This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Combining Physics and Deep Learning Models to Simulate the
Flight of a Golf Ball

William McNally

Jacob Lambeth Dustin Brekke

Dunlop Sports Americas
Huntington Beach, CA

willmcnally@clevelandgolf.com

Abstract

We introduce a new golf ball flight model powered by
deep learning. Our method combines a physics model with
a deep learning model by inserting a neural network di-
rectly into the differential equations governing the projec-
tile motion of the golf ball. The role of the neural network is
to estimate the aerodynamic coefficients based on the state
of the golf ball at each time step. The entire model was
made end-to-end differentiable, permitting us to train the
neural network using only measured launch conditions and
landing positions. However, in experiments we find that us-
ing additional loss terms, such as the max height error, im-
proves the accuracy of the predicted landing position. The
key to our approach is that we automatically learn the rela-
tionship between the aerodynamic coefficients and the state
of the golf ball directly from the data as opposed to manu-
ally defining a model that imposes a bias. As a result, we
are able to reduce the mean landing position error by 28%
compared to a published model that learns the coefficients
by fitting polynomials to the spin ratio. Our method is also
computationally efficient, with a processing time of 35 ms
for a single shot using a CPU.

1. Introduction

Physics models and simulations (e.g., computational
fluid dynamics [13, 28, 32, 45], finite element analysis [0,

, 30, 42], contact models [14, 20, 23, 38, 44, 48], biome-
chanical models [33,47], etc.) play a fundamental role in
sports engineering and serve as a vital tool for innovation,
especially in regards to the design of sporting equipment.
These dynamic models often include physical parameters
or variables (e.g., aerodynamic coefficients, material prop-
erties, forces, etc.) whose values are unknown and need
to be identified using empirical data. Identifying these pa-
rameters directly often requires rigorous experiments, so a
common approach is to perform indirect parameter identifi-

Simulated
Ball Flight

Deep Learning
Model

H

dy(t) Physics
/dt Model

f

Camera-based
.. Launch Monitor

Figure 1. We propose a new ball flight model for golf that inte-
grates deep learning directly into the differential equations gov-
erning the motion of a golf ball. After training the neural network
using ball flight meta data, realistic golf ball trajectories can be
simulated using the initial state of the golf ball as measured by
camera-based launch monitors.

cation using measurements that are easier to obtain [34,37].
However, when the parameter in question is a function of
the system states, the designer imposes an inductive bias on
the model when choosing an appropriate target function [9].
For example, the designer may choose a linear regression
model when the true nature of the parameter may be highly
complex and non-linear.

Deep learning and artificial neural networks [36] present
an opportunity to learn parameters in physics simulations
without making assumptions about their true nature. De-
spite the recent popularity of deep learning and its appar-
ent suitability for parameter identification, its use in physics
models and simulations is remarkably scarce. In this paper,
we harness the power of deep learning in a physics model
that simulates the flight of a golf ball after it is struck. At
each time step, the simulation calls upon a neural network
to estimate aerodynamic coefficients based on the state of

5119

the golf ball, which are then used to compute the aerody-
namic forces and solve the differential equations governing
the motion of the golf ball. Moreover, we implement the en-
tire simulation in a manner that is end-to-end differentiable
and propose a method for training the neural network using
ball flight meta data obtained from radar-based launch mon-
itors. After training, the ball flight model may be used with
any launch monitor, including camera-based launch moni-
tors commonly found in golf simulators (see Figure 1).
While existing ball flight models often relate the aerody-
namic coefficients to physical properties such as Reynold’s
number or the spin ratio [1,27, 50], our approach makes
no such assumptions and automatically learns the relation-
ship between the aerodynamic coefficients and the raw golf
ball state (i.e., its velocity and spin vectors). As a result, we
find that our approach generates more realistic ball flights,
as evidenced by a 28% reduction in the mean landing po-
sition error compared to a published baseline that estimates
the aerodynamic coefficients using the spin ratio as the in-
dependent variable in a polynomial regression [27].

1.1. Motivation

Accurately predicting the flight of a golf ball has great
utility within the golf industry. Camera-based launch mon-
itors, such as the GCQuad from Foresight Sports, capture
the initial conditions of the golf ball, but they can only see
a very short distance after impact. A model must be used to
predict the remaining flight of the ball. Radar-based launch
monitors, such as a TrackMan, capture the full flight of the
golf ball. However, a ball flight model must be used when
indoors or when the launch monitor cannot capture the full
flight of the ball. Additionally, players can make use of a
“normalized” output, where the ball flight is adjusted for
environmental conditions such as wind, altitude, and tem-
perature.

Ball flight models are also used by ball and club man-
ufacturers to improve the performance of their products.
Clubhead properties, such as face curvature, center of grav-
ity, and moments of inertia, can directly affect the launch
conditions of the golf ball after impact [22]. An accurate
flight model can be used by a club manufacturer to tune
these properties to maximize distance or accuracy [46, 55,

,05]. A ball manufacturer may use a flight model to more
efficiently design a ball’s dimple pattern [1,3,11]. Ball flight
models have also been used to tune biomechanical golfer
models [8,47].

Although a statistical model can also be used to estimate
the ball’s landing position [16, 27], physics-based flight
models provide a variety of benefits. By calculating the full
trajectory of the golf ball, visual feedback is provided to
the player, which allows them to play and practice virtually.
Physics-based flight models can also determine the landing
conditions (velocity and spin) of the golf ball more easily.

The landing conditions affect how the ball will interact with
the turf and is vital to predicting the run of the ball [56]. Al-
though this work focuses on a golf ball flight model, the
same approach can be applied to other ball sports. Ball
flight models have been developed for many other sports,
including baseball [2,4,59], tennis [21], soccer [25,29], ta-
ble tennis [60], cricket [17], and volleyball [63].

1.2. Related Work

There have been many different models and approaches
used to estimate the trajectory and landing position of the
golf ball. Cochran and Stobbs [16] showed that driver
distance could be estimated as a function of ball speed.
Daish [22] developed a numerically integrated model using
lift and drag. Erlichson [26] used optimization routines to
determine launch conditions to maximize carry. Smits and
Smith [62] included spin rate decay and nonlinear drag de-
pendence on Reynold’s number. Quintavalla [57] examined
the cross-dependance of Reynold’s number and spin ratio
for estimating drag and lift coefficients. Various ball trajec-
tory models have also been extended to three dimensions
to accurately capture the curve of ball flight [49, 50, 50].
Developing a ball flight model generally requires accurate
prediction of coefficients of drag and lift. There have been
many studies and experiments to measure these coefficients
in controlled environments [10, 24, 43, 53, 62, 67]. Oth-
ers have calculated drag and lift coefficients computation-
ally [7,12,19,61]. With the introduction of radar-based
launch monitors, which can measure the launch conditions
and ball position over the entire course of its flight, much
larger and diverse datasets can be obtained. Sajima et al.
[58] examined the effect of dimple design on the outdoor
flight trajectory of golf balls using a TrackMan. Ferguson
et al. [27] implemented an artificial neural network to map
launch conditions to carry distance, offline distance, and
apex height. This model, however, had low accuracy and
did not capture the full flight of the golf ball.

Deep learning has led to significant improvements in nu-
merous modeling fields [36] but has often been avoided
when modeling physical systems. The traditional applica-
tion of deep learning would ignore the underlying physics,
which could lead to implausible results. A better approach
is to insert deep learning models into the differential equa-
tions governing a dynamical system (i.e., the equations of
motion). The recent work of Lutter er al. [39] formalized
the integration of feed-forward networks into the Euler-
Lagrange equation with so-called Deep Langrangian Net-
works. Our methodology is similar in that we approxi-
mate an inverse model by representing unknown functions
in the dynamic equations using feed-forward networks. By
contrast, Neural Ordinary Differential Equations (Neural
ODE:s) [15] instead solve ODEs inside a neural network to
model the hidden state as a continuous function of time.

5120

N Ball Flight Simulation

Target Landing

L o .o, ;
@& i

T .
10 (soft) argmax Position
to: =
Launch Lo M sim dy(t . .
F el e B L e e e o
0 Ball Flight Predicted
Data Landing Position

CrL,Cp

Figure 2. An overview of the proposed method. A launch monitor records a shot hit by a golfer and measures the launch conditions ¥y and

o, which, together with the initial golf ball position 7%, form the initial state of the golf ball 7. The differential equations

dy(t) include

a neural network N that estimates the aerodynamic coefficients Cr,, Cp, and Cps. The ball flight is numerically integrated from 0 to tsim
seconds. A soft-argmax operation is then used to obtain the predicted landing position 7. During training (dashed arrows), the target

. . fivt
landing positions 77

2. Method

The proposed method integrates a neural network into a
physics model of a golf ball in flight. An overview of our
approach is given in Figure 2. The solid arrows reflect how
the model is used during inference and the dashed arrows
reflect the flow of information during training. The fol-
lowing sections describe the physics model and the aerody-
namic forces acting on the golf ball (§2.1), the deep learning
model used to estimate the aerodynamic coefficients (§2.2),
and the integration of physics and deep learning models for
simulating multiple golf ball trajectories in parallel and ob-
taining final landing positions (§2.3).

The reference coordinate system used for the physics
model has the X axis pointing away from a right-handed
golfer, the Y axis pointing at the target, and the Z axis point-
ing towards the sky. We briefly introduce the notation used.
A three dimensional vector @ € R? points in the direction
U= A continuous time series of « vectors is denoted

Tl
as 4(t). A discrete time step ¢ of 4(t) is denoted as @; and
has components u; ;, u;,y, and u; ..

2.1. Physics Model

The physical system is modeled using ordinary differen-
tial equations (ODEs), wherein a golf ball with mass m, ra-
dius R, position 7(¢), and velocity ¥/(t) is treated as particle
and obeys Newton’s second law of motion:

di(t) F(t)
) _ -\ 1
dt m M

where U(t) = dT(t) . The golf ball also has a spin () that

decays over time due to an aerodynamic spin decay torque
T(t):

a(t) _ 7

2

dt I

are used to compute the landing position loss £, and update the neural network weights.

where I = %mR2 is the mass moment of inertia of the

golf ball. The aerodynamic forces include the lift force ﬁL
and the drag force Fp. For convenience, we temporarily
drop the “(¢)” notation and note that all forces and states
are time-varying. The drag force acts in the direction op-
posing the velocity of the golf ball (—9), and the lift force
acts perpendicular to the velocity and spin, in the direction
%. Similar to in [11, 50, 57], the magnitudes of the
aerodynamic forces and spin decay torque are related to the
dynamic air pressure g, the cross-sectional area of the golf
ball A = 7R2, and the dimensionless aerodynamic coeffi-
cients Cp, Cp, and C);. The dynamic air pressure is de-
fined as:

Lo
q=3pllolf 3)

where p is the air density. Finally, the aerodynamic forces
are defined using the equations below:

e
L =CrgA ——)
|17 x]|
FD:—CDqAﬁ (5)
T=-CruqdAd (6)

where d is the golf ball diameter [50]. The net force F
acting on the golf ball is the sum of the aerodynamic forces
and the constant force of gravity G= —mg k:

F=F,+Fp+0G. (7
2.2. Deep Learning Model

At each time step of the ball flight simulation, a fully-
connected feed-forward neural network, otherwise known
as a multilayer perceptron [51], is used to estimate the aero-
dynamic coefficients. The inputs to the network are the ve-
locity and spin states ¢’ and &J, which are normalized through

5121

division by 89.4 m/s (200 mph) and 2094 rad/s (20k rpm),
respectively. It was found that this normalization scheme
stabilized training by ensuring the inputs to the network
were bounded between O and 1 (typical ball speeds and
spin rates in golf lie below these upper bounds — see §3.1
for a description of the dataset used in this study). In the
base configuration, which we label Phys—NN, the neural
network N has two hidden layers with 256 and 128 units,
respectively, and uses the rectified linear unit (ReLU [52])
activation function after each hidden layer. The output layer
returns the intermediate features C';, C,, and C';:

CL,Cp,Chyr = N(7,3) 8)

The actual aerodynamic coefficients C', Cp, and C'; are
obtained by passing the intermediate features through a sig-
moid function and dividing by 2, 2, and 50, respectively:

CL=0(Cp)/2)
Cp =0(Cp)/2 (10)
Cy = 0(Cp)/50 (11)

This was done to constrain the ranges of the potential values
for C',, Cp, and C'); based on values observed in previous
work [11,50,57,62]. Cf, and C'p are constrained to [0, 0.5],
whereas C') is constrained to [0, 0.02].

A number of variations to the base neural network con-
figuration are evaluated in §3.3. Specifically, we explore
the effects of varying the number of hidden layers and hid-
den units, among other architectural changes, including pre-
dicting a fourth aerodynamic coefficient C' that varies the
dynamic air pressure (i.e., ¢ = Cq p||7]|?). The effects
of changing various training hyperparameters, including the
batch size and loss function, are also investigated.

2.3. Simulation and Training

This section describes how the physics model and the
deep learning model are jointly applied to simulate golf ball
flight paths. The entire system was implemented in PyTorch
version 1.13 and is differentiable from the end to end (i.e.,
from the launch conditions to the final landing positions),
permitting the neural network, which estimates the aerody-
namic coefficients at each time step, to be trained using only
measured launch conditions and landing positions.

2.3.1 Initial Conditions

Set up as an initial value problem, the physics simulation
begins with the launch conditions of the golf ball, namely
the ball speed |||, launch angle v, azimuth ¢, back spin
wo,z» and side spin wq .. These launch conditions are typ-
ically measured using commercially available launch mon-
itors. The third spin component wy_,, known as rifle spin,
is considered to be less relevant to the flight of the golf ball

and is therefore typically not provided by launch monitors.
In this study, wo , is assumed to be zero. The components
of the initial golf ball velocity vy are computed as:

V0, ||To]| cos(7) sin(¢)
o = |voy | = |l|V0l[cos(y) cos(e) (12)
00,z ||UOH SZTL(’}/)

The initial state of the system ¢y comprises nine time-
dependent variables, including the components of ¥, o,
and the initial ball position 7, which is set to [0,0,1]7
cm to account for the tee height and to facilitate a check
for the ball crossing the ground plane. By extension, the
state of the system at any time ¢ is §(t) = [U(t), (), 7(¢)]-
When the wind velocity ¥ is known, the golf ball velocity
#(t) can be replaced with its velocity relative to the wind:
oT(t) = U(t) — vv.

2.3.2 Numerical Integration

To facilitate the simulation of multiple flights in parallel, a
vectorized implementation of Euler’s method is used to nu-
merically integrate a batch of flights from O to t;,,, seconds
using a fixed time step At:

dy(t
zJ(t+At)=zJ<t)+At%i) (13)
where
dv(t) F(t)
ag(t) _ | ast 7
= || = |- (14)
di(t) .
dt (1)

Since F and T' depend on the aerodynamic coefficients,
a forward pass through the neural network is performed
at each time step. Hence, tz;" passes through the neural
network are required to the complete the simulation, after
which the loss is computed.

In experiments involving a physics-only baseline model
(details in §3.2), it was found that setting At = 0.1 s pro-
vided adequate convergence of the golf ball landing posi-
tion. Decreasing At further negatively affects the perfor-
mance of the proposed method by increasing the number of
times the neural network needs to be called, which slows
down the simulation, increases memory usage, and makes
the training process more susceptible to exploding and van-
ishing gradients [31,54]. The simulation time %g;,,, was set
to 10 s, which is longer than all the flight times in the dataset
presented in §3.1. As a result, the neural network is called
100 times per batch of simulated flights.

2.3.3 Loss Computation

We propose a method for training the neural network us-
ing the minimum amount of information, namely the launch

5122

conditions and landing positions. Such data is easily ob-
tained using radar-based launch monitors (e.g., a TrackMan
or FlightScope). A camera-based launch monitor, such as
the GCQuad, could also be used to collect launch condi-
tions together with manually recorded landing positions.
Admittedly, a more effective approach to training the net-
work would be to minimize the position error over full flight
paths; however, such data can only obtained with special ac-
cess to the APIs of radar-based launch monitors. We instead
choose to take advantage of readily available ball flight meta
data that radar-based launch monitors provide by default. In
addition to using the landing position error, we explore the
use of an additional loss based on the max height of the shot.

To index the time at which the golf ball crosses the
ground plane in a differentiable manner, we implement a
custom soft-argmax [40, 41, 66] operation and apply it to
the height of the golf ball r,(¢). More specifically, the time
step index i; € W at which the golf ball is closest to the
ground is computed as:

ig =ig+ arg max(—\n‘s :end,zD 15)

where iy € W is a starting index used to prevent the soft-
argmax operation from returning an index near the begin-
ning of the flight when the golf ball is close to the ground.
A value of |2 |, corresponding to ¢ = 1 s, was arbitrarily
chosen for is. During validation and inference, iz is ob-
tained using a standard arg max and the final ball state is
refined by interpolating %(¢) to , = 0. The interpolation
step is omitted during training under the assumption that the
mean landing position error resulting from a lack of inter-
polation is close to zero. It follows that the landing position
error £, is computed as:

Ly = I, =7, (16)
where qu is the target landing position provided by the
launch monitor. We additionally consider the effects of

adding a loss for the max height of the golf ball:

Ly = | max(r,) — max(rt)| (17

with equal weighting such that the total loss is:
L=Ly,+ Ly (18)

During training, the losses are averaged over the batch of
simulated flights.

3. Experiments

In this section we describe the dataset used to evaluate
the proposed method (§3.1); re-implement two published
baseline models for performance comparison (§3.2); ana-
lyze the accuracy obtained using various model configura-
tions and training settings (§3.3); analyze the computational
efficiency (§3.4); and finally examine the aerodynamic co-
efficients (§3.5).

Driver A

3 Wood A
5 Wood
3 H3ybr|d E
Iron 4

4 Iron

5 Iron 4

6 Iron

7 lron 4

8 lron

e 9 Iron
Pitching Wedge A
Gap Wedge
Sand Wedge A
Lob Wedge

[train
[val

dl

0 5000 10000 15000
Count

Figure 3. Histogram of the club types used in the dataset.

3.1. Dataset

A ball flight dataset was collected using a TrackMan 3e
launch monitor to record shots during outdoor golf robot
and player testing. The dataset was prepared by combining
TrackMan Performance Studio reports from multiple test
sessions. The reports contain measurements (and some es-
timates) for the club delivery, ball launch, ball flight (max
height position only), and ball landing (position and ve-
locity) for each shot. The relevant data for this study in-
cluded the ball speed ||Ty||, vertical launch angle ~, hori-
zontal launch angle ¢ (azimuth), spin rate ||Jp||, spin axis
1), flat ground landing position qu, max height, and flight
time. The back and side components of spin are computed
as wo ; = ||ol| cos(v¢) and wy . = —||Jo]| sin(e)), respec-
tively. Wind information was not included in the dataset
(" = 0).

Shots with measurements deemed “invalid” by the
TrackMan software were omitted from the dataset. More-
over, shots with a max height of less than 8 yds were omit-
ted to eliminate severe mishits (tops, duffs, etc.). The fi-
nal dataset contained 90,233 shots in total. A validation set
was created by combining 10% of the most recent of shots
(9,024 shots) from the robot and player tests. The remain-
ing 81,209 shots were used for training. This experimen-
tal protocol was more challenging than randomly sampling
shots for each subset, which led to nearly identical distribu-
tions for the training and validation sets. Figure 4 provides
normalized histograms for the relevant measurements in the
dataset. The distribution patterns arise from the typical club
types used in the tests (e.g., Driver, 7 iron, Lob Wedge, etc.).
A histogram of the club types used is provided in Figure 3.

The primary error metric considered for accuracy evalu-
ation was the mean landing position error, which is equal to
the mean £,, on the validation set. The mean absolute max
height error was considered as a secondary metric, and is
equal to the mean Lp,.

5123

100

150

train

val 0.1+ [

el

-10

0.0

=20 0

Azimuth (deg)

[| train

40

0.0002
0.0000 et
5000 10000 15000 -40 -20
Spin Rate (rpm) Spin
0.05 - train 0.014 I
1 val
0.00 -
—-100 -50 0 50 100 100
Landing Position X (yds) Landing

train

50
Max Height (yds)

200
Position Y (yds)

30

Figure 4. Normalized histograms for the datasets used. The distribution patterns arise from the typical club types used in the golf tests (see

Figure 3 for club type histogram).

3.2. Baselines

To evaluate the accuracy of the proposed approach, two
published ball flight models from Ferguson et al. [27] were
re-implemented and used as baselines for comparison. The
first was a physics model similar to the proposed method,
with the exception that C'p,, C'ys, and Cp were parameter-
ized using the spin ratio S:

S = R”fs” (19)
|||
Cr=p1+p2S+p3S° (20)
Cp =ps+psS+psS° @21
Cu=p7S (22)

This model was labeled Phys—0Q, for “Physics-Quadratic.”
The second baseline was a feed-forward neural network
that predicted the landing position directly from the launch
conditions. This approach was labeled NN and was re-
implemented by modifying the neural network described in
§2.2 to predict the landing position directly:

T'i_q,:m /ri_qu = N(’l_jo; ot}'O) (23)

The parameters of the two baselines (Phys—Q and NN) and
the base configuration of the proposed method (Phys—NN)
were optimized by minimizing £, over 50 epochs us-
ing stochastic gradient descent [5]. The parameters p in
Phys—Q were initialized using the optimal values found
in the original work [27]. The default training settings in-
cluded using the Adam optimizer [35] with a constant learn-
ing rate of 0.001 and a batch size of 1024. All training was
performed on an NVIDIA RTX A2000 laptop GPU. The
training and validation losses (i.e., the mean landing posi-
tion errors) for each model are shown in Figure 5.

20.0

— —— Phys-Q (train)
é 7510\ e Phys-Q (val)
= 15.0 NN (train)
g NN (val)
ch 12.5 —— Phys-NN (train)
Ig ----- Phys-NN (val)
8 10.0 1
a
f=
3 7.5 A
=

5.0 1

0 10 20 30 40 50
Epochs

Figure 5. Mean landing position errors during the training of
Phys—-0Q and NN (baseline models) and the base configuration of
the proposed method Phys—NN.

The minimum validation errors for the Phys—Q, NN, and
Phys—NN models were 6.95 yds, 6.70 yds, and 5.60 yds, re-
spectively. The accuracy of NN surpassed that of Phys—Q,
which was not the case in the original work of Ferguson et
al. Tt is possible that the neural network performed poorly
in the original work due to the limited amount of training
data.

Both neural network models outperformed the Phys—Q
baseline, and the proposed Phys—NN model that combines
the physical model with deep learning was the most ac-
curate of the three; however, NN took longer to converge
and it is likely that it would reach an accuracy similar to
Phys—NN if trained for more epochs. Nonetheless, we reit-
erate that the utility of a statistical model that only predicts
landing positions is limited.

5124

. Aero. Coeff. Train

Model Description Equations Epochs Loss L, Ly
Phys—NN base model 8,9,10, 11 20 L, 5.66 10.7
Phys-NN-pM Cy=puS 9, 10, 24, 25 20 L, 531 5.96
Phys—NN-pM-cQ qg=Cq o |72 9, 10, 25, 26, 27 20 L, 524 392
Phys—-NN-pM units = {256, 128} 9,10, 24,25 20 L, 531 596
Phys—NN-pM-2x units = {512, 256} 9, 10, 24, 25 20 L, 5.23 6.69
Phys—NN-pM—-4x units = {1024, 512} 9,10, 24, 25 20 L, 5.24 6.53
Phys—-NN-pM-31 units = {512, 256, 128} 9,10, 24,25 20 L, 545 4.83
Phys—-NN-pM-b256 batch size = 256 9, 10, 24, 25 20 Ly, 518 7.11
Phys—-NN-pM-b512 batch size = 512 9, 10, 24, 25 20 L, 522 6.71
Phys—NN-pM batch size = 1024 9, 10, 24, 25 20 L, 531 596
Phys—NN-pM-b2048 batch size = 2048 9,10, 24, 25 20 L, 549 549
Phys—NN-pM loss = £, 9, 10, 24, 25 20 L, 531 596
Phys—NN-pM loss=L, + Ly 9,10, 24, 25 20 L,+ Ly, 578 139
Phys-Q quadratic fit, loss = £,, 20, 21,22 50 L, 6.96 3.61
Phys-Q quadratic fit, loss = £, + Ly, 20, 21, 22 50 Ly,+ Ly, 663 1.64
NN rig,z,mg,y :N(ﬁo,ﬁo) - 100 ,Cp 5.24 -

Phys—-NN+ final model, loss = £,, 9, 10, 25, 26, 27 50 Ly, 491 395
Phys—NN+ final model, loss = £, + £, 9, 10, 25, 26, 27 50 L,+Ly, 475 131

Table 1. Results of the ablation and hyperparameter study. £,, is the minimum mean landing position error on the validation set, in yards.
Ly, is mean absolute max height error on the validation set, in yards, for the model checkpoint with the lowest £,,.

3.3. Ablation and Hyperparameter Study

This section explores the effects of modifying the archi-
tecture of Phys—NN and the training settings. First, know-
ing that increasing C'1, and decreasing Cs both increase the
lift force due to the Magnus effect, it was hypothesized that
this interaction could impede the convergence of the neural
network. A simplified architecture was therefore proposed:

C1,Cp = N(7,3) (24)
Cv=puS (25)

where the parameter p,; was jointly learned while training
the neural network. An additional modification was pro-
posed in which the dynamic pressure was permitted to vary
using a new aerodynamic coefficient Cy:

C1,Ch,Ch = N(¥,d) (26)
CQ = U(Cé?) (27)
q=Cqpl|V]]? (28)

In addition to the aforementioned architectural modifica-
tions, the batch size was varied, as well as the number of
hidden units. Further, we quantify the effects of including
the mean absolute max height error £,, in the loss function.
The results of the ablation and hyperparameter study are
summarized in Table 1. The best settings (shown in bold)

were combined to produce the final model, Phys—NN+,
which was trained for 50 epochs.

The addition of the £} loss dramatically improved the
mean absolute max height error for both the Phys—-Q and
Phys—NN+ models. For the models trained using £,, only,
the observed variation in the computed £, values suggests
that the problem could be underdefined. In other words,
there is potential for golf ball trajectories of varying height
to reach a similar landing positions. Using the £}, loss is
therefore recommended to constrain the problem and pro-
mote realistic simulation results. Furthermore, we find that
using L, has the added benefit of improving the landing
position error £,,. While this was not the original intent, it
is possible that £}, acts as a physical prior that helps steer
the neural network optimization towards a global minimum.
When using the L loss, the mean landing position error
of Phys—NN+ was 4.75 yds, which is 28% more accurate
than Phys—Q and 9% more accurate than using a neural
network to predict the landing position directly (NN). Any
remaining error is attributed to random noise resulting from
measurement error and environmental factors such as wind,
temperature, and humidity.

3.4. Computational Efficiency

Advancements in deep learning have naturally led to the
use of larger neural networks that use more memory and

5125

Phys-Q 0.10 4
0157 [0 Phys-NN+
0.08 -
o 2
% 0.10 1 @ 0.06 A
[[
e 0 0.04 -
0.05
0.02 4
0.00 S 0.00

-20 0 20
Length Error (yds)

0 10 20 30
Position Error (yds)

Density

0.3 1
0.15 -

202
0.10 A 2

[

[a]
. Mﬂm
0.00 - ; 0.0

-20 0 20
Max Height Error (yds)

-20 0 20
Side Error (yds)

Figure 6. Normalized histograms for the landing position error (£;,), length error (r;,,, — rfg .y)» side error (r;, oz — ng), and max height

error (max(r,) —max(r’)). The difference between the Phys—Q and Phys—NN+ position error histograms corresponds to 28% reduction

in the mean landing position error.

1 shot 1024 shots | 1 shot 1024 shots
Model CPU CPU GPU GPU

(ms) (u8) (ms) (us8)
Phys-0Q 25.2 97.8 49.8 73.6
Phys—-NN+ | 34.9 348 57.9 86.1

Table 2. Latencies of Phys—0Q and Phys—NN+ running on a CPU
(Intel i7-11850H) and GPU (NVIDIA RTX A2000). Latencies av-
eraged over 256 trials using randomly selected launch conditions
from the validation dataset.

require specialized accelerated hardware, such as GPUs, for
fast or “real-time” inference. In this application, however,
the neural network used is very small in comparison to the
ones commonly used in the deep learning literature. In fact,
the neural network computation comprises just a few matrix
multiplications. As a result, the computational overhead of
our approach is not significant in practice.

Table 2 summarizes the latencies (processing time per
simulated shot) of Phys—Q and Phys—NN+ running on a
CPU (Intel i7-11850H) and GPU (NVIDIA RTX A2000).
Phys—NN+ processes a single shot on a CPU in 35.9 ms,
compared to 25.2 ms for Phys—0Q. Both models process
shots much faster than real-time as most golf shots remain
in the air for more than 3 seconds (as shown in Figure 4).
When processing a batch of shots, Phy s—NN+ suffers more
on CPU due to the increased memory usage of the neural
network. However, the batched latency is comparable with
Phys-Q when using the GPU. We therefore recommend
using a GPU when simulating many shots in parallel.

3.5. Aerodynamic Coefficients

Finally, we compare the lift and drag coefficients pro-
duced by the Phys—-NN+ and Phys—Q models trained us-
ing the £, + L}, loss. Figure 7 plots the lift and drag co-
efficients produced by Phys—NN+ against the spin ratio
for all simulation time steps in the validation set (573,308
data points). The polynomial curve fits of Phys—Q are
overlaid for comparison. Interestingly, the neural network

0.5 A 0.5 A

0.4 1 0.4 A
0.3
0.2 A

0.3

) 5]
0.2 -
014 —— Phys-Q 0.1 —— Phys-Q
Phys-NN+ Phys-NN+
0.0 T T T — 0.0 T T T T
0.00 0.25 050 0.75 1.00 0.00 025 050 075 1.00
Spin Ratio Spin Ratio

Figure 7. The lift and drag coefficients produced by Phys—-NN+
for all time steps in the simulated validation set shots (573,308
data points). The polynomial curve fits of Phys—Q are overlaid
for comparison.

in Phys—NN+ nearly saturated the C', sigmoid, resulting
in many Cj, values near 0.5. Cp had significantly more
variance, potentially as a result of the saturated C. For
this reason, it is possible that the coefficients generated by
Phys—-NN+ do not reflect the actual physics involved. In
future work, we recommend exploring the constraints of
the sigmoid function and performing wind tunnel testing to
investigate the authenticity of the aerodynamic coefficients
produced by the neural network.

4. Conclusion

This paper presents a golf ball flight model that inte-
grates deep learning into the equations of motion to im-
prove the accuracy of simulated golf ball trajectories. We
outline a methodology for training a neural network that es-
timates instantaneous aerodynamic coefficients using mea-
sured launch conditions and a landing position loss. No-
tably, we find that adding a second equally weighted loss
for the max height error not only improves the heights of the
simulated trajectories, but also reduces the landing position
error. Finally, we show that our approach has minimal com-
putational overhead compared to existing models and runs
much faster than what is required for practical applications.

5126

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

Effects of Dimple Size and Depth on Golf Ball Aerodynamic
Performance, volume Volume 2: Symposia, Parts A, B, and
C of Fluids Engineering Division Summer Meeting, 07 2003.
2

Robert Kemp Adair. The physics of baseball. Harper & Row
New York, 1990. 2

Firoz Alam, Tom Steiner, Harun Chowdhury, Hazim Mo-
ria, Iftekhar Khan, Fayez Aldawi, and Aleksandar Subic. A
study of golf ball aerodynamic drag. Procedia Engineering,
13:226-231, 2011. 2

LeRoy W Alaways. Comparison between observed and sim-
ulated baseball trajectories. The Engineering of Sport 7,
pages 345-351, 2008. 2

Shun-ichi Amari. Backpropagation and stochastic gradient
descent method. Neurocomputing, 5(4-5):185-196, 1993. 6
Stephanie Ankrah and NJ Mills. Performance of football
shin guards for direct stud impacts. Sports Engineering,
6(4):207-219, 2003. 1

Katsumi Aoki, Koji Muto, and Hiroo Okanaga. Aerody-
namic characteristics and flow pattern of a golf ball with ro-
tation. Procedia Engineering, 2(2):2431-2436, 2010. 2
Daniel Balzerson, Joydeep Banerjee, and John McPhee.
A three-dimensional forward dynamic model of the golf
swing optimized for ball carry distance. Sports Engineering,
19:237-250, 2016. 2

Jonathan Baxter. A model of inductive bias learning. Journal
of artificial intelligence research, 12:149-198, 2000. 1

PW Bearman and JK Harvey. Golf ball aerodynamics. Aero-
nautical Quarterly, 27(2):112-122, 1976. 2

D Beasley and T Camp. Effects of dimple design on the aero-
dynamic performance of a golf ball. In Science and Golf 1V:
Proceedings of the World Scientific Congress of Golf, pages
328-340, 2002. 2, 3,4

Nikolaos Beratlis, Kyle Squires, and Elias Balaras. Numeri-
cal investigation of magnus effect on dimpled spheres. Jour-
nal of Turbulence, (13):N15, 2012. 2

Bert Blocken, Thijs van Druenen, Yasin Toparlar, and
Thomas Andrianne. CFD analysis of an exceptional cyclist
sprint position. Sports Engineering, 22:1-11, 2019. 1

Peter Brown and John McPhee. A 3d ellipsoidal volumetric
foot—ground contact model for forward dynamics. Multibody
System Dynamics, 42:447-467, 2018. 1

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and
David K Duvenaud. Neural ordinary differential equations.
NeurlPS, 2018. 2

Alastair COCHRAN and John STOBBS. The Search for the
Perfect Swing. J. B. Lippincott Company, 1968. 2

Peter Coutis. Modelling the projectile motion of a cricket
ball. International Journal of Mathematical Education in
Science and Technology, 29(6):789-798, 1998. 2

Derek Covill, Steven Begg, Eddy Elton, Mark Milne,
Richard Morris, and Tim Katz. Parametric finite element
analysis of bicycle frame geometries. Procedia Engineering,
72:441-446, 2014. 1

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

5127

Jacob Crabill, Freddie Witherden, and Antony Jameson.
High-order computational fluid dynamics simulations of a
spinning golf ball. Sports Engineering, 22:1-9, 2019. 2
Rod Cross. Grip-slip behavior of a bouncing ball. American
Journal of Physics, 70(11):1093-1102, 2002. 1

Rod Cross and Crawford Lindsey. Measurements of drag and
lift on tennis balls in flight. Sports Engineering, 17:89-96,
2014. 2

CB Daish. The physics of ball games. English University
Press, 1972. 2

Behzad Danaei, William McNally, Erik Henrikson, and John
McPhee. Adjusting a momentum-based golf clubhead-ball
impact model to improve accuracy. In Proceedings, vol-
ume 49. MDPI, 2020. 1

John M Davies. The aerodynamics of golf balls. Journal of
Applied Physics, 20(9):821-828, 1949. 2

Uwe Dick, Daniel Link, and Ulf Brefeld. Who can re-
ceive the pass? a computational model for quantifying avail-
ability in soccer. Data Mining and Knowledge Discovery,
36(3):987-1014, 2022. 2

Herman Erlichson. Maximum projectile range with drag and
lift, with particular application to golf. American Journal of
Physics, 51(4):357-362, 1983. 2

Spencer Ferguson, William McNally, and John McPhee. Pre-
dicting the flight of a golf ball: Comparing a physics-based
aerodynamic model to a neural network. In Engineering of
Sport 14: Proceedings of the 14th Conference of the Inter-
national Sports Engineering Association, 2022. https:
//doi.org/10.5703/1288284317493.2,6

John Eric Goff. A review of recent research into aerodynam-
ics of sport projectiles. Sports engineering, 16(3):137-154,
2013. 1

John Eric Goff and Matt J Carré. Trajectory analysis of a soc-
cer ball. American Journal of Physics, 77(11):1020-1027,
2009. 2

SR Goodwill, Robert Kirk, and SJ Haake. Experimental and
finite element analysis of a tennis ball impact on a rigid sur-
face. Sports engineering, 8:145-158, 2005. 1

Boris Hanin. Which neural net architectures give rise to ex-
ploding and vanishing gradients? NeurIPS, 2018. 4

R Keith Hanna. CFD in sport - a retrospective; 1992-2012.
Procedia Engineering, 34:622-627, 2012. 1

Keaton A Inkol, Colin Brown, William McNally, Conor
Jansen, and John McPhee. Muscle torque generators in
multibody dynamic simulations of optimal sports perfor-
mance. Multibody System Dynamics, 50:435-452, 2020. 1
Jovana Jovic, Adrien Escande, Ko Ayusawa, Eiichi Yoshida,
Abderrahmane Kheddar, and Gentiane Venture. Humanoid
and human inertia parameter identification using hierarchical
optimization. [EEE Transactions on Robotics, 32(3):726—
735, 2016. 1

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep
learning. nature, 521(7553):436-444, 2015. 1,2

(37]

(38]

(39]

[40]

(41]

(42]

[43]

[44]

[45]

[46]

(47]

(48]

(49]

(501

(51]

[52]

CSH Lin, CK Chua, and JH Yeo. Analysis and simulation
of badminton shuttlecock flight through parameter identifi-
cation of a slow-speed serve shot. Proceedings of the Insti-
tution of Mechanical Engineers, Part P: Journal of Sports
Engineering and Technology, 229(4):213-221, 2015. 1
Edward Lozowski, Krzysztof Szilder, and Sean Maw. A
model of ice friction for a speed skate blade. Sports Engi-
neering, 16:239-253, 2013. 1

Michael Lutter, Christian Ritter, and Jan Peters. Deep la-
grangian networks: Using physics as model prior for deep
learning. In ICLR, 2019. 2

Diogo C Luvizon, David Picard, and Hedi Tabia. 2d/3d pose
estimation and action recognition using multitask deep learn-
ing. In CVPR, 2018. 5

Diogo C Luvizon, Hedi Tabia, and David Picard. Human
pose regression by combining indirect part detection and
contextual information. Computers & Graphics, 85:15-22,
2019. 5

Griselda Lyn and NJ Mills. Design of foam crash mats for
head impact protection. Sports engineering, 4(3):153-163,
2001. 1

Bin Lyu, Jeff Kensrud, Lloyd Smith, and Taylor Tosaya.
Aerodynamics of golf balls in still air. In Proceedings, vol-
ume 2, page 238. MDPI, 2018. 2

Margarida Machado, Pedro Moreira, Paulo Flores, and
Hamid M Lankarani. Compliant contact force models in
multibody dynamics: Evolution of the hertz contact theory.
Mechanism and machine theory, 53:99-121, 2012. 1

Paul Mannion, Yasin Toparlar, Bert Blocken, Magdalena Ha-
jdukiewicz, Thomas Andrianne, and Eoghan Clifford. Im-
proving CFD prediction of drag on paralympic tandem ath-
letes: influence of grid resolution and turbulence model.
Sports Engineering, 21:123-135, 2018. 1

William McNally, Daniel Balzerson, Daniel Wilson, and
John McPhee. Effect of clubhead inertial properties and
driver face geometry on golf ball trajectories. Procedia en-
gineering, 147:407-412, 2016. 2

William McNally and John McPhee. Dynamic optimization
of the golf swing using a six degree-of-freedom biomechani-
cal model. In Proceedings, volume 2, page 243. MDPI, 2018.
1,2

William McNally, John McPhee, and Erik Henrikson. The
golf shaft’s influence on clubhead-ball impact dynamics. In
Proceedings, volume 2, page 245. MDPI, 2018. 1

John J McPhee and Gordon C Andrews. Effect of sidespin
and wind on projectile trajectory, with particular application
to golf. American Journal of Physics, 56(10):933-939, 1988.
2

T Mizota, T Naruo, H Shimozono, M Zdravkovich, and F
Sato. 3-dimensional trajectory analysis of golf balls. In
Science and Golf IV: Proceedings of the World Scientific
Congress of Golf, pages 349-358, 2002. 2, 3, 4

Fionn Murtagh. Multilayer perceptrons for classification and
regression. Neurocomputing, 2(5-6):183-197, 1991. 3
Vinod Nair and Geoffrey E Hinton. Rectified linear units
improve restricted boltzmann machines. In /ICML, 2010. 4

(53]

(54]

[55]
(561

[57]

(58]

(591

(60]

[61]

(62]

[63]

[64]

(65]

(66]

[67]

5128

Takeshi Naruo and Taketo Mizota. The influence of golf ball
dimples on aerodynamic characteristics. Procedia Engineer-
ing, 72:780-785, 2014. 2

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On
the difficulty of training recurrent neural networks. In ICML,
2013. 4

A Raymond Penner. The physics of golf.
progress in physics, 66(2):131, 2002. 2

A Raymond Penner. The run of a golf ball. Canadian Journal
of Physics, 80(8):931-940, 2002. 2

SJ Quintavalla. A generally applicable model for the aero-
dynamic behavior of golf balls. In Science and Golf IV: Pro-
ceedings of the World Scientific Congress of Golf, pages 341—
348,2002. 2, 3,4

T Sajima, T Yamaguchi, M Yabu, and M Tsunoda. The aero-
dynamic influence of dimple design on flying golf ball. In
The Engineering of Sport 6: Volume 1: Developments for
Sports, pages 143—148. Springer, 2006. 2

Gregory S Sawicki, Mont Hubbard, and William J Stronge.
How to hit home runs: Optimum baseball bat swing param-
eters for maximum range trajectories. American Journal of
Physics, 71(11):1152-1162, 2003. 2

Ralf Schneider, Lars Lewerentz, Stefan Kemnitz, and Chris-
tian Schultz. Table tennis and physics. 2022. 2

CE Smith, Nikolaos Beratlis, Elias Balaras, Kyle Squires,
and Masaya Tsunoda. Numerical investigation of the flow
over a golf ball in the subcritical and supercritical regimes.
International Journal of Heat and Fluid Flow, 31(3):262—
273,2010. 2

AJ Smits and DR Smith. A new aerodynamic model of a
golf ball in flight. In Science and Golf II: Proceedings of the
World Scientific Congress of Golf, pages 340-347. 1994. 2,
4

Takehiro Tamaru, Shinichiro Ito, and Masaki Hiratsuka.
Serve ball trajectory characteristics of different volleyballs
and their causes. In Proceedings, volume 49. MDPI, 2020. 2
Frank D Werner, Richard C Greig, and Roger P Ganem. How
golf clubs really work and how to optimize their designs. Ori-
gin Incorporated, 2000. 2

DC Winfield and Teong E Tan. Optimization of the clubface
shape of a golf driver to minimize dispersion of off-center
shots. Computers & structures, 58(6):1217-1224, 1996. 2
Kwang Moo Yi, Eduard Trulls, Vincent Lepetit, and Pascal
Fua. Lift: Learned invariant feature transform. In ECCV,
2016. 5

MV Zagarola, B Lieberman, and AJ Smits. An indoor testing
range to measure the aerodynamic performance of golf balls.
In Science and Golf 1I: Proceedings of the World Scientific
Congress of Golf, pages 443—-450. 1994. 2

Reports on

