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Abstract

Modern live sports broadcasts display a wide variety of
graphic visualizations identifying key players in a partic-
ular play. Traditionally, these graphics are created with
extensive manual annotation for post-match analysis and
take a significant amount of time to be produced. To create
such visualizations in near real-time, automatic on-screen
player identification and localization is essential. However,
it is a challenging vision problem, especially for sports such
as American football where the players wear elaborate pro-
tective equipment. In this work, we propose a novel ap-
proach which uses sensor data streams captured by wear-
ables to automatically identify and locate on-screen players
with low latency and high accuracy. The approach esti-
mates a field registration homography using on-field player
positions from RFID sensors, which is then used to iden-
tify and locate individual players on-screen. Experiments
using American football data show that the method outper-
forms a deep learning based state-of-the-art(SOTA) vision-
only field registration model both in terms of accuracy of the
homography and also success rate of correct homography
computation. On a dataset of over 150 replay clips, the pro-
posed method correctly estimated the homography for ap-
proximately 25% additional clips as compared to the SOTA
method. We demonstrate the efficacy of our method by ap-
plying it to the problem of rendering visualizations around
key players within a few minutes of the live play. The player
identification accuracy for these key players was over 96%
across all clips, with an end-to-end latency of less than 1
minute.

1. Introduction
In recent times, the use of captivating visualizations to

enhance the sports broadcast viewing experience has be-
come extremely popular. These features help improve en-
gagement of the viewers by enabling better comprehension
of the game. As compared to the in-stadium viewing expe-
rience, in quite a few cases, it is difficult to understand the
game strategies and proceedings while viewing the same
on a smaller screen. The visualizations (Fig. 1) make it

Figure 1. Sample visualization in American football.

easier to understand the game by highlighting key players,
their movements, actions, on-field landmarks and key mo-
ments in the game. One of the first and most successful
such system was the ”1st and Ten” [1] visualization which,
with the help of 3D modelling algorithms and camera hard-
ware, augmented the viewing experience of American foot-
ball by adding a yellow line at the first down. During a live
game, low latency and high accuracy are essential for the
visualizations to capture viewer attention to the fullest and
computer vision (CV) algorithms play an important role in
achieving that.

With the advent of embedded sensors in player wear-
ables and equipment, various auxiliary information streams
are available directly from the playing field. They provide
play metadata such as the nature of play, on-field player
and/or ball locations, etc. These streams in conjunction with
the CV algorithms can play a significant role in creating
viewer-engaging graphic visualizations with very low end-
to-end delivery time. For example, in the case of National
Football League (NFL), RFID sensors embedded in the ball
and player shoulder pads provide a continuous data stream
of 2D coordinates of the entities on the playing field. Such
information can augment the CV algorithms to display in-
formation such as route-map or animated graphics tracking
key player locations on-screen and detection of play for-
mations. However, there are several challenges in using the
auxiliary information streams which need to be resolved be-
fore they can be faithfully used. One of them is to have a re-
liable and accurate synchronization of the visual/audio and
auxiliary data streams so that temporal events in the video
can be accurately aligned with the time stamps. Also, in or-
der to use the player location data, mapping of on-field to
on-screen locations is crucial.

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
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In this paper, we describe our work on fully automatic
on-screen player localization and identification utilizing the
auxiliary data stream providing on-field player locations
collected via RFID tags worn by players. It first performs
field registration by estimating a perspective transforma-
tion from the ground plane to the display frame and then
utilises helmet tracks that are created by a custom trained
model, fine-tuned on an American football helmet dataset,
to perform player localisation and identification. Unlike
the conventional methods for field registration, this method
does not depend on the identification of salient on-ground
landmarks/key-points and mapping them to corresponding
points on a ground template to estimate the image to tem-
plate transformation. Although the techniques and over-
all workflow have been developed and tested for Amer-
ican football, the proposed solution can be extended to
other sports given the availability of on-field player posi-
tions data. The major contributions of the paper are:

• To the best of our knowledge, this is the first work to
report the usage of RFID on-field positional data for
field registration and on-screen player identification.

• A method for automatic coarse synchronization of the
visual and auxiliary data streams.

• A metric to evaluate the quality of field registration
without ground truth data by using on-field player lo-
cations.

• Efficient extension of field registration homography to
work for video clips in near real-time using traditional
CV methods or on-field player location information.

2. Related Work
Automatic identification of players [25,31] is a challeng-

ing problem in large field multiplayer sports. The most
common methods perform player identification by detecting
and recognizing the team and jersey number [2,14,16] of in-
dividual players from the appearance of their jerseys. In the
case of sports where the players are not wearing protective
gear, such as soccer and basketball, facial and appearance
features can be used to identify the players [17, 18, 23]. For
American football and ice hockey, the protective gear worn
by the players makes it visually challenging to distinguish
between players from the same team.

Sports field registration has been an active area of re-
search both in academia and industry. Most CV based meth-
ods [7, 10, 12, 20, 27, 28] estimate the homography by iden-
tifying sports specific on-field landmarks which are used
as key-points to estimate the homography using techniques
such as RANSAC [8]. Early approaches [7,12,27,28] which
rely on classical computer vision use techniques such as
Hough transforms [11], SIFT [15], and ORB [22], which
were popular for the problem of camera calibration. Re-
cent approaches [10, 20] use different deep learning tech-
niques to either identify these keypoint features [20] or to

directly regress homography matrix parameters [6]. Most
of these approaches rely in some way on the field mark-
ers and might struggle in scenarios where these are sparse
or missing. This often happens when the camera zooms in
on the players in a small part of the field which is away
from the edges. Some approaches [9, 21] try to propagate
homography between consecutive frames when manual ini-
tialisation is available for a few frames. These methods
can be used to overcome challenges related to less visibil-
ity of markings but even they need the stretch of frames
with low confidence results to be short. [24] proposes a self-
supervised data mining based method for registering cross
modality images such as natural image and its edge map us-
ing a score regression network. [4] also proposes a key point
based method but formulates that as an instance segmenta-
tion problem. There are various approaches adopted in the
industry which rely on human workers or special expensive
camera/hardware equipment to estimate the camera pose.
Companies such as Stathletes generate homography for ev-
ery frame of the game with the help of manual annotations
by human workers.

In terms of the usage of sensor data from wearables,
Carey et. al [3] report a method for improving player
tracking results in Australian football. Although [5] uti-
lize player location information to improve their camera
parameter estimation algorithm, to the best of our knowl-
edge, this is the first work which uses on-field player po-
sitions extracted through RFID sensors to estimate player
identities by computing a homography for field registration.
In contrast to other methods which rely on field markings,
the proposed method is robust in handling poor field land-
mark visibility, but needs at least four players to be visible
on the video frame to be able to estimate the homography.
For our particular use case, this is guaranteed because we
want to estimate the homography at the start of the play in
American football where the camera includes most of the
on-field players. Our paper focuses on computing the ho-
mography for one key frame which is subsequently propa-
gated across frames with low latency using player/key-point
tracking techniques.

3. Methods
In this section, we describe proposed approaches to auto-

matically identify players on-screen. We leverage a unique
feature provided by NFL called Next Gen Stats(NGS). It
contains key players involved in a play along with position,
speed, and acceleration information for all players and the
ball. The tracking information is generated by RFID chips
embedded in the shoulder pads of the players and provides
a view (Fig. 2a) of the on-field player positions.

A challenge in using this information is the absence of
a common timestamp between the video and the NGS data
to synchronise them. Both video frames and the NGS data
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(a) NFL NGS data visualized as a 2D map for the frame of snap.
The home and away team players are represented by red points
and blue points respectively. The player in white is a player of
interest who is the last ball carrier for the play.

(b) All player locations from the NFL NGS data mapped to the
frame of snap and represented by red points in the replay clip
using the homography computed by our solution.

Figure 2. Visualization of the NFL Next Gen Stats(NGS) tracking
data for the frame of snap for a replay clip.

Player Detection

Helmet Tracking

Event Detection

Fetch RFID Data

Input Clip Homography
Computation

Helmet Track
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Figure 3. Steps in our proposed solution for automated detection
of players in a replay clip from NFL.

Figure 4. Visualization of the outputs of the player detection(top)
and helmet detection(bottom) modules.

arrive with monotonic timestamps with fixed frame rate of
30 FPS and 10 FPS respectively. However, they use differ-
ent timestamps and cannot be synced in a straightforward
way since the replay clips are based on the broadcast stream
which is not in sync with the on ground clock. To solve this

Task mAP.5 mAP@.5:.95 Latency (FP16)
Player Detection 0.963 0.622 9.8ms
Helmet Detection 0.959 0.663 10.4ms

Table 1. Accuracy and latency metrics for the Scaled-YOLOv4 P5
model fine-tuned on our custom dataset.

issue, we identify common events in both the replay clip and
the NGS data which contains timestamps for events such as
snap (start of play), pass completion, touchdown, etc.

Figure 3 shows a high-level view of our proposed solu-
tion targeted to solve the problem in replay clips. On re-
ceiving an input clip, four modules are triggered to syn-
chronize the data streams and extract visual information.
An event detection module predicts the frame in which the
snap event occurs in the replay clip video. The player de-
tection module provides player detection bounding boxes
(Fig.4 - top) for each frame and the helmet detection and
tracking module tracks player helmets as bounding box
tracks (Fig.4 - bottom). The NGS data is used to identify
players in the snap frame predicted by the event detection
module. Player matching across NGS positional data and
those detected in the video frame is performed using a ho-
mography or perspective transformation (computed by the
homography computation module) mapping NGS on-field
coordinates to points on the video frame. Such a player
mapping is shown in Figure 2b. The helmet track identi-
fication module finds an on-screen player helmet track for
a mapped point on the ground plane. The matched helmets
can be tracked across frames using helmet tracking. This
workflow can be used to power overlay visualisations (Fig.
1) used to highlight a player in live sports broadcast.

In some scenarios, such as helmet tracking failures and
player exiting or re-entering the frame the homography
needs to be recomputed for subsequent player identifica-
tion. The proposed homography computation module can
be re-used but at the cost of significant added latency. To
handle such cases, we propose efficient low latency meth-
ods to extend the homography across a series of frames.

3.1. Player Detection and Helmet Tracking

Detection and tracking of players and helmets in Ameri-
can football broadcast is challenging due to excessive oc-
clusions and motion blur (caused by sudden directional
changes of both players and camera). A low latency yet
accurate fine-tuned Scaled-YOLOv4 [26] model is used for
both player and helmet detection. The key metrics for our
fine-tuned detection models are captured in Table 1. Pre-
trained data association based DeepSORT [30] [29] algo-
rithm is used for helmet tracking. It uses detected bounding
boxes as input and tracks the helmets using a Kalman filter
based motion model and deep appearance features.
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3.2. Snap Detection

An ensemble of deep action recognition models(TSM
[13]) with different temporal support(7, 15, and 25 frames)
is used for detecting the snap event. The models were
trained to predict the probability of the snap event at each
frame and were ensembled using the AND(multiplication)
operation. The frame inferred to have the highest snap prob-
ability in a clip was predicted as the snap frame. Over
a dataset of 160 replay clips the fine-tuned model predic-
tions had a median deviation of 2 frames and P95 deviation
of 5 frames from the ground truth snap frames. The pro-
posed player identification approach could correctly iden-
tify a player of interest in the snap frame for over 96% of
all clips which showed that it was robust enough to handle
snap frame deviations of up to 6 frames.

3.3. Smart Sampling based Homography Compu-
tation

The player bounding boxes and NGS information for the
predicted snap frame were used to compute a perspective
transform from the NGS 2D plane to the video frame pixels.
A perspective transform represented by a 3x3 matrix has
8 degrees of freedom and relates the points between two
planes (up to a scale factor) in the homogeneous coordinate
system:
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the NGS plane and the video frame are required to compute
the homography uniquely. The detected players and their
position on the ground plane are utilized as the landmarks
for computation. There are 22 player markers in the NGS
2D plane and a variable number of detected players in the
video frame as shown in Fig. 5a.

As player correspondences between the NGS plane and
the video frame are unknown, homographies are computed
for a subset of all possible point correspondences. The ho-
mography which maps the points with minimal error is cho-
sen as the final transformation. Iterating through all possible
combinations of 4 matched points is exponential in com-
plexity (≈ 22C4

22P4 = 1284221400). Hence, we propose
an intelligent sampling process to reduce the search space
to a smaller set while still ensuring robustness.

Points in the NGS 2D plane with the minimum and max-
imum x and y coordinate values are removed to reduce 22
points to 18 points as some of these players might not be
in the frame of the video while the broadcast camera zooms
in to focus on the players closer to the ball. A set of points
and their correct corresponding boxes is likely to generate

a stable homography when they are well distributed across
the ground plane of the video frame. These points should
not be spatially co-linear or clustered in a small area. To
ensure non co-linearity and spatial separation, 10 points are
selected from the remaining 18 points by selecting 5 points
with the highest and the lowest x coordinate values which
removes the players very close to the ball who are also very
close to each other. 8 player boxes are similarly selected
from the snap video frame. The selection of the NGS points
and player boxes is visualised for a replay clip in Fig. 5b.

Each point combination is matched with all permutations
of 4 players from the pruned set of player detections in
the frame (10C4

8P4 = 352800 possible combinations). The
mid-point of the base of each player bounding box is used
as the player position in the video frame since even though
the RFID sensors are in the shoulder pads, the NGS data
is 2D in nature and the player positions are specified with
respect to the 2D field plane. As we are using homography
mapping between two planes, we need the position of the
player on the ground plane of the field. This is also why
we cannot use helmet bounding boxes for the homography
computation.

The homography matrix is computed for each set of cor-
responding points along with a cost metric which is the sum
of distances to the nearest player location for each mapped
point. This creates a one-to-one mapping between every
bounding box detected in the video frame and the point co-
ordinates which are within the frame limits. The transfor-
mation with the least cost is selected. To make the process
efficient, the computation of the 352800 different homogra-
phy matrices are performed in parallel. Fig. 5c shows the
distance between mapped points and bounding boxes which
is used for the calculation of the cost function used to select
the optimal transformation. The cost function is described
in more detail later in the Results section (4.1).

Experiments showed that the homography computed us-
ing intelligent sampling of correspondences as opposed to
all possible correspondence combinations didn’t show any
loss of accuracy for the end-to-end system. It was observed
that the top few homography matrices (with the lowest cost
metric) are similar both in terms of the cost metric value and
the homography parameters which validated the hypothe-
sis that a smart selection of the player bounding boxes and
NGS points would preserve method robustness.

3.4. Helmet Track Identification

Once the computed transformation maps all NGS 2D
plane points to the frame coordinates, this module identi-
fies the corresponding helmet tracks for each mapped point.
To track players across frames, we use helmet tracking be-
cause helmet bounding boxes are small in size and have
a much lower probability of occlusion compared to the
player boxes. Helmet tracking gives longer and more pre-
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(a) The NGS 2D map and the player detection bounding boxes for the frame of snap for a replay clip.

(b) Selection of 10 player positions from the NGS 2D plane by removal of positions on extreme ends to avoid players which can be out of frame
and removal of the most central players who are too close to each other. Selection of 8 player detection bounding boxes with a similar process.

(c) After homography is computed for a large number of combinations from the filtered set of positions and bounding boxes, the best homography
is selected based on a cost function which sums up the distance between the mapped homography points(in red) and their nearest bounding box.

Figure 5. Steps followed in the proposed homography computation module which finds the parameters for the homography matrix.

cise tracks as compared to player tracking. The NGS point
to bounding box mapping done while computing the cost
metric for the homography matrix can sometimes be noisy
when the players are congested in one part of the frame.

To ensure a more robust matching, the proposed method
creates a dummy player bounding box for the point corre-
sponding to the player of interest with the height and width
as the max height and width observed in the player detec-
tion results for the frame. We calculate the IoU (Intersec-
tion over Union) of this dummy box with every detected
box and the player bounding box with max IoU is selected
if it has an IoU ≥ 0.25. In the absence of a matching box,
the dummy box is assumed to be the desired bounding box.
The helmet track for which the bounding box has the max-
imum IoU with the upper one-third of the identified player
bounding box is selected as the helmet track for the target
player.

3.5. Homography Tracking

Two methods are proposed to propagate the homogra-
phy between the NGS plane and the snap frame in the video
across multiple frames. The first approach uses the player
tracking information generated from the RFID tags, and
the second approach uses keypoints detected on the ground
plane of the video frame. Homography between frame Fn

(frame in NGS data) and Fv (video frame) is used to identify
the homography between Fn+i and Fv+3i (The NGS data
is 10 FPS and input video clips have 30 FPS). Propagation
methods would fail in case of a change in the camera shot
between two frames of the replay clip. Although changes
in camera shots are rare within a play in NFL broadcast, in
case it happens, the homography needs to be recomputed
using the smart sampling based homography computation.

3.5.1 Using Player and Helmet Tracking

Upon identifying the helmet tracks in a frame(Fv), all hel-
met tracks are selected which persist for the subsequent 3
frames. The corresponding player bounding boxes in the
new frame(Fv + 3) are extracted for these helmet tracks.
The mid-point of the base of the player bounding boxes
serves as the points in the ground plane of the new video
frame(Fv + 3) which correspond to player points in the
NGS 2D plane. These correspondences are utilized to cal-
culate the homography for the new frame. Three different
homography matrices are computed using the standard least
squares method which uses all correspondences, and using
robust methods(least-median of squares and RANSAC [8])
which can ignore outliers. The best homography matrix is
selected using the cost metric defined for smart sampling
based homography computation method.
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Figure 6. Visualization of the keypoints detected using SIFT [15]
and matched in consecutive frames using FLANN [19]. The num-
ber of keypoints detected and matched can vary a lot based on the
camera angles and portion of the field visible.

The computation fails for cases where less than 4 helmet
tracks persist across 3 subsequent frames. This may happen
due to motion blur caused by fast camera movement ham-
pering the helmet tracking performance.

3.5.2 Using Ground Plane Keypoints

In this method, key points are identified between subsequent
frames using SIFT [15], which are then matched using
FLANN [19] to find correspondence between the frames.
Keypoints from sections of the frame which do not have any
detected players or static graphics are used which ensures
that only keypoints from the ground plane are used. Fig 6
shows visualisations of corresponding keypoints found in
consecutive frames of a sample clip.

The inverse of the homography for the initial frame is
used to transform all the keypoints in the current video
frame to points in the NGS 2D plane. The correspondence
between the keypoints in the NGS 2D plane and the ground
plane of the next video frame is then used to compute
the new homography. The robust least-median of squares
method is used to compute the transformation to avoid us-
ing any incorrect keypoint correspondences. The number of
corresponding keypoints identified by this method is usually
large and is hence robust.

4. Results
4.1. Homography Computation

We cannot use commonly used evaluation metrics such
as IoU, projection error, and reprojection error without
ground truth data. In order to assess the quality of a homog-
raphy mapping and its applicability for consequent helmet
identification, we define the following metrics that can be
calculated even in the absence of ground truth data.

Total Distance Cost - This is the cost metric referred in
section 3.3 and Fig 5c. It sums up the distance in pixels be-
tween the mapped homography points and the midpoint of
the base of the nearest bounding box. Each bounding box

and mapped homography point has a unique match which
is ensured by selecting the matches in a greedy way (the
lowest distance gets the first match). The matched pair is
removed from further rounds of matches to ensure one to
one mapping. There might be some noise in this approach
to map players but the resulting cost metric is a robust met-
ric to compare the quality of homographies. The bounding
boxes at the top and bottom of the frame are ignored be-
cause they might contain players who are outside the field
and not included in the play.

Median Distance Cost - This is the median distance ob-
served in all the matches made while calculating Total Dis-
tance Cost. This metric is easier to interpret because the
number of matches in the Total Distance Cost can vary sig-
nificantly as it only includes players visible in the video
frame.

We evaluated our solution on 151 clips from the 2021
season of NFL. These clips are 25-35 seconds long and cut
from the live broadcast of NFL games. It includes the play
which is usually 5-10s long and captured from the side cam-
era, some celebration/reactions, and a replay of the event
from a different camera angle. The player/helmet detection
and tracking are run on the complete clip. After the first
snap is identified to synchronise the frames with the NGS
data, for homography we focus only on the frames between
the start and end of the play. We first use our smart sam-
pling based method to estimate the homography between
the NGS data and the predicted snap frame from the video.
Subsequently, two methods are used to extend the homogra-
phy to successive frames until we reach the end of the play.
Sometimes the extension might not be possible beyond a
certain frame due to lack of availability of corresponding
point matches which are used to calculate the extended ho-
mographies using methods from sections 3.5.1 and 3.5.2.
Table 2 compares the quality of homography obtained us-
ing our methods and a state-of-the-art deep learning model
for sports field registration by Nie et al. [20].

All our methods significantly outperform the state-of-
the-art vision-only model as evident from the drastically
low cost values. Another advantage of our methods is that,
instead of generating a completely inaccurate homography,
it does not compute a transformation in the absence of min-
imum correspondences required for estimation. Also, the
proposed distance cost based metrics introduced in this sec-
tion are a powerful tool to identify the reliability of an esti-
mated homography which can lead to combining the results
from an ensemble of different methods.

The results summarised in Table 2 use mean and median
to summarise results from different clips, it does not capture
the internal distribution of metrics for different clips. It is
important to understand how many clips each method per-
form well in. For this, we define Good Homography, which
is a homography with Median Distance Cost ≤ 30. To un-
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Frame Method Total Cost Median Cost Clips
Mean Median Mean Median

0 Ours (3.3) 261.8 229.9 10.2 9.7 151
Nie et al. [20] 3094.8 293.4 144.2 12.1 151

1 Track Helmet 293.0 223.8 9.4 9.2 149
Keypoints 319.7 251.9 10.7 10.0 148
Nie et al. [20] 2994.2 313.6 135.5 12.5 151

5 Track Helmet 364.7 260.5 10.8 10.0 149
Keypoints 421.6 326.1 12.9 12.3 149
Nie et al. [20] 3258.3 416.7 153.4 14.5 151

10 Track Helmet 440.5 296.6 12.2 11.8 147
Keypoints 513.7 377.2 16.4 15.1 149
Nie et al. [20] 4497.2 460.4 207.3 16.6 150

20 Track Helmet 844.6 359.5 25.4 13.8 140
Keypoints 758.3 443.1 20.5 17.0 148
Nie et al. [20] 4741.6 550.2 236.1 18.4 149

30 Track Helmet 924.2 469.1 25.7 15.6 86
Keypoints 758.8 397.8 23.5 18.8 143
Nie et al. [20] 4907.5 902.0 291.3 21.5 145

40 Track Helmet 1308.7 639.2 66.1 17.1 37
Keypoints 939.6 393.1 45.1 29.1 128
Nie et al. [20] 3598.6 1975.7 296.5 147.7 131

50 Track Helmet 933.2 571.7 39.3 22.4 15
Keypoints 1421.8 694.4 143.3 73.3 108
Nie et al. [20] 2674.5 1590.0 249.1 157.3 112

75 Track Helmet 373.8 373.8 26.0 26.0 1
Keypoints 4129.0 2269.3 565.3 238.4 41
Nie et al. [20] 2728.1 2774.9 318.3 220.2 43

100 Keypoints 6639.4 5100.8 1437.9 470.4 12
Nie et al. [20] 2201.7 814.4 213.8 121.9 16

Table 2. Comparison of Total Distance Cost and Median Distance
Cost (in pixels) for homography estimated using different meth-
ods. A lower distance cost is better. The methods are run for the
frames within the play from 151 clips and the metrics are obtained
for every NGS frame (10 FPS). All clips have different play run-
times. Results for the nth frame of the play are summarised by
their mean and median. The number of clips used in the sum-
marised data is mentioned in the “Clips” column. The homogra-
phy for the first frame (0th frame) is computed using our smart
sampling based method. The subsequent frames our tracked using
homography tracking methods from section 3.5. All methods have
varying clip counts because the homography extension could fail
between some frames.

derstand the quality of homographies with different Median
Distance Costs, we show some examples of mapping gen-
erated by different homography in Fig 7. The threshold
is selected based on our observation that the helmet track
identification approach is robust enough to correctly iden-
tify players when the Median Distance Cost is less than 30.

Table 3 compares the number of clips for which different
methods estimate a Good Homography. The results demon-
strate the robustness of the smart sampling based method,
which estimates a Good Homography for the snap frame
of every clip. In contrast, the homography tracking meth-
ods exhibit limited success in tracking the homography over
time, as they are unable to maintain accurate estimates be-
yond 5 seconds. This is attributed to the dependence on
the quality of the homography estimated for the previous
frame, which makes it challenging for the tracking methods

(a) Median Distance Cost = 6.

(b) Median Distance Cost = 15.

(c) Median Distance Cost = 31.

(d) Median Distance Cost = 119.
Figure 7. Examples of homography mapping with different Me-
dian Distance Cost.

to recover from bad homography estimates. There is propa-
gation of errors and thus it might need re-initialisation with
the smart sampling based approach which is more robust
but has higher latency.

4.2. Helmet Track Identification

To test the accuracy of helmet track identification, the
proposed workflow visualised in Fig 3 is used to identify
the last ball carrier for that particular play in the snap frame
of a replay clip. Table 4 captures the results for 160 replay
clips. Our smart sampling based homography computation
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Frame Method Good % Success % Computed Total
0 Ours (3.3) 100 100 151 151

Nie et al. [20] 75.5 75.5 151
1 Track Helmet 99.3 98.0 149 151

Keypoints 100 98.7 149
Nie et al. [20] 76.8 76.8 151

5 Track Helmet 99.3 98.0 149 151
Keypoints 100 98.7 149
Nie et al. [20] 76.2 76.2 151

10 Track Helmet 98.47 96.0 147 151
Keypoints 96.0 94.7 149
Nie et al. [20] 76.7 76.2 150

20 Track Helmet 89.3 83.3 140 150
Keypoints 87.2 86.0 148
Nie et al. [20] 69.1 68.7 149

30 Track Helmet 82.6 49.0 86 145
Keypoints 79.7 78.6 143
Nie et al. [20] 59.3 59.3 145

40 Track Helmet 59.5 16.8 37 131
Keypoints 52.3 51.1 128
Nie et al. [20] 36.6 36.6 131

50 Track Helmet 66.7 8.9 15 112
Keypoints 14.8 14.3 108
Nie et al. [20] 13.5 13.4 112

75 Track Helmet 100 2.3 1 44
Keypoints 2.4 2.3 41
Nie et al. [20] 0 0 43

100 Keypoints 0 0 12 16
Nie et al. [20] 6.3 6.3 16

Table 3. Comparison of the quality of homography estimated with
different methods. The methods are run for the frames within
the play from 151 clips and the metrics are obtained for every
NGS frame(10 FPS). The number of clips for which the method
could generate a homography is mentioned in the “Computed” col-
umn. Results for nth frame of the play are summarised in columns
“Good %” and “Success %”. “Good %” is the percentage of Good
Homography in the set of all computed homography. “Success%”
is the percentage of all clips for which a method estimates a Good
Homography.

approach gives a good homography (median distance cost
≤ 30 ) for all clips. The helmets identified using the ho-
mography and the dummy bounding boxes based approach
is also very accurate(≥ 96%). The system is robust to snap
detection results being off by a few frames. The few fail-
ures observed are when the homography mapped points are
not exactly on the player’s feet and the player of interest
is surrounded by a crowd. The loose mapping can be due
to the detected snap frame being inaccurate or the player
bounding boxes being noisy.

Category Clips Percentage
Total Clips 160
Incorrect Identification 6 3.75%
Correct Identification 154 96.25%
No helmet track matched 1 0.625%
Wrong player selected 5 3.125%
Bad Homography 0 0%

Table 4. Accuracy of helmet track identified in the snap frame of
the video. The second half of the table gives a breakdown of the
cause of incorrect detection of helmet track.

Module Latency Compute
Player Detection 25s Tesla A10 GPU
Helmet Tracking 38s Tesla A10 GPU
Event(Snap) Detection 16s 3 Tesla A10
Homography Computation 16s 64 vCPUs
Helmet Track Identification 1s

Table 5. Estimated latency for individual steps involved in the
identification of players in the snap frame. The first three mod-
ules run in parallel, thus the total end-to-end latency is less than 1
minute (without homography tracking). These estimates are for a
replay clip which is 20 seconds long and includes some runtime
before and after the actual play.

Module Latency
Homography Tracking - Track Helmet (per NGS frame) 0.01s
Homography Tracking - Keypoints (per NGS frame) 1s

Table 6. Estimated latency for using homography between NGS
plane and video frame m to obtain homography between NGS
plane and video frame m+3.

4.3. Latency

The latency for the individual modules are covered in Ta-
ble 5. The expected total end-to-end latency for identifying
a player in snap frame is less than 1 minute. Even though
a latency of 1 minute is not low enough to add graphic
overlays in live broadcast, it can be used to enhance replay
clips which are available to customers on demand when live
streaming on OTT services. This only requires computing
the homography for one frame. To extend the homogra-
phy to other frames in the play, the proposed homography
tracking methods can be used. The latency for homography
tracking/extension is covered in Table 6.

5. Conclusion and Future Work
We present a simple yet effective method to perform

highly accurate player identification using homography es-
timation for sports field registration. The method takes
advantage of the RFID based player positions data gath-
ered via wearable RFID sensors. Based on our experi-
ments on a dataset of over 150 American football replay
clips, the method outperforms a state-of-the-art deep learn-
ing method (which only uses video frames) both in terms of
accuracy and success rate in computing the correct homog-
raphy. These method can be used to automatically gener-
ate graphic overlays to identify key players in replay clips
which enhances the viewing experience for fans within min-
utes of the actual play. One of the biggest advantage of
the method is that it does not require any annotated data
or training for the sports field registration problem. On the
other hand, our approach can be used for the automated cu-
ration of training data for sports field registration models.
Our robust approach can accurately identify key players for
more than 96% of replay clips it was tested on.
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