view. To ensure a high-quality dataset and avoid any

bias, our professional soccer referee manually annotated all

properties without seeing the on-field referee’s decision.

We defined several properties for each action that are

necessary for the referee to take the final decision. These

properties include (i) if the clip contains a foul (i.e. an ac-

tion which breaks/violates the Laws of the Game [27]), (ii)

the class of the foul, (iii) the severity of the foul, (iv) if the

player plays the ball, (v) if the player tries to play the ball,

(vi) if any player touches the ball with his hand or arm, de-

liberately or not, (vii) and whether it is an offence accord-

ing to the Laws of the Game [27]), (viii) if there is contact

between two players, (ix) the action foul relates to the up-

per or underbody, and, finally, (x) we further discriminate

for the upper body between arms and shoulders. We have

special labels corresponding to grey areas for the property

(i), we use the label ªBetweenº when both ªFoulº and ªNo

foulº decisions are equally valid and there is no obvious de-

cision. For property (iii), we use the labels ªBorderline No

card/Yellow cardº and ªBorderline Yellow card/Red cardº

to indicate a grey area when either ªNo cardº or ªYellow

card’, (resp. ªYellow cardº or ªRed cardº), would be the

correct decision.

Fouls Offence Offence Severity

Class Prob. Class Prob. Class Prob.

St. tackling 43.6 Offence 85.8 No card 55.3

Tackling 15.6 No offence 10.7 Yellow card 26.6

Challenge 13.0 Between 3.4 NC/YC 15.2

Holding 12.5 YC/RD 1.7

Elbowing 5.9 Red card 1.1

High leg 3.5

Pushing 2.9

Dive 0.9

Table 2. Distribution of classes in our SoccerNet-MVFouls

dataset. The distribution of the classes for the ªOffenceº, ªSever-

ityº and ªType of foulº properties is highly imbalanced. The dis-

tribution for the other properties is shown in supplementary. ªSt.

tacklingº stands for standing tackling.

Severity Distribution

Foul Class Succ. Rate No Card Card Card

Standing Tackling 0.94 0.79 0.18 0.02
Tackling 0.87 0.37 0.58 0.04

High Leg 0.87 0.31 0.63 0.06

Holding 0.90 0.60 0.40 0.00
Pushing 0.84 0.99 0.01 0.00
Elbowing 0.93 0.43 0.53 0.03
Challenge 0.75 0.94 0.05 0.01
Dive / 0.00 1.00 0.00

Table 3. Referees success rate and severity per foul class. Ref-

erees are successful in most classes but struggle with ªChallengeº.

Some classes are less likely to return a card, e.g. ªTacklingº or

ªHigh legº. The success rate for ªDiveº is unknown, as we cannot

know if a referee whistle for the foul or the dive.

3.2. Dataset statistics

Number of views. On average, we have 2.29 clips per foul

action, around 75% of them have two viewpoints (live and

replay), 20% have a second replay, and around 5% have a

third replay video. No foul has more than four views.

Properties distribution. Table 2 shows the distribution of

the properties ªOffenceº, ªSeverityº and ªType of foul’. We

can see that in all three cases, the distribution is highly un-

balanced towards ªNo cardº, ªOffenceº and ªStanding tack-

lingº, respectively. This analysis follows our intuition of

soccer, where yellow and red cards are usually rarer than

simple free-kicks given after a foul.

Success rate of the referees. As we only have extracted

fouls for which the on-field referee has given a foul in the

game, we can analyze the success rate of the referees by

analyzing the property ªNo offenceº. From the 3901 fouls

given by the referees in the games, our referee annotated

368 fouls as ªNo offenceº, leading to an error rate of 10.7%.

ªStanding tacklingº and ªElbowingº are the most well clas-

sified with 94% success rate, as shown in Table 3. For the
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Figure 3. VARS: Video Assistant Referee System. From multi-

view video clips input, our system encodes per-view video fea-

tures (E), aggregates the view features (A), and classifies different

properties of the foul action (C).

remaining action classes, the referees have a similar success

rate of approximately 87%, except for the foul class ªChal-

lengeº, where the referees have an error rate of 25%. Our

analysis is aligned with the finding of Mallo et al. [40].

Severity for different foul classes. The distribution of the

severity among different foul classes can provide insight

into how often certain types of fouls result in a card. The re-

sults are presented in Table 3. ªTacklingº, ªHigh legº, and

ªElbowingº are three types of fouls that very often result

in a yellow card, as they represent fouls that are dangerous

for opponents. Contrarily, some classes like ªPushingº or

ªChallengeº are very unlikely to get a yellow or red card.

4. Methodology

Our VAR system is a multi-view video architecture, that

automatically identifies different properties for an action.

We illustrate our proposed VARS in Figure 3.

4.1. Classification tasks

We formally define two tasks for our dataset.

Task 1: Fine-grained foul classification. Given multiple

clips of the same foul instance, the objective is to classify

the foul into one of 8 fine-grained foul classes: ªStanding

tacklingº, ªTacklingº, ªHigh legº, ªPushingº, ªHoldingº,

ªElbowing’, ªChallengeº, ªDive/Simulationº.

Task 2: Offence severity classification. Given multiple

clips of the same foul instance, the objective is to classify

whether the foul constitutes an offence, as well as the sever-

ity of the foul. We have defined four classes: ªNo offenceº,

ªOffence + No cardº, ªOffence + Yellow cardº, and ªOf-

fence + Red cardº. We put aside clips labeled ªBetweenº

as well as the clips annotated as ªBorderlineº. Therefore,

for this particular task, we use a subset of our SoccerNet-

MVFoul dataset.

4.2. Video Assistant Referee System (VARS)

We propose a novel Video Assistant Referee System

(VARS) for the task of video recognition from multiple

camera views. The pipeline of the VARS is presented in

Figure 3. Our VARS takes multiple video clips denoted by

v = {vi}
n
1

as input, showing the same action from n dif-

ferent views. A video vi is fed into a video encoder E with

parameters θE to extract a vector fi containing the spatio-

temporal features for that specific view:

fi = EθE(vi) . (1)

We aggregate the feature vectors through a function A that

outputs a single multi-view representation R following:

R = A({fi}
n
i=1

) , (2)

with A being a max or mean aggregation function. For the

single-task classifier, we input the pooled features through

a classification head C with parameters θC . VARS predicts

the final class from the maximum probability score of the

classification head, as given by:

VARS = argmaxCθC(R) . (3)

We train our model to minimize the following loss:

L = L(CθC (A({EθE(vi)}
n
i=1

)), y) , (4)

with L being the cross entropy loss function, and y the

ground truth associated to {vi}
n
i=1

. For the offence severity

classification, VARS has to understand the game of soccer

in order to correctly classify fouls into ªNo cardº, ªYellow

cardº, and ªRed cardº. In fact, bringing contextual infor-

mation about the type of foul inside the network is essential

to determine the severity of the offence. As the foul and

offence classifiers share common features, we train a model

to perform both tasks simultaneously. Our multi-task VARS

learns to leverage these shared features to improve its pre-

dictions for both tasks. For the multi-task classifier, we de-

fine two heads, Cfoul and C
off , respectively for the tasks of

fine-grained foul classification and offence severity classifi-

cation. From the probability vector of each task, the VARS

will take the maximum as the final prediction:

VARS
t = argmaxCt

θ
Ct
(R) ∀t ∈ {foul, off} . (5)

We train our model by minimizing both tasks loss with:

αfoulL
foul + αoffL

off . (6)

By choosing different values for α, we can assign more

or less importance to tasks. This scaling is necessary when

the losses have significantly different magnitudes. In the

case of our two tasks, the losses have a similar order of mag-

nitude, so we typically select αfoul = αoff = 1.



Video encoder E. We considered different encoders to ex-

tract features from the video clips: (i) ResNet [24] may be

used on videos by running the network on each frame inde-

pendently and then using a max or mean pooling operation

on the features across the frames to obtain a single feature

vector that represents the entire video. While this approach

works well for extracting spatial features, it does not cap-

ture temporal dynamics. (ii) R(2+1)D [55] extends the 2D

CNN architecture with an additional temporal convolutional

layer that operates on a sequence of frames to capture the

temporal dynamics of the video. The advantage compared

to ResNet is that it both captures spatial and temporal fea-

tures directly. (iii) MViT [15, 37] integrates a multiscale

feature representation with a transformer-based architecture

to capture both spatial and temporal information from video

clips. The feature encoders are typically pre-trained on Im-

ageNet [13] (ResNet) or Kinetics [31] (R2+1D and MViT).

Multi-view aggregator A. To combine the extracted fea-

tures from multiple views, we introduce two different pool-

ing strategies [22], in particular: (i) Mean pooling takes the

average value for each feature, and (ii) Max pooling which

takes the maximum value per feature.

Classification heads C. Our classification heads consist of

two dense layers with softmax activation. The output is a

probability vector with dimensions that match the number

of classes in the classification problems.

5. Experiments

5.1. Experimental setup

Training details. For both classification tasks, we leverage

clips of 16 frames, spanning temporally for 1 second, with a

spatial dimension of 224×398 pixels. Specifically, the clips

contain 8 frames before the foul and 8 frames after the foul.

The encoders E are pre-trained as detailed in the methodol-

ogy, and the classifier C is trained from scratch, while both

are trained in an end-to-end fashion. We use a cross-entropy

loss, optimized with Adam with an exponential decreasing

learning rate starting at 10−4 and a batch size of 8. The

model starts overfitting after 10 epochs, and it takes around

9 hours to train on a single Nvidia V100 GPU.

Evaluation metrics. We report the classification accuracy,

which is defined as the ratio of actions correctly classified

with respect to the total number of actions. We also pro-

vide the top-2 accuracy (where a sample is considered well

classified if the class appears in the top two highest confi-

dence predictions) to get more insight into the model’s per-

formance. As our dataset is unbalanced, we also provide the

balanced accuracy, which is defined as follows:

Balanced Accuracy (BA) =
1

N

N∑

i=1

T Pi

Pi

, (7)

Feature Extractor Pooling Acc. @1 Acc. @2 BA

ResNet [24] Mean 0.31 0.56 0.28
ResNet [24] Max 0.32 0.60 0.28
R(2+1)D [55] Mean 0.31 0.55 0.34
R(2+1)D [55] Max 0.32 0.56 0.33
MViT [15, 37] Mean 0.40 0.65 0.45

MViT [15, 37] Max 0.47 0.69 0.43

Table 4. Main results for the multi-view video foul classifica-

tion. We compare three feature encoders and two pooling meth-

ods. The best performance is obtained with MViT and a max pool-

ing between the views. BA indicates the balanced accuracy after

normalizing by the frequency of that class.

with N the number of classes, T P (True Positives) is the

number of times where the model correctly predicted the

class i and Pi (Positives) is the number of ground-truth sam-

ples for that class in the dataset.

5.2. Main Results

Task 1: Fine-grained foul classification. Our results may

be found in Table 4. By extracting spatio-temporal features

with MViT, we achieve significant improvements in perfor-

mance compared to ResNet and R(2+1)D. This indicates

that using a more advanced feature encoder can significantly

enhance the model’s ability to identify and classify the type

of foul. The influence of the pooling method on the per-

formance is however not significant, although max pooling

shows slightly better results. In general, max pooling might

be better when not all views are equally informative. Taking

the max values helps identify the most important features

for the most informative views while ignoring less useful

information. In contrast, mean-pooling takes into account

the information from all views, including those with a poor

perspective. Overall, the best performance is obtained by

using MViT as video encoder and max pooling.

Task 2: Offence severity classification. For the offence

severity classification, we study the same feature encoders

and pooling techniques. The top part of Table 5 shows the

results obtained by our single-task classifier. Regardless of

the used feature extractor or pooling technique, the model

has more difficulties in classifying the actions. These diffi-

culties are mainly due to two factors. First, the dataset ex-

clusively consists of actions that were awarded a free kick

by the on-field referee. As a result, the ªNo offenceº actions

are visually similar to a foul, and not to clear ªNo offenceº

actions. The model often struggles to differentiate these ac-

tions from actual fouls, which can be further seen in the

Supplementary Material. Secondly, the visual appearance

of an offence with no card, yellow card, or red card can vary

greatly. In Figures 4a and 4b, we compare two frames of

two different foul classes that have a little visual similarity.

However, in both cases, the defender acted with disregard
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Feature Extractor Pooling Task Acc. BA

ResNet [24] Mean Single 0.25 0.26
ResNet [24] Max Single 0.22 0.25
R(2+1)D [55] Mean Single 0.28 0.30
R(2+1)D [55] Max Single 0.27 0.29
MViT [15, 37] Mean Single 0.32 0.23
MViT [15, 37] Max Single 0.29 0.27
ResNet [24] Mean Multi 0.34 0.25
ResNet [24] Mean Multi 0.32 0.24
R(2+1)D [55] Mean Multi 0.34 0.30
R(2+1)D [55] Max Multi 0.39 0.31
MViT [15, 37] Mean Multi 0.38 0.31
MViT [15, 37] Max Multi 0.43 0.34

Table 5. Multi-view video offence and severity classification.

We evaluate our VARS with different feature encoders and pool-

ing methods on a single and multi-task setup. BA stands for the

balanced accuracy.

(a) Elbowing - Yellow card (b) Tackling - Yellow card

(c) Standing Tackling - No card (d) Standing Tackling - Red card

Figure 4. Example of fouls. (a) The defender uses his arm as a

tool to gain an unfair advantage and ignores the potential danger

for his opponent. (b) The defender makes a tackle while taking the

risk of his opponent being injured. (c) The defender tries to play

the ball in no dangerous way. (d) The defender has no intention to

play the ball and only aims to harm his opponent.

for the safety of his opponent and therefore resulting in a

yellow card. In contrast, Figures 4c and 4d depict fouls that

are visually more similar than the previous two fouls, yet

one resulted in ªNo cardº while the other resulted in a ªRed

cardº. Minor differences such as the point of contact, the

speed of the foul, the distance to the ball, and the intention

to play the ball or not, can lead to different classifications.

Multi-task classifier. Training a multi-task classifier on

related tasks allows the model to utilize the learned infor-

mation from one task to improve the performance on other

tasks. In the bottom part of Table 5, we can see that the

multi-task classifier outperforms the single-task classifier

regardless of the feature encoder or pooling technique for

offence severity classification. Using ResNet to extract spa-

Performance
Viewing Setup

L R1 L+R1 R1+R2 L+R1+R2

AccT1 0.31 0.47 0.50 0.56 0.57

AccT1@2 0.54 0.68 0.70 0.69 0.72

BAT1 0.29 0.38 0.36 0.44 0.39

AccT2 0.38 0.39 0.43 0.39 0.40

AccT2@2 0.67 0.70 0.72 0.73 0.75

BAT2 0.38 0.27 0.34 0.27 0.39

Table 6. Single vs. multi-view classification. We compare the

performance for single vs multi-views and the influence of the type

of view (Live L and replay R). We use MViT [15, 37] as feature

extractor and max pooling. For both tasks, the best performance

is mostly obtained with all three views. BA stands for balanced

accuray, T1 stands for task 1 (foul classification) and T2 stands for

task 2 (offence severity classification).

Figure 5. Qualitative results. VARS predictions for different

combinations of views as input.The best performance is obtained

with the two replay views.

tial features for the type of foul and the offence severity

classification does not perform well for either task. The

body movements over time and the speed of the players in-

volved in an action are important factors that can greatly

impact the outcome of the classification. The multi-task

classifier combined with MViT as encoder and max pooling

shows promising results in classifying actions into their cor-

responding offence severity class. Furthermore, the multi-

task classifier shows similar results as obtained for the

single-task type of foul classification.
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5.3. Detailed analysis

Single vs. multi-view analysis. We now study the improve-

ment of using multiple views over a single view. To do so,

we first created a subset of the test set for which we have

clips with two replays and one live action. As evidenced by

the top part of Table 6, the type of view has a significant im-

pact on the VARS’s ability to detect the correct type of foul.

Although the live-action view alone provides worse perfor-

mance than the replays, combining the live-action view with

a replay improves the accuracy slightly compared to using

only the replay view in both tasks. This implies that even a

poor-quality view can slightly improve the performance. A

highly informative view can boost the performance, as we

can see by comparing the two replays with a single replay

for the type of foul classification. For the offence and sever-

ity classification, the VARS seems to benefit more from live

actions compared to replays for the offense and severity

classification task. One possible explanation is that for the

live actions, the VARS takes into account the position of the

action on the field, allowing it to learn that the likelihood

of a ’No card’ or ’Yellow card’ is higher in specific areas

of the field. For both tasks, we achieved better results by

using multiple views, and for most of the metrics, the best

performance was achieved by using a live-action clip with

two replays. This demonstrates the effectiveness of using

multiple views to improve model performance in the type

of foul and offence severity classification.

In Figure 5, we show the predictions of the foul clas-

sification models while changing the number and type of

views. By only using the live action, the VARS is not able

to detect the correct type of foul, as confirmed in Table 6.

By adding 1 or 2 replays as input to the model, it is able to

detect the foul class with a confidence score ranging from

76% to 95%. By analyzing the confidence scores, we can

see that the view has a big impact of the prediction, which

agrees with the results found in Table 6.

Temporal analysis. We investigated the temporal context

needed to identify fouls and offence severity. In particular,

we increased the video length, by reducing the frame rate,

in order to maintain the same number of frames to process.

Table 7, shows the results of the temporal analysis. We ob-

served that as we increase the temporal context while de-

creasing the frame rates, the performance of our model de-

creases. This is likely because the most useful information

for our classification tasks is concentrated within a narrow

temporal window immediately preceding and following the

foul. Adding more temporal context to the model results in

the inclusion of frames that do not offer much additional in-

formation. By default, we used a frame rate of 16 frames per

second, with a temporal context of 1 second, which seemed

to strike the best balance between capturing sufficient tem-

poral information and excluding unnecessary frames.

Frame rate (FPS) 5 8 12 16

Temporal context 3.2s 2.0s 1.3s 1.0s

Accuracy (Foul class.) 0.36 0.38 0.44 0.47
Accuracy (Off. sev. class.) 0.39 0.41 0.43 0.43

Table 7. Temporal analysis. We experiment with various tempo-

ral context while maintaining a fixed number of 16 frames. In all

scenarios, we include 8 frames before and after the foul.

Per class analysis. We further analyze the performance per

class. The confusion matrices for both tasks are in the sup-

plementary material. We saw that performance varies con-

siderably across classes. For the fine-grained foul classi-

fication, the VARS struggles to distinguish between illegal

arm movements due to their shared characteristics. It per-

forms well in detecting ªTacklingº, but often confuses it

with ªDiveº due to the challenge of distinguishing genuine

from deceptive actions in soccer games. The most difficult

class for the VARS is ªChallengeº, as it shares visual simi-

larities with many other classes, making proper generaliza-

tion during training difficult. Regarding offence classifica-

tion, the VARS tends to make bad predictions in neighbor-

ing classes of the ground truth. For instance, it may classify

a foul as ªOffence + Yellow cardº instead of ªOffence + No

cardº. However, the model struggles with ªOffence + Red

cardº due to the limited number of samples in the dataset.

6. Conclusion

In summary, our Video Assistant Referee System

(VARS) has the potential to bring about a significant im-

provement in soccer refereeing by ensuring fairness and ac-

curacy at all levels of professional and amateur play. VARS

utilizes the latest advances in multi-view video analysis and

provides referees with real-time feedback and assists them

in making informed decisions that can impact the outcome

of soccer games. To prove the effectiveness of VARS, we

introduced a novel dataset, SoccerNet-MVFoul, that curates

relevant fouls in soccer broadcasts from multiple views and

includes foul properties. Our benchmarking results demon-

strate that VARS can recognize foul characteristics based

on multi-view video processing. By integrating the specific

requirements of referees, VARS offers an unbiased and re-

liable decision-making process for soccer matches.
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