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Abstract

Conventional B-mode “grey scale” medical ultrasound
and shear wave elastography (SWE) are widely used for
chronic liver disease diagnosis and risk stratification. Liver
disease is very common and is clinically and socially im-
portant. As a result, multiple medical device manufac-
turers have proposed or developed AI systems for ultra-
sound image analysis. However, many abdominal ultra-
sound images do not include views of the liver, necessitat-
ing manual data curation for model development. To opti-
mize the efficiency of real-time processing, a pre-processing
liver view detection step is necessary before feeding the
image to the AI system. Deep learning techniques have
shown great promise for image classification, yet labeling
large datasets for training classification models is time-
consuming and expensive. In this paper, we present a self-
supervised learning method for image classification that
utilizes a large set of unlabeled abdominal ultrasound im-
ages to learn image representations. These representations
are then applied on the downstream task of liver view clas-
sification, resulting in efficient classification and allevia-
tion of the labeling burden. In comparison to two state-of-
the-art (SOTA) models, ResNet-18 and MLP-Mixer, when
trained for 100 epochs the proposed SimCLR+LR approach
demonstrated outstanding performance when only labeling
“one” image per class, achieving an accuracy similar to
MLP-Mixer (86%) and outperforming the performance of
ResNet-18 (70.2%), when trained on 854 (with liver: 495,
without liver: 359) B-mode images. When trained on the
whole dataset for 1000 epochs, SimCLR+LR and ResNet-
18 achieved an accuracy of 98.7% and 79.3%, respectively.
These findings highlight the potential of the SimCLR+LR
approach as a superior alternative to traditional supervised
learning methods for liver view classification. Our pro-
posed method has the ability to reduce both the time and
cost associated with data labeling, as it eliminates the need
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for human labor (i.e., SOTA performance achieved with
only a small amount of labeled data). The approach could
also be advantageous in scenarios where a subset of images
with a particular organ needs to be extracted from a large
dataset that includes images of various organs.

1. Introduction
Non-alcoholic fatty liver disease (NAFLD) is a prevalent

form of chronic liver disease characterized by the accumula-
tion of excess fat in the liver, leading to damage and inflam-
mation. The incidence of NAFLD is predicted to rise from
20.8% to 22.9% in Canada between 2019 and 2030 [11],
while the overall prevalence of NAFLD in the U.S. is es-
timated to be 24% [1]. The upward trend in incidence is
likely to result in an increase in the economic burden, which
is already high, with annual NAFLD-related US medical
costs estimated to be $103 billion [12]. The stage of liver
fibrosis at the time of diagnosis has been shown to be the
best indicator of negative outcomes for patients with excess
liver fat [8]. However, liver biopsy, the current standard for
detecting excess fat and fibrosis stage, is invasive, costly,
and subject to sampling error and interpretative variability.
Non-invasive alternatives, such as medical ultrasound, have
been developed to address these limitations. Shear wave
elastography (SWE) is a non-invasive ultrasound method
that can measure changes in liver stiffness as liver fibrosis
progresses, making it a useful biomarker for NAFLD diag-
nosis. It has been shown to be highly effective in diagnosing
cirrhosis and moderately accurate for intermediate fibrosis
stages in adults with NAFLD [13]. Proper placement of a
region of interest (ROI) on the liver in the B-mode image is
crucial for obtaining accurate and reliable results in SWE.
The first step in developing an automated system for mea-
suring liver fibrosis using SWE would thus be to segment
the liver capsule. The use of SWE technology for liver fi-
brosis staging has been widely adopted by multiple medical
ultrasound manufacturers, which has led to the development
of AI systems designed to augment SWE and liver disease
detection. However, not all abdominal ultrasound images
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contain images of the liver, making it infeasible to automat-
ically pass all images to an AI system for processing. A pre-
processing step to check for the presence of the liver view
in the image is necessary before feeding the image to the
AI system. This step could improve the overall efficiency
and effectiveness of the AI system in processing abdomi-
nal ultrasound images in a real-time setting. Deep learning
has emerged as a powerful tool for image classification, and
while various deep learning models have been proposed for
this purpose, one of the main challenges in using such mod-
els for medical imaging is the significant expense (i.e., both
in terms of time and cost) of labeling large datasets for train-
ing the classification model. In this paper, we introduce a
contrastive self-supervised learning method for image clas-
sification that leverages a large dataset of unlabeled abdom-
inal ultrasound images to learn image representations that
are then applied to the downstream task of liver view clas-
sification, enabling effective classification, and reduction of
the labeling burden. The remainder of the paper is presented
as follows: Section 2 provides a survey of relevant litera-
ture. The proposed method is described in Section 3. The
results of the proposed approach are analyzed and compared
with SOTA methods in Section 4. Finally, the paper is con-
cluded in Section 5.

2. Related work
Within the scope of the related work, it is notewor-

thy to mention that the literature presents a rather lim-
ited number of studies that have investigated and focused
on the classification of abdominal organs using ultrasound
images. Li et. al., [6] introduce an automatic abdomi-
nal organ recognition method in ultrasound images using
deep neural networks (DNNs) and k-nearest-neighbor (k-
NN) classification. The technique achieves high classifica-
tion accuracy (96.67%) by combining fine-tuned ResNet-
50 and DenseNet-121 feature extractors with k-NN and FC
layer classifiers. The incorporation of principal compo-
nent analysis (PCA) improves classification results by re-
ducing overfitting and eliminating correlated features. The
method effectively handles challenging cases and offers
real-time performance. However, potential limitations in-
clude limited generalizability due to the small dataset, pos-
sible overfitting with fine-tuned networks, and dependence
on hyperparameter choices. In [7], Reddy et. al. in-
troduced a transfer learning-based framework for abdomi-
nal organ classification in ultrasound images, utilizing pre-
trained models such as AlexNet, VGGNet, GoogleNet, In-
ception, and ResNet. The approach demonstrated high per-
formance, especially with ResNet-50, which achieved an
average precision, recall, F1 score, and classification ac-
curacy of 98.77%, 98.55%, 98.55%, and 98.77%, respec-
tively. Despite its success, the study faced some challenges,
such as the use of a relatively small dataset of 1906 im-

ages, which could impact generalizability. Furthermore, bi-
ases introduced by excluding images with unclear anatom-
ical locations or superimposed annotations might affect the
model’s real-world applicability. Dadoun et al. [3] devel-
oped a framework for multi-label classification of abdomi-
nal organs in ultrasound images by adapting deep clustering
with PICA [4] and semi-supervised learning with FixMatch
[10]. The approach demonstrated better feature transferabil-
ity than ImageNet initialization and achieved robust results
with limited labeled examples. Key advantages include the
use of a large database and the effective combination of self-
supervised and semi-supervised learning. However, limita-
tions encompass transforming multi-label classification into
single-label classification, the introduction of an additional
hyperparameter, and a limited evaluation of methods and
datasets, necessitating further research.

3. Methodology
The proposed method (Fig.1) involves a two-stage train-

ing approach. In the first stage, a contrastive self-supervised
learning technique (i.e., SimCLR [2]) is trained on a large
dataset of unlabeled abdominal ultrasound images to obtain
feature representations of the images (these feature repre-
sentations will be fine-tuned on a downstream classification
task utilizing logistic regression). In the second stage, a su-
pervised learning approach (logistic regression) is used to
train the downstream task, which involves a substantially
smaller dataset (as compared to the first stage) of images
with labeled liver view classes (i.e., with liver vs. without
liver). We call our approach SimCLR+LR (LR: logistic re-
gression).

3.1. SimCLR+LR

3.1.1 SimCLR framework

SimCLR (simple framework for contrastive learning of vi-
sual representations) is a framework for learning effective
representations of data. The key idea behind SimCLR is to
use a contrastive learning approach to learn representations
by maximizing agreement between differently augmented
views of the same data example via a contrastive loss in the
latent space. The framework comprises four major compo-
nents, which we describe herein.
Stochastic data augmentation. SimCLR employs a
stochastic data augmentation module that transforms any
given data example randomly, resulting in two correlated
views of the same example, denoted x̃i and x̃j , which we
consider as a positive pair. In their work, the authors se-
quentially apply three simple augmentations: random crop-
ping followed by resize back to the original size, random
color distortions, and random Gaussian blur. The authors
emphasize that the combination of random crop and color
distortion is crucial to achieving good performance. Fig.2
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Figure 1. Proposed liver view classification approach

shows some examples on image pairs sampled with Sim-
CLR augmentations applied on the images in the unlabeled
dataset.

Figure 2. Augmented image pair samples of the abdominal ultra-
sound unlabeled dataset

Base encoder. The framework uses a neural network base
encoder f(·) to extract representation vectors from the aug-
mented data examples. The framework allows various
choices of the network architecture without any constraints.
The authors opt for simplicity and adopt the commonly used
ResNet architecture to obtain hi = f(x̃i) = ResNet(x̃i),
where hi ∈ Rd is the output after the average pooling layer.
Projection head. A small neural network projection head
g(·) maps representations to the space where contrastive
loss is applied. The authors use a multi-layer perceptron
(MLP) with one hidden layer to obtain zi = g(hi) =
W(2)σ(W(1)hi), where σ is a rectified linear unit (ReLU)
nonlinearity. The authors found that it beneficial to define
the contrastive loss on the zi’s rather than the hi’s.
Contrastive loss function. The contrastive loss function
is an essential component of the SimCLR framework, de-
fined for a contrastive prediction task.. Given a set {x̃k}
including a positive pair of examples x̃i and x̃j , the con-
trastive prediction task aims to identify x̃j in {x̃k}k ̸=i for
a given x̃i. The contrastive loss function is defined as a
softmax over the cosine similarities between the zi’s for the
positive pair and the zi’s for the other examples in the batch:

Li,j = − log
exp(sim(zi, zj)/τ)∑2N

k=1 1[k ̸=i] exp(sim(zi, zk)/τ)
(1)

where zi and zj are the projections of the augmented
views x̃i and x̃j of a given data example, obtained by pass-
ing them through the base encoder f(·) and the projection
head g(·), and τ is a temperature parameter that controls the
concentration of the distribution. The function sim(zi, zj)
measures the cosine similarity between the projections zi
and zj and is defined as:

sim(zi, zj) =
zTi zj

∥zi∥ · ∥zj∥
(2)

where ∥zi∥ and ∥zj∥ represent the Euclidean norm of the
vectors zi and zj , respectively.

The authors investigate the impact of model size and the
use of a nonlinear projection head on the quality of learned
representations. They find that, while increasing depth and
width improves performance, unsupervised learning bene-
fits more from bigger models than its supervised counter-
part. They also show that a nonlinear projection head is
better than no projection or a linear projection, and that the
layer before the projection head is a better representation
than the layer after. The authors conjecture that this is be-
cause the contrastive loss can induce a loss of information,
and leveraging the nonlinear transformation of the projec-
tion head can help maintain more information in the layer
before it. They conduct experiments to verify this hypothe-
sis and find that the hidden layer before the projection head
contains much more information about the transformation
applied during pretraining than the layer after. The authors
compared the NT-Xent loss, logistic loss, and margin loss,
and found that the NT-Xent loss with adjustable tempera-
ture works the best. They also tested the importance of ℓ2
normalization and temperature scaling in the NT-Xent loss
and found that they are essential for achieving good perfor-
mance. In terms of batch size, the authors found that larger
batch sizes are beneficial for contrastive learning, particu-
larly with shorter training periods. This is because larger
batch sizes provide more negative examples, which helps
facilitate convergence. Additionally, longer training periods
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also provide more negative examples, improving results.
The paper compares its approach to state-of-the-art meth-
ods using ResNet-50 in 3 different hidden layer widths. In
linear evaluation, the results show that the paper’s method
outperforms previous approaches that require specifically
designed architectures. In semi-supervised learning, the pa-
per’s approach significantly improves over state-of-the-art
with both 1% and 10% of the labels. The transfer learn-
ing results show that when fine-tuned, the paper’s self-
supervised model significantly outperforms the supervised
baseline on 5 datasets.

In our work, we use ResNet-18 as the base encoder net-
work for SimCLR due to several factors, including com-
putational efficiency, faster training, reduced overfitting,
transferability, and suitability for self-supervised learning.
By employing ResNet-18 (a less complex architecture than
ResNet-50) we can reduce computational demands and ac-
celerate training, making our model more practical for real-
world clinical applications. Additionally, a shallower net-
work like ResNet-18 mitigates the risk of overfitting on
limited labeled data and enhances generalization, which is
crucial in medical imaging domains where obtaining large
amounts of labeled data is challenging.

3.1.2 Logistic regression for downstram task

Logistic regression [5] is a popular statistical technique
used in supervised learning for binary classification tasks
such as image classification. In the SimCLR+LR method-
ology, logistic regression is employed as the supervised
learning approach for the downstream task, which is the
classification of liver view classes (with liver vs. with-
out liver). This task leverages the feature representations
obtained from the unsupervised learning stage using the
SimCLR framework. By utilizing logistic regression, the
fine-tuning process adjusts the learned feature representa-
tions, enabling the model to predict the presence or ab-
sence of the liver in abdominal ultrasound images. The
combination of SimCLR for unsupervised feature learning
and logistic regression for supervised fine-tuning allows the
method to benefit from the large-scale unlabeled dataset
in the first stage and achieve accurate classification results
with a smaller labeled dataset in the second stage (i.e., lo-
gistic regression).

4. Results and discussion
Liver ultrasound DICOM exams were collected from the

electronic medical record (EMR) of the Massachusetts Gen-
eral Hospital (MGH). In particular, training, validation, and
testing data were sampled from 903 abdominal ultrasound
exams (each exam contained a sequence of DICOM files);
the sampled images were labeled by MGH radiologists as
either belonging to the “with liver” class (i.e., liver cap-

sule can be viewed in the B-mode image) or “without liver”
class (i.e., liver capsule is not viewable) to be used in the
supervised stage (i.e., logistic regression) of the proposed
approach. The self-supervised learning part (i.e., SimCLR)
was trained on 17,441 unlabeled abdominal B-mode im-
ages, and the trained model was subsequently fine-tuned
on a downstream task of liver view classification in ultra-
sound images involving logistic regression. The labeled
training and validation B-mode images consisted of 854
(with liver: 495, without liver: 359) and 90 (with liver:
51, without liver: 39) images, respectively. Experiments
were performed on a test set of 150 (with liver: 101, without
liver: 49) images to evaluate the proposed approach. Fig.3
displays examples of the training data and corresponding
classes.

Figure 3. Samples of training images and their associated class:
“with liver” or “without liver”

This section commences with an analysis of the dataset
utilized in our research, followed by a comparative evalua-
tion of our proposed approach against ResNet-18 and MLP-
Mixer.

4.1. Data analysis

The goal of our study is to classify liver images into two
classes: “with liver” for images where the liver capsule can
be viewed, and “without liver” for images where the liver
capsule is not viewable. To form the class mean (prototype
image) of our training dataset, we computed the arithmetic
mean of the pixel values of all the images in the class. This
eventually results in an image that emphasizes the distinc-
tive features that are common to all images in the class. The
prototype images for the “with liver” and “without liver”
classes are shown in Fig.4.a. and Fig.4.b.

Figure 4. Prototype image: (a) “with liver” class (b) “without
liver” class (c) difference between (a) and (b)

The prototype image for the “with liver” class, which ap-
pears homogeneous, indicates that the majority of the im-
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ages in this class show a clear view of the liver with few
artifacts or noise. Conversely, the prototype image for the
“without liver” class, which appears less homogeneous with
dark areas, suggests that the majority of the images in this
class do not show the liver, and instead contain other organs
or tissue. The difference image (Fig.4.c.) represents the dif-
ferences between the prototype images of the two classes,
“with liver” and “without liver”. The blue-white-red (BWR)
colormap was used to create the difference image, where
positive values are displayed in red, negative values in blue,
and the zero crossing in white. The difference image pro-
vides insight into the features that are most distinctive be-
tween the “with liver” and “without liver” classes in the
training dataset. In particular, regions that appear in red
correspond to features that are more prevalent in the “with
liver” class, while regions that appear in blue correspond
to features that are more prevalent in the “without liver”
class. Regions that appear in white may correspond to fea-
tures that are common to both classes or to areas where the
difference between the two classes is minimal (i.e., non-
distinctive features of either class).

4.2. Evaluation

Our experiments were performed on a NVIDIA GeForce
RTX 2080-Ti GPU. The initial set of experiments aimed to
evaluate the impact of the number of training images per
class and the number of epochs per experiment on the liver
view classification performance. Fig.5 depicts the impact of
training duration and number of images per class (i.e., ran-
domly selected) on liver view classification accuracy. The
figure shows that increasing the number of training epochs
results in higher classification accuracy. Moreover, it can be
observed that even with a limited number of labeled images,
remarkable classification performance can still be accom-
plished. Notably, the optimal classification accuracy was
obtained when 50 images were used per label. Specifically,
employing this configuration resulted in liver view classifi-
cation accuracies of 95.3%, 96%, and 99.3% when trained
for 100, 500, and 1000 epochs, respectively (summarized
in Table 1). The outstanding performance achieved with 50
images per label can be attributed to two main factors: (i)
the absence of similar features between the two classes (i.e.,
Fig.4) in the images used in this experiment: when train-
ing a model, the features present in the training data are
crucial in determining how well the model can distinguish
between different classes. If the features in the training im-
ages used in the experiment are highly distinctive and not
similar between the two classes, it can make it easier for the
logistic regression model to accurately classify new images
(i.e., test images); (ii) the capacity of the images utilized for
training to optimize the accuracy of logistic regression: in
this case, having as few as 50 images per class can allow the
model to learn and generalize effectively since the training

10 20 50 100 200 300
90

92

94

96

98

100

Number of Images per Class

Te
st

A
cc

ur
ac

y
(%

)

100 epochs

500 epochs

1000 epochs

Figure 5. Liver view classification performance of SimCLR+LR
using different training dataset sizes per class and varying number
of epochs
data set is composed of representative examples (i.e., this
is a topic we intend to investigate in future work related to
active learning [9]).

Epochs Liver view classification accuracy

100 95.3%
500 96.0%

1000 99.3%

Table 1. Classification accuracies of liver views using Sim-
CLR+LR with varying training epochs (based on 50 labeled im-
ages per class)

In the process of evaluating the proposed approach, we
compared it to two state-of-the-art (SOTA) models, namely
ResNet-18 and MLP-Mixer. This evaluation was carried on
the original dataset where training, validation, and testing
datasets consisted of 801 (with liver: 495, without liver:
306), 90 (with liver: 51, without liver: 39), and 150 (with
liver: 101, without liver: 49) B-mode images, respectively.
Based on the findings illustrated in Fig.6 (summarized in
Table 2), it is apparent that the SimCLR+LR approach
outperforms ResNet-18 by a significant margin across dif-
ferent epochs. Specifically, upon training the models for
100 epochs, the liver view classification accuracy achieved
by the SimCLR+LR method was 94.5%, which is sub-
stantially higher than the accuracy of 70.2% obtained by
ResNet-18. Furthermore, after training the models for 500
epochs, the SimCLR+LR method exhibited an accuracy of
97.3%, while ResNet-18 achieved an accuracy of 78.7%.
Finally, after training for 1000 epochs, the SimCLR+LR
approach demonstrated an impressive accuracy of 98.7%,
which significantly surpassed the 79.3% accuracy obtained
by ResNet-18.

After training the models (SimCLR+LR, ResNet-18, and
MLP-Mixer) for 100 epochs, the liver view classification
accuracy of images belonging to the “with liver” and “with-
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Model 100 epochs 500 epochs 1000 epochs

SimCLR+LR 94.5% 97.3% 98.7%
ResNet-18 70.2% 78.7% 79.3%

Table 2. Comparison of liver view classification accuracy be-
tween SimCLR+LR and ResNet-18 across different epochs (when
trained on the whole labeled dataset)
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Figure 6. Overall accuracy of SimCLR+LR and ResNet-18 across
different epochs
out liver” classes was evaluated in a per-class compari-
son (Fig.7 and Fig.8). The results show that the Sim-
CLR+LR approach outperforms both ResNet-18 and MLP-
Mixer for both classes. Specifically, the SimCLR+LR ap-
proach achieved an accuracy of 95.1% for images cate-
gorized as “with liver”, while ResNet-18 and MLP-Mixer
achieved 79.2% and 82.2%, respectively. Similarly, for the
“without liver” class, the SimCLR+LR approach demon-
strated an accuracy of 93.9%, which is higher than the ac-
curacy of ResNet-18 and MLP-Mixer at 61.2% and 89.8%,
respectively. Overall, the accuracy for the three models
is 94.5%, 70.2%, and 86% for SimCLR+LR, ResNet-18,
and MLP-Mixer, respectively. Table 3 summarizes these
findings. We would like to emphasize that training Sim-
CLR+LR with only “one” labeled image for each class (i.e.,
2 images in total) achieved a performance similar to MLP-
Mixer (86%), which has been trained on the entire dataset
comprising 801 B-mode images (with liver: 495, without
liver: 306). These results highlight the potential of the Sim-
CLR+LR approach as a viable alternative to traditional su-
pervised learning methods for liver view classification.
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Figure 7. “with liver” class accuracy of SimCLR+LR, ResNet-18,
and MLP-Mixer when trained for 100 epochs
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Figure 8. “without liver” class accuracy of SimCLR+LR, ResNet-
18, and MLP-Mixer when trained for 100 epochs

Model WithLiver WithoutLiver Overall
accuracy

SimCLR+LR 95.1% 93.9% 94.5%
ResNet-18 79.2% 61.2% 70.2%

MLP-Mixer 82.2% 89.8% 86.0%

Table 3. Liver view classification accuracy evaluated in a per-class
comparison for SimCLR+LR, ResNet-18, and MLP-Mixer when
trained for 100 epochs

5. Conclusion
We proposed a novel two-stage approach for liver view

classification in abdominal ultrasound images called Sim-
CLR+LR. Our approach achieved high accuracy even with
a limited number of labeled images and outperformed the
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state-of-the-art models, ResNet-18 and MLP-Mixer. The
proposed approach involves a contrastive self-supervised
learning technique in the first stage, which was trained on a
large dataset of unlabeled abdominal ultrasound images to
obtain feature representations of the images. In the second
stage, the learned feature representations were fine-tuned
on a supervised learning approach (i.e., logistic regression)
which was trained on a smaller labeled dataset of liver view
classes. Our proposed approach has the potential to save
time and cost when labeling data as it does not require hu-
man labor (i.e., few labeled data required to reach SOTA
performance). It could also be beneficial in situations where
a set of images with a specific organ need to be selected
from a large data set that contains images of different or-
gans. This could save time and resources by allowing re-
searchers or medical professionals to quickly and efficiently
identify and access the images they need, rather than hav-
ing to manually sift through a vast collection of images. In
general, self-supervised learning presents a promising sub-
stitute for transfer learning strategies that rely on ImageNet
pre-trained models. By pre-training a model on a domain-
specific dataset, this can potentially yield improved perfor-
mance and applicability to the target task. Future work
includes investigating active learning as a data-centric AI
method, and expanding the proposed approach to multi-
class organ view classification.
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