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Abstract

Accurate 3D human pose estimation is essential for
sports analytics, coaching, and injury prevention. How-
ever, existing datasets for monocular pose estimation do
not adequately capture the challenging and dynamic na-
ture of sports movements. In response, we introduce Sport-
sPose, a large-scale 3D human pose dataset consisting of
highly dynamic sports movements. With more than 176,000
3D poses from 24 different subjects performing 5 different
sports activities, SportsPose provides a diverse and com-
prehensive set of 3D poses that reflect the complex and dy-
namic nature of sports movements. Contrary to other mark-
erless datasets we have quantitatively evaluated the pre-
cision of SportsPose by comparing our poses with a com-
mercial marker-based system and achieve a mean error of
34.5 mm across all evaluation sequences. This is compa-
rable to the error reported on the commonly used 3DPW
dataset. We further introduce a new metric, local move-
ment, which describes the movement of the wrist and ankle
joints in relation to the body. With this, we show that Sport-
sPose contains more movement than the Human3.6M and
3DPW datasets in these extremum joints, indicating that our
movements are more dynamic. The dataset with accompa-
nying code can be downloaded from our website 1. We hope
that SportsPose will allow researchers and practitioners to
develop and evaluate more effective models for the analysis
of sports performance and injury prevention. With its re-
alistic and diverse dataset, SportsPose provides a valuable
resource for advancing the state-of-the-art in pose estima-
tion in sports.

1. Introduction

Monocular 3D human pose estimation is a blooming
topic enabling human-computer interaction with applica-

*Equal contribution
1http://christianingwersen.github.io/SportsPose

tions in biomechanics [22], entertainment [48], sports [8,
26, 30, 45], and many more. Recent methods have shown
impressive performance with in-the-wild methods achiev-
ing mean per joint precision errors (MPJPE) of less than
8 cm [7, 13, 16, 36].

Large datasets enable advancing the state-of-the-art for
pose models, however acquiring 3D human pose datasets is
a cumbersome and expensive process that usually requires
a commercial motion capture system based on inertial mea-
surement units (IMU) or optical markers [10, 19, 32, 38].
This complexity tends to constrain the capture of human
pose datasets to controlled lab environments with a mini-
mal number of different subjects. Having markers attached
to the body can also be impractical, affecting the subject’s
ability to move freely and potentially reducing the general-
ization of models trained on the data, as the models can start
to rely on the visible markers to estimate the pose.

Because of these issues markers are not desirable in a
dataset for vision-related learning problems, and a marker-
less capture system is preferred instead. Various 3D human
pose datasets, recorded in outdoor environments [21] and
controlled indoor lab setups [11], are available. However,
existing markerless datasets lack a quantitative analysis to
validate their accuracy, which raises concerns regarding the
quality of the data considered ground truth.

The 3DPW dataset [39] addresses the issue of visible
markers by utilizing an IMU-based system, which allows
most sensors to be concealed under clothing. The IMU
data is then aligned with video data from a mobile camera.
To evaluate the effectiveness of this method, a quantitative
analysis is performed using the TotalCapture dataset [38],
which contains both optical marker and IMU data. How-
ever, since the TotalCapture data set is recorded in a differ-
ent environment than the rest of the 3DPW dataset, it is un-
clear whether the measured error accurately reflects the ex-
pected error. Despite this limitation, the reported mean per
joint precision error on the TotalCapture dataset is 26 mm.
In contrast, we introduce SportsPose, a markerless human
3D pose dataset, which includes a quantitative analysis of
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the estimated markerless poses. To validate the accuracy of
our dataset, we compare it with a commercial marker-based
motion capture system in the same domain. Our results in-
dicate a precision on par with the 3DPW dataset but mea-
sured in the same domain as the data was captured.

With SportsPose, we present a markerless 3D human
pose dataset with data from a total of 24 subjects in indoor
and outdoor environments. We include five sports activi-
ties namely, soccer, volleyball, jump, baseball pitch, and
tennis. These activities have been chosen because they are
highly dynamic movements, including a large range of mo-
tion while being possible to perform in a constrained captur-
ing volume. Samples from the dataset of different activities
and different subjects can be seen in Figure 1. The subjects
in Figure 1 are anonymized, but in the available licensed
dataset, they are not.

A calibrated and hardware-synchronized setup of 7 color
cameras recorded the sequences of poses at a rate of 90 Hz.
Using a pre-trained 2D pose detector [35], a 2D pose was
predicted for each image, yielding multiple 2D poses from
different views. We obtained a range of 3D point candidates
by triangulating from multiple camera subsets. A graph-
based approach improved temporal continuity, followed by
Butterworth smoothing, which reduced the candidates to a
smooth sequence of 3D poses for all frames. The accuracy
of the estimated 3D human movements was evaluated on a
separate set of videos by comparing them with a commer-
cial marker-based motion capture system that recorded the
same volume. This comparison revealed a mean error of
34.5 mm across the separate set of videos.

Current models fail to accurately predict joint locations
for dynamic sports movements [9]. There is no existing
sports dataset with such dynamic movements, variability in
poses, and rigorous accuracy evaluation as SportsPose. Our
goal with SportsPose is to encourage research that advances
monocular 3D models.

To summarize, our contribution is:

• The SportsPose dataset – a large markerless human 3D
pose dataset.

• Quantitative analysis of the accuracy of the reference
poses.

• Dynamic sports movements of 24 subjects.

• An easily scalable motion capture system for future
dataset extensions.

2. Related Work
2.1. 3D human pose datasets

There have been numerous efforts to build large 3D hu-
man pose datasets to train and evaluate monocular 3D hu-
man pose estimation models. Notable examples of such

datasets include HumanEva [32], TotalCapture [38], Hu-
man3.6M [10], and CMU Panoptic Studio [11]. These
datasets have been instrumental in advancing the state-of-
the-art in monocular 3D human pose estimation. Acquisi-
tion of accurate 3D human pose data has previously been
constrained to controlled lab setups with a small and fixed
capturing volume [10, 11, 32, 38]. Human3.6M [10], Hu-
manEva [32], and TotalCapture [38] all use an optical track-
ing system with infrared cameras and reflective markers
mounted on all of the subjects. Acquiring motion capture
data with these marker-based optical systems is considered
to be the golden standard for accurate motion capture and
are the systems used for research in biomechanics [20, 29].

There are certain limitations to using a marker-based sys-
tem, particularly for highly dynamic movements such as
those in sports, as markers can cause discomfort and poten-
tially impede the subjects performance. Additionally, the
presence of optical markers can create an artificial environ-
ment that may not reflect real-world scenarios. A concern is
that models may learn the appearance of these markers for
estimating the pose, leading to poor generalization to mark-
erless situations. An alternative to the optical marker-based
systems is an IMU-based system, as used in the 3DPW
dataset [39]. Such systems allows for a less constrained
environment and the option to hide some of the sensors un-
der the subjects’ clothing, but may have issues with mea-
surements drifting. The 3DPW dataset solved this issue by
mounting IMU sensors on the subject and correlating IMU
sensor data with video from a mobile camera to obtain accu-
rate 3D poses of subjects in various environments, making
it a truly “in the wild” dataset. However, a downside of their
approach is that the subject needs to wear visible IMU sen-
sors, and the lack of available ground truth data makes it
difficult to evaluate the algorithm’s performance in aligning
IMU and video data.

The CMU Panoptic dataset [11] was able to capture 3D
pose data without relying on markers or IMU sensors. In-
stead, they utilized a multi-camera setup to detect 2D poses
and triangulate the corresponding 3D pose. However, their
setup is quite extensive, requiring 480 industrial-grade cam-
eras and 10 Kinect 2 sensors, making it difficult to repro-
duce. In contrast, our SportsPose system employs a similar
approach but with only seven cameras, which makes it more
accessible and portable to new capture locations. To en-
sure the system remains accurate while being portable we
have conducted a quantitative comparison with an optical
marker-based system.

Other methods for developing a flexible markerless cap-
turing system have been proposed, including ASPset-510
[21], which employs three consumer-level cameras and
manual time synchronization to construct an outdoor hu-
man sports pose dataset. However, no quantitative analysis
of the dataset’s accuracy is provided in ASPset-510. Our
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Figure 1. Examples from each of the activities in the dataset with corresponding 3D poses. The samples are from both indoor and outdoor
captures. It should be noted that the subjects in the figure are anonymized which they are not in the released data.

study revealed that more than three cameras were necessary
for sports movements due to frequent self-occlusions. We
also discovered that a hardware-based frame, not just time
synchronization, was required for our movements, as joints
could move excessively between frame exposures. Seven
cameras with hardware synchronization proved to be a good
compromise between system accuracy, cost, and flexibility
when developing SportsPose.

Markerless motion capture systems are commercially
available [3, 33, 37] and have been employed to construct
datasets for deep learning. The MPI-INF-3DHP [19]
dataset utilized a commercial markerless solution [3] to cap-
ture diverse poses without markers. While it contains mo-
tion capture data for eight subjects in natural clothing, it
was captured in a lab environment with a green screen. In
contrast, SportsPose provides a dataset with a substantial
number of subjects in natural settings, and its accuracy has
been evaluated using a precise optical reference system. A
summary of the motion capture datasets discussed in this
section is presented in Table 1.

2.2. Monocular 3D human pose models

The subject of monocular 3D human pose estimation has
been widely explored, with two main approaches to infer-
ring the 3D pose. One approach is a single-stage method,
which employs parametric body models to predict both the
shape and pose of a subject directly from an input image or
video, such as those found in [2,7,12,14,15,44]. The other
approach is a two-stage method, which uses either a ground
truth or a predicted 2D pose to estimate the correspond-
ing 3D pose of a subject, as seen in [4, 24, 31, 46]. Each
approach has its benefits and drawbacks, but if only the

pose is relevant, the two-stage methods are considered the
most accurate [24]. Additionally, two-stage methods allow
for more temporal information to be included as the lifting
module only takes 2D poses as input rather than full image
frames. With SportsPose, our focus has been on advanc-
ing accurate sports pose estimation rather than shape esti-
mation. We have released camera calibrations to allow for
ground truth 2D poses to be used in two-stage approaches.
If shape information is needed, it can potentially be ob-
tained using a motion capture body solver like MoSh [18].

3. Motion capture system
The system we built to capture the SportsPose dataset

consists of seven hardware-synchronized industrial cameras
capturing at 90Hz with a resolution of 1920 × 1200. The
cameras are mounted around a capturing space of two by
two meters with some cameras in the ceiling and others
mounted at chest height. The system is calibrated using a
board with six ArUco patterns [27], first obtaining a linear
estimate using Zhang’s method [47] followed by non-linear
bundle adjustment, resulting in a mean re-projection error
of 0.8 pixels.

3.1. Triangulation procedure

To estimate the 3D human pose, we utilize the 2D pose
detector HRNet [35] to predict an initial set of 2D joints
from all the camera views. The specific HRNet model used
is trained on the COCO 2D pose dataset [17], and Sport-
sPose’s markerset is thus identical to the one in COCO.
With the predicted 2D joint locations we triangulate a lin-
ear estimate of the 3D joint positions, which we refine using
non-linear optimization. This estimate of the 3D joint loca-
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tion can potentially be erroneous due to noisy predictions
from the 2D estimator that may have jitter, joint swaps,
and other errors [28]. To ensure temporally coherent 3D
joint positions and correct for potential erroneous predic-
tions, we use information from previous and future frames
to refine our estimate of the current joint locations. This
is, inspired by ASPset-510 [21], done by constructing the
set of possible estimates; all 3D points that can be triangu-
lated using two or more cameras for a total of

∑K
i=2

(
K
i

)
point candidates [21]. Thereby, one can let each point can-
didate for each time stamp be a vertex in a directed acyclic
graph as illustrated in Figure 2. We let each vertex be con-
nected to all vertices in the following time step. Assuming
little movement between frames, we try to minimize the dis-
tance moved between frames for each joint, and so the edge
weights wij between two vertices, vi and vj , becomes,

wij = ||vi − vj ||2. (1)

Using dynamic programming, one can efficiently find the
shortest path in the graph, giving the 3D locations for all
time steps for each joint. To utilize the information given
by the pose estimator, we use the 2D joint confidence to re-
move up to two cameras and the corresponding nodes that
use this camera from the graph for every frame, as illus-
trated in Figure 2. We settled for up to two cameras since
this struck a good balance between removing the most un-
confident cameras and allowing the graph-approach to find
a smooth sequence of poses. The points picked out by the
graph-approach are additionally smoothed using a Butter-
worth filter [23, 40], which is widely used within biome-
chanics [41]. The filter is designed as a fourth order filter
with a cutoff frequency of 6 Hz, since the majority of human
movement is captured at this frequency [42].

5

1

6

7

2

3

4

5

1

66

7

2

3

4

5

1

6

7

2

3

4s t

Figure 2. All possible subsets with a minimum of two cameras are
connected densely, with each layer corresponding to one frame.
Up to two cameras, and thus their subsets, can be removed if the
pose estimator has low confidence, here shown as greyed-out cam-
eras.

4. SportsPose dataset

With the described multi-camera setup we have collected
the SportsPose dataset, consisting of a total of 191, 948 3D
poses from highly dynamic sports movements from 24 sub-
jects, currently making this the 3D pose dataset with the
most subjects, see Table 1. The 3D poses in the dataset
are distributed with 149, 580 poses in an indoor environ-
ment, 27, 000 outdoors and 15, 368 poses in an indoor en-
vironment with optical markers on the subjects used for our
quantitative quality assessment in Section 5.

4.1. Dataset

The ease of use of our system has allowed us to scale
the number of subjects to a total of 24 with, 3 female and
21 male participants, all wearing natural clothing and no
markers attached. We have further captured data in both
an outdoor and indoor environment where two of the sub-
jects appear in both the indoor and outdoor settings, which
allows ablations of a model’s performance in different en-
vironments. Each subject is recorded performing 5 repeti-
tions of 5 short sports-related activities, resulting in a total
of 191, 948 poses with corresponding images from 7 cam-
eras, totaling 1.5 million frames. Of the 191, 948 poses,
15, 368 are used for the quality assesment and the subjects
here have visible markers on the body. The activities in
the dataset are baseball pitch, jump, tennis, volleyball, and
soccer. They were chosen to allow the subjects to perform
a wide variety of poses within the volume, allowing fast-
moving joints in both the upper and lower part of the body.
The subjects were informed of the movements and how to
perform them but allowed creative freedom to perform them
as they wanted.

To summarize the contents of the SportsPose dataset and
to compare it to other current 3D pose datasets, we provide
an overview in Table 1. It can be seen that SportsPose is
the largest motion capture dataset in terms of the number of
subjects and the fourth largest dataset in terms of the num-
ber of 3D poses behind the Human3.6M, CMU Panoptic,
and TotalCapture datasets [10, 11, 38]. Human3.6M [10]
is a marker-based dataset, while the CMU Panoptic dataset
[11] is a markerless system similar to ours but with more
cameras. In the CMU Panoptic dataset, they constructed
an indoor dome with more than 400 low-resolution cam-
eras and 31 high-resolution cameras to capture their dataset
[11]. This can be considered the golden standard in mark-
erless datasets but it also completely removes the flexibil-
ity of moving the system to more natural environments.
This makes SportsPose the second largest publicly available
markerless dataset, the dataset with the highest framerate
data, and the dataset with the most subjects.
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Marker- Quality Sync Subjects Poses Environment Views FPS Framesless evaluation

Human3.6M [10] × ✓ hw 11 900K Indoor 4 50 3.6M
MPI-INF-3DHP [19] ✓ × hw 8 93K Indoor 14 N/A 1.3M
3DPW [39] × ✓ sw 7 49K In- & outdoor 1 30 51K
HumanEva-I [32] × ✓ sw 6 78K Indoor 7 60 280K
HumanEva-II [32] × ✓ hw 6 3K Indoor 4 60 10K
TotalCapture [38] × ✓ hw 5 179K Indoor 8 60 1.9M
CMU Panoptic [11] ✓ × hw 8 1.5M Indoor 31 30 46.5M
ASPset-510 [21] ✓ × sw 17 110K Outdoor 3 50 330K
SportsPose (ours) ✓ ✓ hw 24 177K In- & outdoor 7 90 1.5M

Table 1. Summary statistics of public pose datasets. Sync refers to whether the cameras are hardware (hw) or software (sw) synchronized.
It can be seen that SportsPose is the second largest markerless dataset and the dataset with the highest framerate and largest amount of
subjects.

4.2. SportsPose statistics

For a thorough analysis of the poses and movements in
the SportsPose dataset and to be able to compare it to ex-
isting datasets, we have calculated a series of statistics for
SportsPose, 3DPW [39], and Human3.6M [10]. We com-
pare to 3DPW and Human3.6M as they are the most com-
monly used datasets for developing new 3D human pose
estimation methods and represent the current go-to dataset
in respectively lab scenarios and in the wild scenarios.

To investigate how dynamic the movements in the
datasets are, we have computed the speed and acceleration
for all wrists, ankles, and hips in the datasets. The cumu-
lative distribution functions of these are in Figures 3 and 4.
From these distribution functions it becomes clear that the
movements in the SportsPose dataset differ from the move-
ments in 3DPW and Human3.6M in terms of speed and
acceleration, which is to be expected since we specifically
target dynamic sports movements. Inspecting the plots fur-
ther, we see that wrists from SportsPose have the fastest
speed and acceleration of the three datasets. This makes
sense since many sports-related movements are short bursts
of high acceleration resulting in fast movements, like throw-
ing a ball. Additionally, we also see high speed in the ankles
and hips, as opposed to Human3.6M. The 3DPW dataset
has the fastest speeds in both ankles and hips, which most
likely is due to their larger recording volume allowing the
subject to move freely around as opposed to Human3.6M
and SportsPose where the capturing volume is fixed in size
and space.

Figures 3 and 4 tell us that SportsPose contains fast
movements but we cannot conclude anything related to the
variety of poses based on this. With SportsPose we con-
tribute with a dataset not only with fast movements but also
a large variety of movements and poses. To demonstrate
this, we want to measure how much volume the joints move
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Figure 3. Comparison of the wrist, ankle, and hip speed as a cu-
mulative distribution function for Human3.6M, 3DPW, and Sport-
sPose. Lower lines indicate higher speeds. The mean speed for
each of the datasets are indicated by a vertical line.

through around the subject. We propose a new measure,
local movement to quantify joint movement.

Local movement only considers the extremum of the
body joints i.e. the wrists and ankles, which have the most
freedom to move relative to the body. To capture the move-
ment of these joints relative to the rest of the body, we do a
frame-wise rotation and translation for a change of coordi-
nate system. For the wrists, we have the new origin at the
shoulder with the x-axis aligned with the shoulders and the
hip-to-shoulder vector lying in the xz-plane, similarly for
the ankles centered at the hips and its x-axis aligned with
the hips. To exploit symmetry, the left-hand joints are mir-
rored and placed in the same coordinate system as the right-
hand joints. To figure out how much volume the wrists and
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Figure 4. Comparison of the wrist, ankle, and hip acceleration
as a cumulative distribution function for Human3.6M, 3DPW, and
SportsPose. Lower lines indicate higher accelerations. The mean
acceleration for each of the datasets are indicated by a vertical line.

ankles move through, we place a grid of voxels in the new
coordinate system with its sides aligned to the basis vectors.
By finding the cover ratio, i.e. the number of unique voxels
occupied by wrists or ankles divided by the total number of
frames, divided by two to account for mirroring, we get a
quantity that indicates how much movement was performed
locally to the subject. The larger the side length of the vox-
els is when the cover ratio approaches 1, the more volume
is covered throughout the movement. This is illustrated in
a 2D projection in Figure 5. By calculating the cover ra-
tio for n voxel side lengths log-spaced from 1 to 1/1000
of the length of an arm or a leg, and finding the area under
the curve divided by n, we get a metric that can be used
to compare two sets of poses. This is illustrated for three
sequences from SportsPose in Figure 6. Here we find that
tennis has more movement in the wrists than soccer, but less
ankle movement, reflecting the movements required in the
activities. We also see that the box jump has a larger area
under curve than both of the others, which is to be expected
as both the ankle and wrist joints move a lot when jumping.

The local movement measure is sensitive to the number
of poses used, and so to compare the datasets, we use a
random subset of 50, 000 poses (100, 000 joints including
symmetry) for each of the three datasets considered. The
resulting local movement metric is shown in Figure 7. Se-
lecting random subsets of poses can be done for this metric
since we are not directly considering the movements, but
only the poses that result from them, relaxing constraints
on the order and origin of the individual poses. We see that
SportsPose has the highest AUC for both wrists and ankles,
indicating that our dataset includes a larger range of move-

Figure 5. An example of local movement visualized in 2D. The
joints are shown in dark green and the visited voxels in a light
green, with the corresponding cover ratio on top. It can be seen
that the same number of joints, occupy a larger number of voxels
as the resolution of the voxel grid is increased.
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Figure 6. Fraction of unique voxels covered to the number of joints
in a local coordinate system as a function of the size of the vox-
els. The local movement plots are a measure for movement of the
wrists and ankles, here shown for a single sequence of three Sport-
sPose activities.
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Figure 7. Fraction of unique voxels covered to the number of joints
in the local coordinate system as a function of the size of the voxels
for a subset of 50,000 poses from each dataset. The plot is a mea-
sure of how much movement is present in the different datasets.

ments than both Human3.6M and 3DPW.

5. Data quality assessment
5.1. Evaluation setup

To verify the accuracy of our proposed markerless mo-
tion capture system, we have compared it to a commercial
motion capture system from Qualisys [25]. The Qualisys
system used is one of their most accurate systems consist-
ing of eight Arqus A5 sensors and two Miqus Video cam-
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eras. To perform the evaluation, we connected both systems
to a master synchronization unit, triggering both Qualisys
and our markerless camera setup simultaneously at 90 Hz.
This means that the two systems are frame synchronized
and we can be certain that no measured discrepancies be-
tween our predicted poses and the Qualisys ground truth
poses are caused by a time shift in the captures.

With our markerless system, we cannot freely choose the
joints or points of interest to track. Here we are constrained
to the joints detected with the used 2D pose detector which
we use to triangulate the 3D joint positions. 2D pose detec-
tors are trained on 2D datasets with joint labels annotated
by humans without any biomechanical knowledge [1, 17].
This introduces some bias to the predictions, but assuming
all annotations are correct, the annotators are asked to an-
notate the point corresponding to the joint center, which is
a position inside the body. This is obviously not possible so
the corresponding point on the surface of the body is instead
annotated.

On the contrary, with the marker-based system, we can
place markers on any joint or location on the body that we
want to track freely. Ideally, to match the triangulated points
from SportsPose the markers should be placed in the actual
joint centers, which again is not possible because it is in-
side the body and we can only place markers on the surface
of the body. We could place the markers in the same posi-
tions the markerless system detects but this depends on the
viewpoint and triangulates to the actual joint center, where
the marker-based system measures the actual marker loca-
tion in 3D space. To overcome this we place the markers on
anatomical landmarks on the body and use those locations
to derive the actual joint center location [5, 34, 43]. The
used anatomical landmarks are shown in Figure 8 and are
positioned directly on a rigid bone where possible.

The captured sequences used for the quality assesment
are not included in the 177K poses, we present in Table 1
but are 15, 386 additional poses, which also will be released
as a seperate quality assesment subset of the data. The rea-
son for this separation of our datasets is that we do not
want new models to be trained on data where the subjects
have visible markers attached. We do however assume that
the attached markers wont benefit our quality assessment as
the 2D pose detector is trained on the COCO dataset [17],
where there are no visible markers on the subjects.

For our comparison of the two systems, we used clothed
subjects with tight clothing in order to minimize any move-
ments between marker and joint, see Figure 8. We used
clothed subjects to keep the setting as close to a real sce-
nario as possible. With our markerset, illustrated in Fig-
ure 8, we ended up having most markers placed directly on
the skin of the subject. The exceptions to this were markers
placed on a belt around the hips, one set of markers on the
shoes, and three markers around the head attached to a hat.

Figure 8. 2D visualization of the detected joint centers from HR-
Net [35] in blue and the markers for the marker-based system [25]
in orange with occluded markers shown in a lighter orange. It can
be seen that the Qualisys markers are on the surface of the skin
while the predicted HRNet is positioned in the joint center. From
this illustration, it is clear that there is an offset between the two
marker sets.

5.2. Aligning joint protocols

Figure 8 shows the estimated joint locations from our
markerless system and the corresponding Qualisys marker
positions. From the figure, it is clear that there is a discrep-
ancy between the two marker protocols, which we need to
compensate for before doing the quality assessment of our
motion capture system.

To compensate for the offset we have, for each subject
in the evaluation capture, recorded a series of calibration
recordings where the subject is either standing in a static
pose with the arms out to the side as in Figure 8 or
performing a few slow and controlled movements. These
sequences are used to compute a linear transformation from
the markerset of the marker-based system to the markerset
of our markerless system.

For each joint at time t in the markerless system, J (t),
we define a local joint coordinate system from three marker
locations from the marker-based system, M (t)

1 ,M
(t)
2 ,M

(t)
3 .

Two of them are the closest two markers to the joint and
the last marker is chosen such that the joint moves little in
relation to the plane spanned by the three locations.

From the marker locations, we define the basis of the
new local joint coordinate system as,

v
(t)
1 = M

(t)
2 −M

(t)
1

v
(t)
2 = M

(t)
3 −M

(t)
1

v
(t)
3 = v

(t)
1 × v

(t)
2 ,

(2)

and set up the equation,

A(t) w +M
(t)
1 = J (t) . (3)
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Where, w are the weights corresponding to the linear trans-
formation, and A(t) contains the basis vectors of the local
coordinate system,

A(t) =

[
v
(t)
1

∥v(t)
1 ∥2

v
(t)
2

∥v(t)
2 ∥2

v
(t)
3

∥v(t)
3 ∥2

]
. (4)

Doing this for every timestep, t, and stacking all of the
matrices into A, J , and M1, we get one big system of equa-
tions, where we can compute the linear transformation by

w = (A⊤A)−1A⊤(J −M1). (5)

The estimated weights for the transformation, w ∈ R3,
are unique for each joint for each subject and are used to
transform the joints from the marker-based system to our
markerless system.

5.3. Quality assessment

The quantitative quality assessment is done for two sub-
jects who also are part of the main SportsPose dataset. The
evaluation capture is done in the same physical location as
the markerless indoor data and thus has identical lighting
and background conditions. For each of the subjects, a se-
ries of calibration sequences were captured in order to learn
the transformation between the markersets as described in
Section 5.2. The calibration sequences are only used to es-
timate the transformations, and the evaluation is carried out
on five repetitions of the five SportsPose activities of soccer,
volleyball, jump, baseball pitch, and tennis. All of these se-
quences are converted to SportsPoses’ markerset according
to Equation (6).

J̃ (t) = A(t) w +M
(t)
1 , (6)

where J̃ (t) is the ground truth joint at time t. For the evalu-
ation we adopted the evaluation protocol from Ingwersen et
al. [9], i.e. computing the errors as,

1

n

n∑
t=1

∣∣∣∣∣∣τ(J (t))− J̃ (t)
∣∣∣∣∣∣
2
, (7)

where τ depends on the reported metric. This is calculated
and averaged over the different joints. For the mean error
in Table 2, τ , is the identity transformation, for MPJPE it
is a hip alignment and for PA-MPJPE, it is a full similarity
transformation found by Procrustes analysis [6].

The evaluation is done over all seventeen joints in the
SportsPose dataset and the results can be found in Table 2.
The mean error is 34.5 mm across all evaluation sequences.
This shows that our ground truth is highly accurate for all
movements in our dataset. Jumping has the highest error of
the activities, still with a mean error below 4 cm. From the
table, we can also see that the mean error is lower than the

Sequence Mean error MPJPE PA-MPJPE

Baseball pitch 36.5 42.6 30.5
Jump 38.4 48.2 35.9
Tennis 31.4 35.5 24.9
Volleyball 34.1 38.2 27.7
Soccer 32.0 30.0 26.5

Total 34.5 38.9 29.1

Table 2. Quality assessment of the SportsPose dataset. It can be
seen that the MPJPE is higher than the mean error which suggests
that there is an offset between the SportsPose and marker-based
systems hip location, while the other joints are fairly similar. Over-
all we have a comparable error to the 3DPW dataset [39]. All the
errors are in mm.

hip aligned version and as expected the Procrustes aligned
error is the lowest. A higher error after hip alignment sug-
gests that we even after the alignment of the joint protocols
described in Section 5.2 still have an offset between the two
protocols. However, since the Procrustes aligned error is
lower this suggests that the majority of the remaining offset
is in the location of the hips in the two protocols.

6. Conclusion

With SportsPose we provide the second largest publicly
available markerless 3D human pose dataset in terms of
poses and the dataset with the largest amount of subjects.
The focus with the SportsPose dataset has been, as the name
suggests, to capture a dataset with sports poses which nat-
urally also are high-speed dynamic movements contrary to
the poses seen in most other available datasets.

In addition to the number of subjects in the dataset, we
also distinguish us from other markerless datasets through
the thorough evaluation of the precision of our data with
a commercial marker-based system. SportsPose is the only
publicly available dataset where ground truth evaluation has
been performed on data from the same domain as the data
in the dataset. An additional advantage of working without
markers is the lower set up time which has allowed us to
make a diverse dataset with a large number of poses and
subjects in multiple environments.

Our evaluation showed an average error of 34.5 mm
which is comparable to the error reported by the commonly
used 3DPW dataset [39]. We did however see that the Pro-
crustes aligned error was lower than the hip aligned error
which suggests that even after the alignment described in
Section 5.2 there is an offset in the position of the hip.

We hope the SportsPose dataset is able to advance re-
search and aid in development of methods for 3D human
pose estimation methods that generalize better to faster and
more extreme human movements.
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