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Figure 1. Illustration of our method, where the left part showcases the correction framework and the right part depicts the IoU score
between the ground truth trajectory and trajectory in each step of the framework (represented by the corresponding color). More precisely,
our approach can automatically choose crucial keyframes (red) for manual inspection and correction from the initial tracking trajectories
(blue), which helps to minimize the annotation expenses. After that, the precise trajectories (orange) are reconstructed via interpolation.

Abstract

Training data is a critical requirement for machine
learning tasks, and labeled training data can be expensive
to acquire, often requiring manual or semi-automated data
collection pipelines. For tracking applications, the data col-
lection involves drawing bounding boxes around the classes
of interest on each frame, and associate detections of the
same “instance” over frames. In a semi-automated data
collection pipeline, this can be achieved by running a base-
line detection and tracking algorithm, and relying on man-
ual correction to add/remove/change bounding boxes on
each frame, as well as resolving errors in the associations
over frames (track switches). In this paper, we propose a
data correction pipeline to generate ground-truth data more
efficiently in this semi-automated scenario. Our method
simplifies the trajectories from the tracking systems and let
the annotator verify and correct the objects in the sampled
keyframes. Once the objects in the keyframes are corrected,
the bounding boxes in the other frames are obtained by in-
terpolation. Our method achieves substantial reduction in
the number of frames requiring manual correction. In the
MOT dataset, it reduces the number of frames by 30x while
maintaining a HOTA score of 89.61% . Moreover, it re-
duces the number of frames by a factor of 10x while achiev-
ing a HOTA score of 79.24% in the SoccerNet dataset, and
85.79% in the DanceTrack dataset. The project code and

data are publicly released at github/foreverYoungGitHub.

1. Introduction
Object detection and tracking are core problems for

video sport analytics [3, 7, 17, 23, 28], as well as other
computer vision applications, such as surveillance systems
[22,25,26] and autonomous vehicles [12,15,19]. However,
these tasks often require large datasets, and manual annota-
tion in each frame is a time-consuming and expensive effort.

A practical semi-automated approach for data collec-
tion involves running off-the-shelf trackers, or an existing
tracker for a specific application [4, 10, 30, 31], and rely on
a manual cleanup process. This process would correct for
mistakes made by the tracking system, by considering er-
rors in the detections (e.g. adding missing bounding boxes,
adjusting them or deleting spurious detections), and errors
in the association over time (e.g. track switches).

Using tracking results as a prior for the annotation is of-
ten more efficient than starting from scratch, but verifying
and cleaning the data for each frame still requires a sig-
nificant effort. In this paper we explore ways to speed up
the annotating process by subsampling the tracking data,
selecting keyframes to be corrected, such that after correct-
ing only the keyframes, the whole sequence can be obtained
by interpolation.

A naive approach is to sample frames uniformly, but this
approach is far from optimal, especially with complex tra-
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jectories, where some frames are more important than oth-
ers (e.g. player changing direction). In this case, we can
improve over uniform sampling by finding the most impor-
tant keyframes to compress the trajectory, that is, treating
it as a trajectory simplification problem. Several methods
for trajectory simplification have been proposed to com-
press trajectory data in point-based applications [5,6,9,20],
such as GPS data. These methods aim to reduce the num-
ber of points in a given trajectory, keeping a subset of the
points that preserve important information about it. How-
ever, these methods were designed for point-tracking, and
they are not optimized for bounding boxes (where the scale
of an object over time is as important as its position). An-
other key difference for the problem at hand is that the input
trajectories are noisy, and we are interested in preserving the
quality of the trajectories after correction. For this reason,
the proposed method also takes the tracking confidence into
consideration when selecting the keyframes.

In this paper, we introduce a scale-invariant trajec-
tory simplification method for bounding box tracking, that
shows potential to significantly reduce annotation times,
while aiming to keep the tracking quality as close as pos-
sible to the quality obtained if all frames are corrected. Our
method is shown in Fig 1: given existing (noisy) trajec-
tory data, it selects keyframes to be corrected. In order to
find the optimal simplified trajectory, the keyframes are se-
lected both from high-quality observation and outliers, such
that the result minimizes the error metric for the recov-
ered trajectories. We introduce a scale-invariant error met-
ric to guide the trajectory simplification, that penalizes scale
changes of the objects in the image. After the keyframes are
manually corrected, the full trajectory is recovered by lin-
ear interpolation of the keyframes. We perform a thorough
evaluation on the MOT20 [8], SoccerNet [7] and Dance-
Track [27] datasets. We consider two sets of experiments:
(i) using tracking data from state-of-the-art detection ( [11])
and tracking ( [4], [30]) methods, and (ii) with synthetically
corrupted ground truth tracks, that simulate common errors
in trackers (e.g. bounding box jitter and track switches) and
let us analyze the impact in performance as we vary the
amount of noise in the tracking data. Our method is able
to generate high-quality trajectory data even in scenarios
where only 1/30 of the frames are corrected in the MOT20
dataset, 1/5 of the frames in the SoccerNet dataset and 1/10
of the frames in the DanceTrack dataset, outperforming ex-
isting trajectory simplification methods.

The key contributions of our work to the object tracking
community are as follows:

• We introduce a scale-invariant trajectory simplification
method to speed up semi-automated data collection for
object tracking in videos.

• We validate our proposed method on the MOT20, Soc-

cerNet and DanceTrack datasets, that show improved
performance compared to other trajectory simplifica-
tion methods.

2. Related Work
Video and Interactive Annotation. In recent years, the

demand for video annotation tools has increased due to their
vital role in training data for visual tasks. Interactive re-
current annotation framework introduced by Le et al. [16],
and semi-automatic annotation method proposed by Ince et
al. [14] have gained popularity. However, these methods
still require checking all frames during annotation, leading
to high annotation costs.

Existing video annotation tools, such as CVAT [1] and
VATIC [29], offer a practical solution by using linear in-
terpolation to generate bounding boxes and points for most
frames, while partially annotating the key frames. However,
these tools have limitations as they cannot integrate with ex-
isting semi-automatic annotation methods: the annotation
process becomes time-consuming and costly by given auto-
matically generated tracking trajectories, as the tools typi-
cally mark every frame as a keyframe, and annotators need
to review and remove unnecessary annotations.

Trajectory Simplification. Trajectory simplification
presents one approach to automatically selecting useful
keyframes in tracking trajectories. These methods have
been utilized to compress trajectory data from a wide range
of systems, including motion capture, touch screens, GPS,
and IMUs. The goal of trajectory simplification is to reduce
storage and computational resources, which is achieved by
taking a sequence of size N and obtaining a subsequence
with M points (M ≪ N ) that generates the minimum spa-
tial distance error.

Dynamic programming (DP) [2] could be considered as
the first algorithm for trajectory simplification, capable of
guaranteeing to find the minimum error with O(N3) time
complexity. DP was later improved in [9], with an approx-
imate simplification method with error bound guarantee.
This method minimizes the perpendicular Euclidean dis-
tance (PED), which is the shortest distance between points
and their anchor segments. An extension of DP called TD-
TR [20] exploits the temporal dimension of trajectories and
employs a new distance measure, called Synchronous Eu-
clidean Distance (SED), that replaces the perpendicular dis-
tance used in DP when finding the split point with the max-
imum distance. SED considers the time information and
uses it as the ratio to find the synchronized location of the
points based on the linear interpolation. It calculates the
distance between the actual point locations and their syn-
chronized locations on the anchor segment.

A different approach involves constructing a Directed
Acyclic Graph(DAG) and optimizing the trajectory by min-
imizing the integral of error metrics ϵ. Optimization-based
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approaches [5, 6] compute the error metric for each corre-
sponding timestamp and minimize the global integral error
to improve performance. These methods use two integral
errors, commonly known as integral square PED (ISPED)
and integral square (ISSED).

It is worth noting that, unlike bounding box trajectories
in vision problems, GPS or IMU trajectories are directly
captured from the sensors and normally do not contain con-
fidence scores. Therefore, current trajectory simplification
methods do not rely on confidence information and cannot
filter out low-quality observations. Additionally, these er-
ror functions present some issues when applied to bounding
boxes, as they treat the two points that define a bounding
box separately. This paper addresses these two issues.

3. Problem Formulation
We formulate the problem as follows: the inputs are

noisy tracking observations Bn, consisting of bounding
boxes bt, scores st for a set of frames Tn for a given track
id n.

Bn = {bt, st}, t ∈ Tn (1)

The trajectory simplification task consists in finding the
set B’n that subsamples the frames obtaining T’n (|T’n| ≪
|Tn|), aiming to preserve information on the original se-
quence. We call the ratio of |Tn|/|T’n| the compression
ratio. More precisely, the simplified trajectory B’n can be
interpolated to recover the same number of frames of the
original trajectory, obtaining B”n. We can view the subsam-
pled frames as keyframes for the trajectory. In this paper,
we consider that B”n is recovered by linear interpolation of
the simplified trajectory B’n, and we compare Bn and B”
with bounding box metrics (IoU) [32] and tracking metrics
(MOTA [21], HOTA [18]).

4. Proposed method
We present a trajectory correction framework that uti-

lizes tracking data as input and requires manual correction
only for a small subset of this data to obtain the entire cor-
rected sequence. Figure 2 shows an overview of the frame-
work: The proposed method categorizes observations into
high-quality (green) and low-quality (blue) subsets. Tra-
jectories are then simplified by selecting a small set of
keyframes from the full set using algorithms described in
subsequent subsections. Only the selected keyframes re-
quire manual review or correction. Groundtruth trajectories
are then interpolated from the cleaned simplified trajecto-
ries.

4.1. Initializing the Searching Space

To initialize the search space for tracking trajectories,
a set of high-quality bounding boxes and outliers of low-

Tracking Output

Initial searching Space

Simplified/Optimize Trajectory

Manual Correction & interpolation

1)

2)

3)

4)

Figure 2. Illustration of the correction framework for one trajec-
tory. Each line shows the trajectory in intermediate steps of the
process: 1) the tracking trajectory, which is composed by high-
quality observation (green) and the low-quality observation (blue);
2) the initialized searching space (shown in 4.1), which includes
the high-quality observation and the outlier of low-quality obser-
vations (b2); 3) the optimized trajectory in searching space by min-
imizing global error (shown in 4.2); 4) verified (green) and cor-
rected (orange) the simplified trajectory, and recovered the whole
trajectory by linear interpolation (dashed blue)

quality bounding boxes are selected. The details of this step
are presented in Algorithm 1.

To filter out noisy observations and maintain necessary
boxes to recover the trajectory, the high-quality bounding
boxes are retained. Based on the assumption that a pre-
dicted bounding box bt with a higher score st is closer to the
ground truth box b′′t , the confidence scores st of predicted
bounding boxes are used to identify high-quality bounding
boxes.

However, it is also important to include outliers of the
low-quality bounding boxes to cover scenarios such as mo-
tion blur or irregular appearance which cannot be perfectly
interpolated. For selection of the outliers, we draw inspi-
ration from the Douglas-Peucker algorithm [9]. For each
anchor segment between high-confidence bounding boxes,
we find the box bt causing the largest error ϵ with respect
to a given tolerance threshold ϵth. If the error ϵ is less than
ϵth, the approximation is accepted, and we only keep the
two high-confidence bounding boxes while discarding the
remaining boxes within the segment. If the error ϵ is greater
than ϵth, we split the segment into two sub-segments and
add bt into the searching space S.

Scale-Invariant Error Metrics for Bounding Boxes.
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Figure 3. Illustration of ErfIoU . The green boxes are the selected
searching space, and it forms two tracking segments b1b4 and b4b6.
The blue boxes are the predicted boxes not in the searching space,
while the red boxes are the synchronized boxes for each tracking
segment. The error metric for bounding boxes ErfIoU (bt) calcu-
lates the IoU distance between the predicted bounding box bt and
synchronized box b′t.

The central objective of our method is to generate highly
compressed trajectories with low error. This is achieved by
minimizing an error metric for the simplified trajectory. Er-
ror metrics proposed in the trajectory simplification liter-
ature are focused on point-based trajectories such as PED
[9, 13] or SED [6, 20], which is not suitable for the bound-
ing boxes trajectories.

In the case of bounding boxes, the Intersection over
Union (IoU) score is a commonly used metric for both train-
ing and evaluation. IoU is a scale-invariant metric that per-
forms well in pinhole geometry. In this paper, we pro-
pose the synchronized IoU distance as the error metric to
simplify the tracking trajectories. The synchronized IoU
distance is calculated based on the IoU distance between
the actual boxes (bt) and their corresponding synchronized
boxes (b′t) on the anchor segment. An example of the syn-
chronized IoU distance is shown in Figure 3. Here, synchro-
nized IoU distance of box b5 in between the anchor segment
b4 and b6 is calculated as the IoU distance between b5 and
the corresponding synchronized box b′5, which is linearly
interpolated based on the time information.

To make the simplified trajectory more robust and re-
duce manual corrections, we incorporate the confidence
score st as weights into the synchronized IoU distance. The
weighted IoU error metric is defined in Equation 2.

ErfIoU(bt, b
′
t, st) = st × (1− IoU(bt, b

′
t)) (2)

= st × (1− I(bt, b
′
t)

U(bt, b′t)
)

where I(bt, b
′
t) means the intersection area of the actual

predict bounding box bt and synchronized box b′t, while the
U(bt, b

′
t) means the union area of the bt and b′t, st means

the confidence score of the predicted boxes bt.

4.2. Simplification by minimizing the integral error

To reduce the number of nodes while minimizing the er-
ror metric, we utilize a Directed Acyclic Graph (DAG) that
describes all potential simplified trajectories within a error

Algorithm 1 Initialize the Search Space
Input
B = {{b1, s1} , ..., {bT , sT }}: boxes with score.
Ω: Confidence threshold.
ϵth: Error tolerance.
Erf: Error metric.
Output
S: Search spaces.

1: S = []
2: for i in range(T ) do
3: if si ≥ Ω then Append index i to S

4: for i = 0 to |S| − 1 do
5: Get subset B of B from index S[i] to S[i+ 1]
6: indices L = Search(B)
7: Insert indices L to S
8: return sort(S)
9:

10: procedure SEARCH(B, ϵ,Erf)
11: if len(B) ≤ 2 then return {}
12: ϵ, i = maxErf(B)
13: if ϵ ≤ ϵth then return {}
14: else
15: Split B to B1, B2 at index i
16: return {i} + Search(B1) + Search(B2)

tolerance threshold ϵth. The DAG represents the observa-
tion nodes in the search space, with edges connecting any
two vertices if the max error between them is less than the
threshold ϵth. In order to minimize the global integral error
from the root vertex V0 to VT , each vertex Vi stores the in-
tegral error from V0 to Vi. The integral error of the node
is obtained by integrating the previous integral error stored
in parent vertices and the local errors between the current
node and its connected parent node. In each step, the best
parent node is selected to minimize the integral error. The
DAG is constructed such that the integral error stored in VT

is the minimum of the global integral error. An example
of a constructed DAG is shown in Figure 4, where the ini-
tial searching space S = {B0,B3,B4,B5,B7,B8,B9}. We
begin by checking if the root box B0 can connect to other
boxes. Here, since the max ErfIoU between B3,B4,B5 and
B0 is less than ϵth, we connect them to the root vertex. We
do not build the connection between B0 and B7 since the
max ErfIoU(B0 → B7) > ϵth. We stop checking the re-
maining boxes once max ErfIoU(B0 → B8) > ϵth. We then
proceed to check the connections between B7,B8,B9 and
the current parent vertices B3,B4,B5, until we construct the
complete DAG.

To obtain the simplified trajectory, we follow the unique
path from the last vertex BT to the first vertex B0 in reverse
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Figure 4. Illustration of constructed DAG, where the green nodes
denote the boxes that are present in the search space S.

order. For instance, the final simplified trajectories in Fig
4 is {B0,B5,B9}. The algorithm for minimizing the error
metric is provided in Algorithm 2. Notably, this approach
is similar to previous work such as [5, 6]. By utilizing the
DAG and minimizing the integral error, our approach can
effectively reduce the number of nodes in the search space
while maintaining a high level of accuracy.

General Integration (GI) Function. The integral er-
ror in each layer integrates local errors between the current
node and parents and the integral error in the previous path
stored at parents node. To form a general integral function,
we extend previous integral functions, such as ISPED [6]
and ISSED [5], by using the n-norm to combine errors,
which is defined in the Equation 3.

GI0→1 = |[ϵ0, ϵ1]|n
GI0→c = |[GI0→p, ϵp+1, ..., ϵc]|n (3)

= |[ϵ0, ..., ϵc]|n

where GI0→1 is the integral error from the root vertex
(index 0) to one of its child vertices (index 1), while ϵ0 is
the error at index 0. GI0→c denotes the integral error from
the root vertex (index 0) to the child vertex (index c), and
GI0→p represents the previous integral error from the root
to parent vertex (index p) stored in the parent node.

The equation states that the n-norm of the error from the
root vertex V0 to Vc is equal to the n-norm of the previous
integral error and the set of errors between the parent and
child nodes. This means that the GI between the parent and
leaf nodes is equal to the global integral function. By min-
imizing the GI in each layer, we can minimize the global
integral error.

The value of n in the n-norm balances the mean and max
of the error samples. When n = 1, it represents the sum of
all the error metrics in each timestamp. When n = 2, it
represents the integral square of the error metrics in each
subseries. When n is infinite, the integral error represents
the maximum error in each subseries.

5. Experimental Protocol
We conducted experiments to evaluate the proposed tra-

jectory correction algorithm on both real tracking data and
synthetic data with various levels of noise. In both cases,
we utilize a simulated correction pipeline, by matching the

Algorithm 2 Minimizing the integral error
Input
B = {{b1, s1} , ..., {bT , sT }}: boxes with score.
S = {i1, ..., iM}: Search space.
ϵth: Error tolerance.
Erf: Error metric.
GI: Integral function.
Output
R: Result for the simplified indices.

1: //visit status V : unvisited, current leaf, current parent,
visited

2: set V to visited for all the nodes in search space S
3: set V0 as the root node with status current parent
4: set E = [0, inf, ..., inf] to store the integral errors

GI0→t for all B
5: set P for parent node index of all B
6: while Vend not visit do
7: for ic in unvisited nodes do
8: for ip in current parent nodes do
9: Get subset B of B from index ip to ic

10: ϵB = Erf(B) ▷ ϵB is a list of errors
11: ϵ = max(ϵBS

)
12: GI0→ic = GI(Eip , ϵB)
13: if ϵ < ϵth and GI0→ic < Eic then
14: set Vic is current leaf
15: set Eic = GI0→ic and Pic = ip
16: else if ϵ > 2ϵth then break to while
17: set V of node in current parents to visited
18: set V of node in current child to current parents
19: return ravel through the unique path from Pend → P0

for parent node index of all BS

predicted bounding boxes on the selected keyframes with
the ground truth data. Specifically, this experimental pro-
tocol assumes that any frame selected for manual review is
perfectly corrected. After correcting the keyframes, we in-
terpolate the trajectory and report metrics that compare the
interpolated corrected trajectory with the ground truth. It
should be noted that we only used linear interpolation to
ensure compatibility with existing annotation toolboxes.

For these experiments, unless explicitly stated, the con-
fidence threshold Ω was selected based on the top 10 per-
centile of each trajectory. The error metric used was the
IoU distance, while the n value was set to 1 in the general
integral function. As there are no similar approaches for
this task, we compared our method with uniform sampling
and the SOTA DP-based [20] and DAG-based [6] point tra-
jectory simplification methods. For the latter, we simplified
the bounding box trajectories using the top-left and bottom-
right points of the box.

Datasets and Evaluation Metric. We evaluate our pro-
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Figure 5. The HOTA score for trajectory correction as we vary the
compression rate. The uniform sampling, TDTR [20], MRPA [6],
and our proposed method are represented by the blue, yellow,
cyan, and red curves, respectively. A higher accuracy score in-
dicates better correction results.

posed method on MOT20 [8], SoccerNet [7] and Dance-
Track [27] datasets. The MOT20 dataset [8] consists of
multi-person tracking data for pedestrians, with the scale
of the bounding box being relatively consistent in the full
track. SoccerNet [7] is a tracking dataset consisting of mul-
tiple objects, including players, the ball, and referees, in
soccer broadcast videos, that may involve camera move-
ment. In this paper, we consider only tracking of the person
class in the evaluation. The DanceTrack [27] dataset con-
sists of multi-person tracking in dance videos. In Dance-
Track, the bounding boxes vary significantly in the nearby
frames and the entire sequence. To evaluate the accuracy of
the interpolated corrected trajectory, we adopt IoU scores in
detection metrics and MOTA [21] and HOTA [18] in track-
ing metrics.

Input tracking data. For the real tracking data, we
apply YoloX [11] pretrained on CrowdHuman [24] and
MOT20 [8] datasets to extract bounding boxes in each
frame, and we use the combination of the ocsort [4] and
byte [30] algorithms to track the bounding boxes without
any re-identification features. We match the actual trajec-
tory with the ground truth trajectory by Hungarian assign-
ment in each frame to associate the bounding boxes with
the corresponding ground truth data. Each actual trajectory
is then simplified based on our proposed method, generat-
ing a simplified trajectory that is ready for data correction.
To mimic the data correction process, we assign the ground
truth bounding box and track IDs back to the keyframes in
the simplified trajectory to fix the bounding box jitters and
ID switches. In cases where the first or last objects in the
ground truth trajectory do not have a corresponding match
in the tracking data, we add these missing objects to the
corrected trajectory in order to align it with the ground truth
trajectory and facilitate meaningful comparison.

Synthetic data. To investigate the algorithm’s sensitiv-
ity to different levels of noise in the input tracking data,
we perform additional experiments using synthetic data.

MOT20 [8] IoU(mean) IoU(min) MOTA HOTA
Raw Tracking - - 93.28% 75.14%
Uniform(x30) 88.58% 60.52% 98.14% 88.59%

TD-TR [20](x30) 86.01% 59.47% 96.89% 82.23%
MRPA [6](x30) 87.44% 62.57% 98.58% 85.12%

ours(x30) 91.37% 70.28% 99.36% 89.61%
SoccerNet [7] IoU(mean) IoU(min) MOTA HOTA
Raw Tracking - - 49.22% 49.55%
Uniform(x10) 79.81% 12.55% 84.07% 75.77%

TD-TR [20](x10) 79.04% 14.34% 85.97% 74.18%
MRPA [6](x10) 80.08% 15.09% 87.66% 75.5%

ours(x10) 82.96% 16.2% 89.7% 79.24%
DanceTrack [27] IoU(mean) IoU(min) MOTA HOTA

Raw Tracking - - 91.33% 58.7%
Uniform(x10) 83.54% 31.75% 93.78% 79.78%

TD-TR [20](x10) 83.4% 37.58% 94.95% 80.72%
MRPA [6](x10) 84.31% 40.86% 95.09% 80.9%

ours(x10) 87.54% 46.58% 98.46% 85.79%

Table 1. The data correction accuracy for real trajectory in
MOT20(upper) and DanceTrack(lower) datasets. The x30 and x10
in the scope means the compression rate is 30 times and 10 times
respectively. The higher accuracy score means the better result we
get.

We corrupt the ground truth trajectories with two common
tracking mistakes: bounding box jitter and track switches.
We simulate bounding box jitter by perturbing the bound-
ing box positions (center and scale) with Gaussian noise.
For track switches, we switch the tracking IDs of bounding
boxes with high overlap (IoU > 0.5) with a probability p. A
probability of 0 indicates that the input trajectory is noise-
free and therefore the process is equivalent to simplifying
ground truth trajectory. Following the same procedure used
for the actual tracking data, we apply the correction meth-
ods to select the keyframes and correct them based on the
matched ground truth data.

6. Result and Discussion

6.1. Tracking trajectory correction

To validate the performance of our algorithm on real
tracking data, we experiment with different compression ra-
tios on the three selected datasets. The compression ratio
indicates how much we compressed the trajectory (e.g. a
ratio of 10 indicate that 1/10th of the frames were selected
for correction). We report the results in terms of HOTA
scores, which are shown in Figure 5. Our algorithm out-
performs existing methods on both datasets. In general, we
observe that the higher the compression ratio, the greater
the improvement gained from our algorithm.

Figure 5a revealed an intriguing pattern on the MOT20
dataset: at low compression rates, trajectory simplification
methods may underperform compared to the straightfor-
ward uniform sampling. For instance, when the compres-
sion rate is less than 20x, our algorithm performs similarly
or slightly worse than uniform sampling. Uniform sampling
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works well in this scenario due to the MOT20 trajectories
having linear motion within the short time window [27],
while trajectory simplification methods tend to prioritize
covering outliers caused by ID switches instead of reduc-
ing the frame gap, which could decrease detection accuracy
(DetA). However, when the time window increases, non-
linear motions become more prevalent within the trajecto-
ries, which is where our method excels by increasing the
compression rate. Conversely, in the DanceTrack dataset
(Figure 5c), all trajectory simplification methods outper-
form uniform sampling with all compression rates by se-
lecting keyframes that capture the trajectories’ significant
variations resulting from large and non-linear motions.

Another important observation from Figure 5 is that re-
ducing the compression rate is critical to obtaining high-
quality ground truth trajectories for complex motions and
noisy tracking trajectories. This is due to the fact that, for
the same compression rate, the accuracy of the corrected
trajectory in SoccerNet is lower than that in the less com-
plex much cleaner MOT20 dataset. For instance, when our
method is used to sample trajectories 20 times and correct
them, the mean IoU and HOTA scores for the fully recov-
ered trajectories in MOT20 are 93.93% and 93.16%, respec-
tively, while the mean IoU and HOTA scores decrease to
75.48% and 70.76% in SoccerNet. It should be noted that
a visual shift in bounding boxes may be observed when the
IoU scores are lower than 90%.

Table 1 presents the accuracy scores of the raw tracking
trajectories and the corrected trajectories. The simulated
correction pipeline is effective in significantly boosting the
HOTA scores since all id switches are corrected in the re-
covered trajectory. For instance, in the DanceTrack dataset,
the HOTA score only achieves 58.7% in the raw tracking
trajectories due to the low association accuracy (41.91%).
However, our proposed correction method is capable of in-
creasing the HOTA score to 85.79%.

The results in Table 1 demonstrate that the classic point-
based trajectory simplification methods, TDTR [20] and
MRPA [6], perform similarly or slightly worse than uniform
sampling in both datasets when the mean IoU metric is con-
sidered. This suggests that these methods struggle to iden-
tify keyframes for the visual bounding box trajectories. In
contrast, our proposed model achieves substantially higher
mean IoU scores in all datasets. Moreover, although tra-
jectory simplification methods may slightly underperform
compared to uniform sampling for the entire trajectories,
they are more effective in covering the outlier cases based
on the min IoU metric. It is important to note that our pro-
posed method has a more significant impact on the outlier
cases, as compared to uniform sampling. In particular, us-
ing our method, the min IoU scores for the corrected trajec-
tories increase by 9.76% and 14.83% for the MOT20 and
DanceTrack datasets, respectively, demonstrating its effec-

HighConf Outlier min-ϵ Dist IoUmean IoUmin

✓ SED 83.4% 37.58%
✓ SED 84.31% 40.86%

✓ IoU 86.03% 47.18%
✓ IoU 87.33% 45.91%

✓ ✓ IoU 86.81% 39.83%
✓ ✓ ✓ IoU 87.54% 46.58%
✓ ✓ ✓ DIoU 87.74% 46.87%

Table 2. Ablation studies on different modules in our proposed
method, which were evaluated on the actual track generated from
the DanceTrack dataset at an approximate compression rate of
10x.

tiveness in handling challenging tracking scenarios.

6.2. Algorithm Modules Analysis

To understand our algorithm better, we carried out con-
trolled experiments to examine how each component affects
performance. For all experiments, we use the same set-
tings and real tracking trajectory data, except for specified
changes to the settings or component(s). The relative results
are shown in Table 2.

Using scale-invariant error metrics, such as IoU, is
crucial for accurate visual tracking annotation. Table 2
shows that adopting the IoU as the error metric leads to the
most significant improvement, boosting mean IoU scores by
3%. Further improvements in accuracy can be achieved by
using the DIoU [32] and CIoU [33] distance metrics, which
increase mean IoU scores by 0.2%.

Combining high-quality and outlier boxes for ini-
tializing the searching space produces the best results.
When optimizing the integral error for only high-quality
bounding boxes, useful information is removed, resulting
in a min IoU score of 39.83%. However, incorporating all
bounding box trajectories can bias the simplified trajecto-
ries with noisy low-quality bounding boxes. By combin-
ing high-quality and outlier bounding boxes, our proposed
method is able to filter noise while retaining necessary tra-
jectory information, achieving a mean IoU score of 87.74%
and a min IoU score of 46%.

6.3. Trajectory Noise Impact Analysis

We now consider the results on the synthetic dataset, in
order to quantify the impact on performance of bounding
box jitter and track id switches.

Correction of trajectories with noisy detection. The
HOTA scores of the corrected trajectories are shown in Fig
6a. Here, we only use uniform sampling as a baseline refer-
ence since it is not impacted by the bounding box noise, and
therefore only one curve is plotted for uniform sampling.

In Figure 6a, we observed that our proposed algorithm
outperforms uniform sampling in general. The HOTA
scores generated by our algorithm closely match the sim-
plified ground truth trajectory (p = 0) when the noise prob-

5135



(a
)N

oi
sy

D
et

ec
tio

n

10 20 30 40

85

90

95

100

HO
TA

MOT20
5 10 15

60

70

80

90

100

SoccerNet
5 10 15 20

70

75

80

85

90

95

100

DanceTrack

uniform
our(p=0)

our(p=0.2)
our(p=0.4)

our(p=0.6)
our(p=0.8)

(b
)N

oi
sy

ID
Sw

itc
h

10 20 30 40
 

85

90

95

100

HO
TA

MOT20
5 10 15

Compress Ratio
60

70

80

90

100

SoccerNet
5 10 15 20

 
70

75

80

85

90

95

100

DanceTrack

uniform
our(p=0)

our(p=0.05)
our(p=0.15)

our(p=0.25)

Figure 6. The HOTA score for trajectory correction with noisy
bounding box (a) and noisy id switches (b). The blue curves rep-
resent the scores for uniform sampling, whereas the red curves cor-
respond to the results obtained from our proposed methods. The
label on the curves includes the noisy probability p, with darker
lines indicating higher levels of detection noise / id switches in the
trajectories.

ability is less than 0.4. This demonstrates that our algo-
rithm effectively filters out the noisy bounding boxes and
retains the most informative keyframes. However, the ac-
curacy score notably decreases when the noisy jitter rate
surpasses 0.4, especially at low compression rates. This is
because nearly every bounding box experiences shifts when
the noise probability is extremely high. In such cases, as
we minimize the integral error by sampling more data, we
inadvertently incorporate more noisy bounding box jitters.
Thus, the proposed algorithm is highly sensitive to high lev-
els of bounding box jitter.

Correction of trajectories with track id switches. The
HOTA scores of the corrected trajectories are shown in Fig
6b. Our proposed algorithm consistently outperforms uni-
form sampling in all sampling rates and id switch noise
rates. Moreover, the algorithm is able to capture errors that
occur when id switches happen, resulting in HOTA scores
that are close to the simplified ground truth trajectory when
the noise rate is low. However, when the noise probability
is high, such as in the case of the MOT20 dataset with a
sampling rate of 20x, there is a concave curve in the HOTA
scores of our algorithm. That is because there are many id
switches that occur frequently back and forth in the adja-
cent frames with high noise probability. In this case, the
uniform sampling directly skips some of the id switches
segments, while our algorithm captures these id switches
densely as they happen, sacrificing the accuracy of the rest
of the trajectory, which supports our assumption in Section

6.1. It should be noted that the id switches were simulated
at higher frequencies than what is typically observed in real
tracking data, as the objective of this section was to evaluate
the algorithm’s performance under varied levels of noise.

It is worth noting that although we have added signif-
icant amounts of detection and tracking noise to generate
the synthetic dataset, the trajectories remain mostly com-
plete without any missing frames. This is in contrast to
real data, as illustrated by the example of SoccerNet in Fig
5b), the HOTA score after correcting all frames in the track-
ing trajectories is only 92.22% due to the incompleteness
of the generated trajectories by the pre-trained model. On
the other hand, based on the result shown in Fig 6, if we
can provide acceptable trajectories for SoccerNet generated
by the fine-tuned model, our method can achieve 90.21%
HOTA by correcting only 3 frames per second, and 94.75%
HOTA by correcting only 5 frames per second. In compari-
son, the uniform sample method requires correcting half of
the frames to achieve a HOTA score of 94.23%.

7. Limitation

Our experimental results have identified certain limita-
tions of the proposed method. It has been observed that if
the tracked motion predominantly follows a linear pattern,
the proposed method may not demonstrate an improvement
over uniform sampling. As observed in MOT20 dataset,
where the proposed method only outperforms uniform sam-
pling at compression rates exceeding 20x. Additionally,
limited to the existing annotation tools, the use of linear in-
terpolation between keyframes imposes a constraint on the
extent to which complex trajectories can be compressed. As
observed in the DanceTrack dataset, although the proposed
method exhibits significant improvements over other meth-
ods, when the compression rate is over 10x, the IoU drops
below 90% which leading to visible errors.

8. Conclusion

In this paper, we introduced a scale-invariant trajectory
simplification method to minimize the annotation cost for
semi-automated bounding box trajectory collection. The
proposed method selects keyframes for each object in the
video, such that only the keyframes needs manual review
and correction. The experiments conducted on three popu-
lar tracking datasets demonstrate that our method can gener-
ate high-quality annotation data while requiring correction
of significantly fewer frames. We also conducted ablation
studies that showed that using a scale-invariant error metric
is crucial for the task of simplifying bounding-box tracking
data. Future work can consider extending these formula-
tions to other vision trajectory tasks, such as pose tracking.
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