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Abstract

Ultrasound (US) imaging holds promise as a low-cost ver-
satile, non-invasive point-of-care diagnostic modality in low-
and middle-income countries (LMICs). Still, lung US can be
challenging to interpret because air bronchograms are ane-
choic and the US images mostly contain artifacts rather than
lung anatomy. To help overcome these barriers, advances in
computer vision and machine learning (ML) provide tools to
automatically recognize abnormal US lung features, offering
valuable information to healthcare workers for point-of-care
diagnosis. This paper describes deep learning algorithms
that target three key US features associated with lung pathol-
ogy: pleural effusion, lung consolidation, and B-lines. The
algorithms were developed and validated using a large and
varied dataset of 22,400 US lung scans (videos) from 762
patients of all ages (newborn to adult) in Nigeria and China.
The architectures include effective methods for leveraging
frame-level and video-level annotations, are light enough to
deploy on mobile or embedded devices and have high accu-
racy (e.g., AUCs =0.9). Coupled with portable US devices,
we demonstrate that they can provide expert-level clinical
assistance for diagnosis of pneumonia, which is the leading
cause of both childhood mortality and adult hospitalization
in LMICs. We also discuss some of the challenges associated
with determining ground truth for pneumonia, which impact
the question of how to leverage ML models for lung US to
support clinical diagnosis of pneumonia.

* These authors contributed equally.

1. Introduction

Ultrasound (US) imaging offers several key advantages
over X-ray, computed tomography (CT), and magnetic reso-
nance imaging (MRI). These advantages include real-time
imaging, non-ionizing radiation, low cost, ease of steril-
ization, and portability, making US imaging well suited to
point-of-care applications [1]. However, US suffers from
issues such as noise, limited field of view, artifacts, and skele-
tal obstruction of organs. Lung US presents a fundamental
challenge because the lung is generally filled with air, which
does not propagate US waves, precluding direct visualization
of lung tissue. Lung US images mostly consist of artifacts
generated by wave interactions at the interface between the
pleural cavity and the lung, which require expertise to inter-
pret and which lead to inter-reader variability [2]. Scarcity
of interpretive expertise limits the usability of US for respira-
tory disease monitoring, especially in low-resource settings
such as rural areas in LMICs, where pneumonia is the pri-
mary reason for child mortality and the most common cause
of adult hospitalization [3].

Advances in artificial intelligence can potentially help
fill this expertise gap. Recent research efforts have applied
deep neural networks (DNN5s) to medical US image analysis
tasks including classification [4], segmentation [5], detection
[6], registration [7], biometric measurement [8], and quality
assessment [9], as well as image-guided interventions and
therapy, on body parts such as breast, prostate, liver, heart,
brain, fetus, and kidney. For a review, see [10].

In this paper we seek to lower the barriers to using lung
US for assisting respiratory disease diagnosis by developing
DNN models that provide accurate and objective evaluation
of lung US scans. We describe DNNs that identify three
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important clinical features in lung US videos - consolidation,
pleural effusion, and B-lines - associated with abnormal lung
conditions including pneumonia and COVID-19.

Contributions:

(1) Three video-level deep learning algorithms detect,
with high accuracy (AUCs ~0.9), key lung US features asso-
ciated with pneumonia. These algorithms can be deployed
to mobile devices in low resource settings.

(2) The algorithms were developed and validated on a
highly diverse and expertly annotated data set of 22,404 US
scans from 732 human subjects, representing various ages,
genders, demographic backgrounds, and lung pathologies,
with strong ground truth as to pneumonia. This is the biggest
known lung US dataset targeting pneumonia.

(3) We detail specific challenges in pneumonia diagnosis
that are central to both defining ground truth to train AI mod-
els and incorporating such models into clinical workflows.

2. Background

Lung US is becoming increasingly common in clinical
practice for multiple conditions including pneumonia, pul-
monary embolism, asthma, pulmonary edema, and pneu-
mothorax [11]. Recent research [12, 13] shows that US
can detect pneumonia at higher sensitivity than chest X-
ray [14]. In addition, lung US has played a key role in
clinical management of patients with COVID-19 associated
lung abnormalities. A review [15] of 66 articles, with a total
patient population of 4687, found that the most consistent
findings between COVID-19 patients were multiple B-lines,
sub-pleural consolidation, and pleural effusion. Our work is
centered around these same lung US features—pleural effu-
sion, consolidation, and B-lines (merged and single). These
features are described in appendix 1 of the supplementary
technical report, and examples are shown in Figure 1.

3. Related Work

Over the last several years, DNNs have been increasingly
applied to the automatic interpretation of US imagery [, 10,

, 1'7]. Computer-aided analysis of endobronchial US has
been used to identify benign and malignant lesions in patients
with lung cancer [18]. DNN-based algorithms have detected
pleural effusion and consolidation in lung US by training
feature-specific models on a swine lung dataset [0], and have
automatically detected and localized B-lines [19]. These
studies focused on detecting features within individual US
frames while ignoring temporal patterns that can be learned
from a video loop.

COVID-19 involves similar lung pathologies to pneu-
monia, and multiple studies [20-25] demonstrated the
effectiveness of DNNs on lung US for COVID-19, such
as quantitatively analyzing the severity of COVID-19
pneumonia by characterizing patterns related to pleural

lines and B-lines [26]. Releasing lung US datasets collected
from several Italian hospitals during the early stage of the
COVID-19 pandemic, including frame-level, video-level,
and pixel-level annotations indicating the severity of dis-
ease, [27] proposed an end-to-end deep learning framework
to predict disease severity score at the frame-level and
aggregated frame-level scores to generate a video score. A
Spatial Transformer Network [28] was used to highlight
the spatial pattern of pathology. A multi-modal approach
to assess COVID-19 infection severity combined US data
with clinical information [29], recognizing that lung US
is not a stand-alone diagnostic. In [30], 202 US videos
were released and a Convolutional Neural Network (CNN)
method to differentiate COVID-19, bacterial pneumonia,
non-COVID-19 viral pneumonia, and healthy lung was de-
scribed. We omit the customary comparison of our approach
with other methods, because the following complexities
limit our ability to make a meaningful comparison:

(i) Our focus is on video-level detection since it is more
relevant to clinical needs, whereas existing methods
typically concentrate on frame-level detection [6,26,27].
(i1) Since other methods use different criteria to de-
termine the clinical significance of small lung feature
instances [31-33], defining positive labels for them can vary
between studies. The status of these small features strongly
impacts accuracy as shown in Tables 3 and 4.

(iii) Challenges in reproducing and comparing methods
arises from the absence of open datasets and universally
accepted benchmark measures.

4. Method
4.1. Data collection and annotation

Large datasets are critically important for the develop-
ment of deep learning algorithms. They provide the neces-
sary training data to represent the wide variety of presen-
tations that pathology gives rise to, as well as data to com-
prehensively evaluate the accuracy, robustness, and effec-
tiveness of such methods. The present article benefits from
an extensive library of 22,404 lung US videos representing
762 human subjects varying in age, gender, demographic
background, and pathology.

Two data collection studies, with institutional review
board approval and informed consent, provided data for
this work. One study enrolled pediatric patients (age 0-18)
in Nigeria, and the other enrolled adult patients (age > 18)
in China. A Mindray DP-10 system equipped with a con-
vex array transducer (part 35C50EB) was used to capture
the US scans. Data consisted of US videos and associated
demographic and clinical data (all de-identified).

Each pediatric patient also had a diagnostic quality chest
X-ray and each adult had a CT scan. Diagnosis was based
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Figure 1. Example lung ultrasound frames and features: (a) Normal Lung, with arrow pointing to pleural line and bracket showing A-lines
(b) Pleural Effusion (c) Lung Consolidation (d) Left arrow pointing to B-line, right arrow pointing to Merged B-lines

on all available clinical information, including radiography,
enabling reliable pneumonia ground truth labels. (For chal-
lenges of definitive pneumonia diagnosis see section 6.) All
but 20 patients had a diagnosis of pneumonia.

Ten lung zones per patient were imaged, with multiple
~ 3 second loops collected in each zone to capture variations
in position, transducer/operator movement, and respiratory
cycle. The average number of frames was 151 for pediatric
videos and 80 for adult videos. In all, there were 378 adult
and 384 pediatric patients and 22,404 usable videos.

Lung radiologists rated the overall quality of the video
loop. Videos with inadequate quality (image or acquisition)
were excluded. Every video was annotated by expert radi-
ologists to note the presence of effusion, consolidation, and
B-lines (merged and single). Videos annotated as contain-
ing B-lines and consolidation were further annotated on the
frame-level, since these features are typically only visible
in a subset of frames. Lung radiologists also labeled tiny
effusions and sub-pleural changes (SPC, a very small con-
solidation or abnormal pleural line). These features have
indeterminate clinical meaning; they are generally consid-
ered sub-clinical (not directly indicative of pneumonia) but
still notable. Some research [32, 34] suggests that tiny ef-
fusions do not indicate health concerns warranting clinical
action. Due to their equivocal clinical importance and their
indefinite label boundaries, tiny effusions and SPC require
special consideration for inclusion in training sets and their
assessment in test sets. Examples are noted later.

4.1.1 Data cohorts for each model

Separate adult and pediatric models were trained for each
feature. Videos were distributed among the training, valida-
tion, and testing sets by feature as shown in Table 1. All data
splits occurred at the patient level; data from any one patient
was placed in exactly one of the splits (train/validation/test).
As seen in Table 1, not all of the ~ 22,000 videos were used
for training every model. These reduced video counts were
due to various screening criteria and constraints which varied
between the different models:

(1) For the consolidation model, two specific requirements
were imposed on the data. First, videos where SPC was
present were withheld from the training set, because doing

so reduced specificity. Second, a subset of videos that were
recorded with a non-standard device gain setting were with-
held from the training set.

(ii) For B-line models, videos that were recorded with a non-
standard gain setting were withheld from the training set.
(iii) For the adult pleural effusion model, pediatric pleural
effusion videos were added to the training set to add to the
limited number of adult pleural effusion videos available.
However, the validation and holdout sets for the adult model
included videos only from the adult population.

4.2. Deep learning architectures

We used two high-level architectures for video classi-
fication, driven by the type of annotations available. For
pleural effusion, which only had video-level annotations, an
LSTM-CNN classified videos as pleural effusion positive
or negative (section 4.2.1). For consolidation and B-lines
(merged and single), where frame-level annotations were
available, a two-step classifier was used to leverage the more
granular annotations. The first step computed classification
confidence scores for each input frame independently. The
second step took the vector of frame confidence scores as
input to determine a video-level binary classification.

4.2.1 Pleural effusion one-step classifier

Pleural effusion is fluid in the pleural cavity which appears
as a dark, anechoic or hypoechoic area. An ultrasound video
clip captures the lateral motion between lung and the chest
cavity during respiration. The pleural effusion models were
trained specifically to identify pleural effusion of at least 0.5
cm depth. “Tiny’ effusions (< 0.5 cm) may not be clinically
relevant if not associated with other abnormal features.
Because the pleural effusion annotations were video-level
only, the model has a one-step, CNN + LSTM architecture
which takes a video as input and outputs a video classifica-
tion. A sequence of 60 regularly spaced frames are stacked
to represent a video clip. Other frame counts were explored
as detailed in appendix 3 of supplementary report, but 60
frames represented a good balance between computational
load and performance; validation accuracy improved with
increasing frame count but leveled off at 60 frames. Frames
are centrally cropped with fixed cropping points to include
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Adult Training ‘ Validation ‘ Testing

neg pos  exam ‘ neg pos  exam ‘ neg pos  exam
Pleural Effusion 4487 178 209 | 969 25 45 | 1170 34 45
Consolidation 3094 441 151 | 986 97 37 | 420 261 25
Merged B-line and B-line 2854 1797 153 | 631 581 39 | 288 546 22
Pediatric Training ‘ Validation ‘ Testing

neg pos exam | neg pos exam ‘ neg pos exam
Pleural Effusion 3683 461 272 | 952 105 72 | 208 58 18
Consolidation 1387 629 106 | 1944 644 119 | 2022 685 125
Merged B-line and B-line 1833 1189 122 | 973 680 239 | 811 406 238

Table 1. Counts of negative videos, positive videos, and patient exams in training, validation, and testing sets for each model.

only the fan-shaped segment of the image. Pixel values are
normalized to [0, 1].

The model architecture is illustrated in Figure 2. Every
frame is processed through a series of modules comprising a
2D convolutional filter, a ReLU activation function, a batch-
normalization layer, followed by a 2D max-pooling opera-
tion. A flattening layer then a dense layer follow the last con-
volutional module. The weights of the convolutional mod-
ules and the dense layer were optimized in a time-distributed
manner, by applying the same set of parameters to every
temporally sliced video frame. The dense layer output is se-
quentially processed through two LSTM layers, of 128 units
each. The first returns a sequence, which is processed by
the second into a spatiotemporal feature vector that serves as
input to a stack of two dense layers with softmax activation
function for the final classification output. There are 831k
parameters in the architectures for both pediatric and adult
algorithms.

The LSTM [35] is a type of recurrent neural network
(RNN) that models temporal patterns in sequential data.
LSTMs accept past variable states as feedback—allowing
information to flow in time—thus making them capable of
learning long-term dependencies [36]. We found that a stack
of two LSTM layers performed better than a single LSTM
layer. Stacked LSTMs allows hidden states at each level to
operate on different timescales [37] and adds an extra level
of temporal abstraction. We used the Adam optimizer [38],
learning rate of 0.0001, and categorical cross entropy loss
with a mini batch size of 3 videos. Dropout [39] of 0.5
was used with LSTM and dense layers to forestall overfit-
ting. Standard data augmentations (blurring, random pixel
intensity adjustment, zero padding, frame averaging, and
contrast adjustment) were used to combat overfitting and en-
hance generalization. The pleural effusion algorithms return
a probability score (0-1) for a given video loop. A minimum
score threshold of 0.525 was selected based on tuning the
performance on the validation set.

4.2.2 Consolidation and B-line two-step classifiers

Models for consolidation, B-lines, and merged B-lines were
two-step cascades, consisting of a frame classifier followed
by a video classifier. The CNN frame classifier is trained
to distinguish between feature-positive frames and feature-
negative frames, treating each frame independently. The
video classifier takes confidence score outputs from the
frame classifier and outputs a video-level prediction.

The consolidation frame classifier returns a score indicat-
ing the probability of consolidation, and the video classifier
returns a binary positive/negative prediction. B-lines require
a more nuanced approach, both because of their visual simi-
larity (B-lines and merged B-lines are on a continuum) and
because of their uncertain clinical import: Merged B-lines
are generally considered abnormal; B-lines also occur in
healthy patients, but higher numbers can indicate illness.
The B-line models seek to capture this complexity by using
two binary frame classifiers and a decision matrix (based on
their outputs) for a ternary video-level classification. At the
frame level, one model distinguishes presence or absence of
merged B-lines (with no regard for single B-lines), while the
other detects the presence of any B-line (merged or single).

The next two sections describe the frame-level and the
video-level stages.

4.2.3 Frame classifiers for two-step models

The three frame classifiers have the same CNN architecture,
similar to the well-known VGG-16 but with fewer learned
weights due to more aggressive pooling and one fewer con-
volutional layer. The architecture is presented in Figure 3.
The input to the frame classifier is a batch of grayscale
(single-channel) images with a batch tensor dimensionality
of (n, 256,256, 1). The frame classifier outputs a vector of
confidence scores 1 = [11, ..., Niy s n]; M € [0,1]. The
confidence score is related to the probability that the frame
is "positive". The models were trained with the RMSProp
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Figure 2. End-to-end architectural diagram for the pleural effusion models.
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Figure 3. Convolutional network architecture used in consolidation,
B-line, and merged B-line frame classifiers. The resolution is
indicated along the top of the feature maps, while the convolutional
filter size and number of channels are indicated below. The same
filter size and channel count are used for both of the filters in the
2-filter pair. The top number indicates the size of the first feature
map generated by the convolutional filter in the 2-filter pair.
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optimizer, constant learning rates of 9e — 4 for consolidation
models and 5e — 4 for merged B-line and B-line models,
batch size of 16 images, and dropout of 0.56 for consoli-
dation and 0.35 for the B-line and merged B-line models.
Both models had fixed maximum number of training epochs
set to 25 epochs, and both models enabled early stopping
of training if cross-validation performance did not increase
significantly over 5 epochs.

4.2.4 Video classifiers for two-step models

Consolidation model The consolidation video classifier
takes the confidence scores from the frame classifier as in-
put: . = [01, ..., Mi, ..., M), Where 7; is the confidence score
for the i-th frame and n frames are considered. The video
classifier applies a threshold that is determined based on
distributions of confidence scores in positive and negative
training samples. A video is considered positive if the me-
dian confidence score is above this threshold and negative
otherwise. Other techniques for classifying videos, such as
hidden Markov models were explored but did not produce
an improvement in video classification accuracy.

To minimize inference time, only a fraction of frames
are processed. For the pediatric model, every 10th frame
is classified; for adult, every 5th frame. This results in a
minimal decrease in accuracy.

B-lines and merged B-line models Video classification
for B-lines and merged B-lines is performed using hidden
Markov models (HMMs), which are trained in a supervised
manner. Let the set of classes be denoted by C'. For each
class ¢ € C, a generative HMM model, H.(), is trained
with m,. samples 7. = {ncj}, 1 <j < me, where n; is a
sequence of confidence scores for the frames of the 5" video
from class ¢ (output by the CNN classifier described above).
At inference time, a video with frame confidence sequence
1 is assigned to the class whose HMM has the maximum
posterior probability of having emitted the sequence:

¢ = argmax p(n|H,). (1)
ceC

In practice, the length of the sequence 7 (i.e., number of
confidence scores, equal to number of frames processed)
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does not matter because each HMM evaluates the same
sequence. To avoid underflow, most HMM libraries compute
the log-likelihood rather than the probability directly.

The B-line models that classify videos are binary, and the
models use the same category class definitions as the frame
classifiers: For one HMM classifier "positive" indicates the
presence of either merged B-lines or B-lines and "negative"
indicates the absence of both B-lines and merged B-lines; for
the other HMM classifier "positive" indicates the presence
of merged B-lines while "negative" indicates their absence.

The assumptions for an HMM are: (i) the system is mod-
eled as a Markov process, which is a sequence of possi-
ble events, (ii) the system emits an observable parameter,
and (iii) underlying, unobserved hidden states control the
emission of the observable parameter. In this setting, the
observable parameter is the sequence of frame confidence
scores output by the frame classifier. The hidden states that
emit these confidence scores could indicate the presence (or
absence) of features in the US images, but the situation could
be more complex than that.

HMMs are primarily characterized by the number of hid-
den states and the distribution of the observed variable(s)
emitted from the hidden states. The hidden states in our
HMMs are assumed to emit univariate confidence scores
with a distribution described by a Gaussian mixture model.
The HMMs H, have the same number of Gaussian compo-
nents and hidden states for all classes ¢ € C. The number
of Gaussian components and hidden states for each model
were chosen empirically, by selecting the best-performing
models through cross-validation. Models with up to 4 hid-
den states and up to 4 Gaussian components in the mixture
model were considered, and the best-performing model was
selected based on the weighted F1 score of the model on the
validation set. The optimal values are shown in Table 2.

Three of the models performed best with only 1 hidden
state, which represents a simplification of a typical multiple
hidden-state HMM wherein the underlying system has mini-
mal or low-frequency temporal dynamics. The sufficiency
of an HMM with minimal temporal dynamics mirrors the
sufficiency, in the consolidation video classifier, of a simple
threshold on the median frame score. This suggests that
temporal dynamics were not very important in this problem.

Decision matrix for multi-class B-line classification As
noted earlier, B-lines (merged and single) present a complex
situation both clinically and visually. Here we describe how
the two B-line model outputs are combined:

The outcome from the HMM classification models de-
scribed above are two classifications indicating (i) whether
a video is believed to contain merged B-lines or B-lines,
and (ii) whether a video contains merged B-lines. The out-
puts from these two models can be further refined into a
multi-class classification problem where a video could have

B-lines, merged B-lines, both, or neither.

In this work, the final multi-class determination is made
using rule-based logical operations rather than additional
models. This simplifies the tuning of the algorithm to par-
ticular clinical needs and requirements. From a clinical
perspective, merged B-lines are known to be correlated with
adverse pulmonary conditions and thus are most concerning.
From a modeling perspective, however, it can be challenging
to differentiate between B-lines and merged B-lines. Our
proposed approach for multi-class video classification aims
to strike a balance between the complexity of frame and
video classifiers and the simplicity of tuning the final video
model. The performance of the algorithms can be tuned to
minimize false positives, minimize false negatives, maxi-
mize true positives, or maximize true negatives by applying
biases to the video-level classification log-likelihood.

4.2.5 Image preprocessing

All images were cast to gray-scale and resized to a specific
input size prior to use by the deep learning networks. Images
were resized to 384 x 384 for the pleural effusion models.
Images were resized to 256 x 256 for the consolidation,
merged B-line, and B-line models.

5. Results and Discussion

Tuning model performance for all these features is com-
plicated by a lack of well-defined criteria based on clinical
needs, and further by a lack of clear clinical import of SPC
and tiny effusions. As a default, our tuning aimed for at least
85% sensitivity and specificity on the features with known
clinical importance.

5.1. Pleural Effusion

Table 3 presents the pleural effusion results evaluated on
a holdout set. Detailed composition of the holdout set can be
found in Table 1. Sensitivity is reported at the video level for
videos (i) with any type of effusion (including tiny); and (ii)
with larger effusions only (excluding tiny) . The model ef-
fectively identifies large (clinically significant) effusions but
often fails to detect tiny (clinically uncertain/insignificant)
effusions. The majority of false positive videos contained
dark, anechoic consolidation (example in Figure 4) without
effusion in any rib space. False negatives were largely videos
where effusion was transient due to transducer movement or
patient movement/respiration.

The input image size of 384 x 384, 60 frames, and the
chosen CNN + LSTM architecture yields an algorithm file
size of 6.5 MB. The model processes one US video clip in
0.67 second on an Ubuntu system with 128 GB RAM and
AMD Ryzen Threadripper 3960X processor.
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Model Gaussian Components  Hidden States
Adult (Merged B-Line or B-Line vs Negative) 4 4
Adult (Merged B-Line vs Non-Merged B-Line) 3 1
Pediatric (Merged B-Line or B-Line vs Negative) 1 1
Pediatric (Merged B-Line vs Non-Merged B-Line) 1 1

Table 2. Number of hidden states in each HMM model

Sensitivity ~ Sensitivity  Specificity ~AUC Sensitivity (%) Specificity (%) AUC
(w/ tiny,%) (wf/o tiny, %) (%) (w/o tiny) Model 1: MBL vs non-MBL
Adult 40.1 94.0 82.3 93 Adult 84.0 86.6 0.92
Pediatric 61.7 88.6 90.0 94 Pediatric 77.0 91.6 0.91
Tuble 3. Vidso.level effusi i Model 2: MBL or BL vs neither
able 3. Video-level effusion results Adult 807 913 093
Pediatric 79.3 89.7 0.92

Figure 4. Anechoic consolidation

5.2. Consolidation

Video-level results of the consolidation algorithm on hold-
out test sets are shown in Table 4. Specificity in reported for
consolidation-negative videos (i) including those with SPC;
and (ii) excluding those with SPC. Similarly to the tiny effu-
sion case, the clinically uncertain/insignificant SPCs produce
most false positives, especially in the pediatric population.

With an input image size of 256 x 256, the chosen CNN
+ median threshold classifier model architecture yields an
algorithm file size of 0.5 MB. The consolidation CNN clas-
sifier contains 82k parameters. The model processes one US
video clip in 55 milliseconds on an Ubuntu system with 128
GB RAM and AMD Ryzen Threadripper 3960X processor.

Sensitivity Specificity  Specificity AUC
(%) (w/ SPC,%) (w/o SPC,%) (w/ SPC)

Adult 89.8 83.1 89.0 0.87
Ped. 89.2 84.3 98.0 0.95

Table 4. Video-level consolidation results

5.3. B-lines and merged B-lines

The video-level performance of the B-line and merged
B-line models are presented in Table 5. The models are
generally more specific than sensitive; this could be tuned by

Table 5. Video-level merged B-line and B-line results

either adjusting the frame classifier or adding biases to the
video classifier, as described in the Methods section 4.2.4.

The video-level outputs from the two B-line models are
combined to yield the ternary video-level classification de-
scribed in Table 6, assigning the final label from the follow-
ing classes: (i) negative, (ii) B-line positive, and (iii) merged
B-line positive. As shown, the scenario with contradictory
outputs from the two models (positive for merged B-lines,
but negative for B-lines and merged B-lines) results in an
overall negative label using these rules.

The rules-based classification method was optimized to
minimize the rate of false positives. The three-class confu-
sion matrix for the ternary classification scheme is shown in
Figure 7 for both the adult and pediatric models. The confu-
sion matrices demonstrate the preference for false negatives
over false positives; less than 5.5% of negative videos are
falsely labeled as containing merged B-lines for both adult
and pediatric populations in the test data sets.

With an input image size of 256 x 256, the chosen CNN
+ HMM classifier architecture yields an algorithm file size of
0.6 MB. The merged B-line and B-line CNN classifiers each
contain 82k parameters. The models typically process one
US video clip in 60-80 milliseconds on an Ubuntu system
with 128 GB RAM and AMD Ryzen Threadripper 3960X
processor.

5.4. Age-based performance analysis

The pediatric patients in this work span the age range
from <1 month old to 18 years old. We evaluated how
the pediatric models performed for different age groups,
with the results summarized and discussed in appendix 2 of
supplementary technical report. Briefly, the models perform
relatively consistently across age groups, though limited
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(MBL) vs (no MBL) | (MBL or BL) vs (neither) |

Final Classification

Negative Negative Negative (neither feature)
Negative Positive B-line positive
Positive Negative Negative (neither feature)
Positive Positive Merged B-line positive

Table 6. Merged B-Line (MBL) and B-Line (BL) Ternary Classification

Predicted Label
Pediatric Adult
Negative B-Line Merged B-Line | Negative B-Line Merged B-Line
Negative 0.91 0.033 0.053 0.9 0.062 0.04
True Label B-Line 0.36 0.42 0.22 0.39 0.43 0.18
Merged 0.15 0.06 0.79 0.12 0.14 0.74

Table 7. Ternary B-line and merged B-line classification confusion matrix for pediatric (left) and adult (right) test populations.

patient numbers within each group make it difficult to draw
firm conclusions.

6. Conclusions and Future Work

This article presents an initial exploration of automated
video-level analysis of US for lung applications, and pro-
vides a baseline for future work. Although the presented
work is evaluated for consolidation, pleural effusion, and
B-lines, the frameworks defined here can be re-tuned to iden-
tify other pathologies. The architectures are efficient, and
capable of processing videos in real-time on mobile devices
such as smartphones or low-cost portable US systems. The
algorithms allow a user with limited training in lung US inter-
pretation to identify the abnormal lung conditions outlined
here. This work is an important step towards developing
an US device with on-board Al assistance for healthcare
workers in LMICs, rural areas, and military settings.

US data collection for this project was performed by ex-
perienced medical professionals, and the algorithms in their
current state “expect” good quality US video. An integrated
image quality algorithm component could help to ensure
high quality video input to these algorithms, irrespective of
operator training. Since the video length was fixed at 3 sec-
onds, and the respiratory cycle can be somewhat longer, lung
features may be transient and appear in only a few frames.
Alternatively, longer and variable length sequences could be
included to increase the relevant temporal information.

In its current form, our framework provides only video-
level output, and the models have been trained with ground
truth based on video- and frame-level interpretations of ex-
pert radiologists. An “end-to-end" model that computes a
patient-level diagnosis is challenging for multiple reasons:
(i) In a clinical setting, patient diagnosis is commonly based
on a combination of numerous modalities, including clinical
exam, history, laboratory tests, and radiography (X-ray, CT,

and/or lung US). So an end-to-end model would need to be
multi-modal, with model outputs for videos from multiple
lung zones serving as one subset of inputs.

(ii) The diagnostic importance of the various features, espe-
cially tiny effusions, SPC, and single B-lines, are currently
not well-defined. This complicates the use and interpretation
of model results.

(iii) Defining ground truth is complicated because only mod-
erate correlation exists between clinical conclusions drawn
from X-ray, CT, and lung US imagery. CT is generally con-
sidered the gold standard for evaluation of lung abnormali-
ties, but has the drawbacks of excessive cost and exposure to
radiation, the latter precluding its use for pediatric patients.
Thus, although CT provides the most reliable diagnostic
modality, it is rarely used. X-ray is the usual standard of care
for adults despite having relatively poor sensitivity for pneu-
monia. Lung US has been shown to have higher sensitivity
to pneumonia than X-ray. This, along with its other positive
characteristics, makes lung US an attractive alternative to
X-ray, in both the adult and pediatric setting. An issue to
contend with, however, is the lack of correlation between
X-ray and lung US; patients with negative X-ray exams often
show lung US findings. In the absence of CT imaging, it is
likely that the entire clinical and laboratory records will be
required to establish ground truth for these patients, which is
a necessary step towards the development of an end-to-end
patient-level assessment model.
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