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Abstract

In the realm of 3D-computer vision applications, point
cloud few-shot learning plays a critical role. However, it
poses an arduous challenge due to the sparsity, irregular-
ity, and unordered nature of the data. Current methods
rely on complex local geometric extraction techniques such
as convolution, graph, and attention mechanisms, along
with extensive data-driven pre-training tasks. These ap-
proaches contradict the fundamental goal of few-shot learn-
ing, which is to facilitate efficient learning. To address this
issue, we propose GPr-Net (Geometric Prototypical Net-
work), a lightweight and computationally efficient geomet-
ric prototypical network that captures the intrinsic topol-
ogy of point clouds and achieves superior performance.
Our proposed method, IGI++ (Intrinsic Geometry Inter-
preter++) employs vector-based hand-crafted intrinsic ge-
ometry interpreters and Laplace vectors to extract and eval-
uate point cloud morphology, resulting in improved rep-
resentations for FSL (Few-Shot Learning). Additionally,
Laplace vectors enable the extraction of valuable features
from point clouds with fewer points. To tackle the distribu-
tion drift challenge in few-shot metric learning, we lever-
age hyperbolic space and demonstrate that our approach
handles intra and inter-class variance better than existing
point cloud few-shot learning methods. Experimental re-
sults on the ModelNet40 dataset show that GPr-Net out-
performs state-of-the-art methods in few-shot learning on
point clouds, achieving utmost computational efficiency that
is 170× better than all existing works. The code is publicly
available at https://github.com/TejasAnvekar/GPr-Net.

1. Introduction

The domain of computer vision has witnessed a remark-
able surge in the significance of 3D data processing, with
point cloud data emerging as a prominent representation
obtained via real-time acquisition using LiDAR scanners.

Figure 1. We demonstrate Laplace vectors, a simple yet effective
geometric signature that captures the statistics of group deviations,
facilitating the abstraction of edges and corners in point clouds.
The efficacy of Laplace vectors is highlighted in the visualization
of an airplane and a tetrahedron. In the airplane, Laplace vectors
capture the uni-directed high group deviation at the ends of the
wings, indicating a sudden change or an edge in local topology.
Similarly, the tetrahedron exhibits high and uniform group devia-
tion at its ends, indicating a corner.

Point cloud object classification plays a critical role in sev-
eral applications such as indoor SLAM [44], robotics [27],
and autonomous vehicles [18], facilitating efficient nav-
igation and decision-making. Deep learning-based tech-
niques [24] [22] have revolutionized 3D point cloud clas-
sification by enabling the extraction of representative fea-
tures from shape projections [32] or raw points, thereby en-
hancing performance compared to traditional handcrafted
feature-based methods [26] [42].

Despite the recent progress in geometric deep learning,
the need for large amounts of labeled training data remains
a significant challenge, both in terms of cost and practical-
ity [25]. While self-supervised approaches [1] [41], data
augmentation [15] [29], and regularisation [22] techniques
have helped alleviate the aforementioned issue, they may
not perform well on new tasks or unseen classes without
sufficient labeled training data. This has led to a growing
demand for methods that enable geometric deep networks
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to quickly adapt to novel settings with limited labeled data,
much like humans who can learn new concepts with only a
few examples by drawing on prior knowledge and inductive
bias [3].

To address this challenge, few-shot learning (FSL) tech-
niques [30] [33] [9] have shown remarkable progress in 2D
visual understanding tasks such as image classification [12],
object detection [11], and semantic segmentation [7]. How-
ever, FSL on 3D data is still in its nascent stages and
presents unique challenges. Previous approaches to 3D-
FSL [28] [8] [39] have focused on determining the best FSL
algorithm, network design, and deep learning methodology,
often relying on complex pre-training tasks or intricate deep
learning modules. These approaches may not effectively
capture the human-inspired characteristics that researchers
aim to incorporate, leading to limited generalization.

Towards addressing the aforementioned challenges, we
introduce a novel 3D-FSL approach, the Geometric Proto-
typical Network (GPr-Net), which leverages geometric pri-
ors to achieve fast and efficient point cloud few-shot learn-
ing. Unlike conventional approaches that rely on complex
pre-training [28] procedures or sophisticated deep learn-
ing modules [39], GPr-Net is engineered to transfer geo-
metric prior knowledge directly to novel tasks with min-
imal training. To capture these valuable geometric priors
for 3D-FSL, we propose Intrinsic Geometry Interpreters++
(IGI++), which efficiently captures the local intrinsic topol-
ogy of the point cloud using the IGI features inspired by
the VG-VAE [2]. Additionally, we propose Laplace vectors
to extract abstract information about the edges and corners
present in point clouds. The coherently combined intrinsic
and Laplace vectors of IGI++ provide a comprehensive rep-
resentation of the crucial geometric properties for few-shot
learning on point clouds as shown in Figure 1. Further-
more, we address the distribution shift in prototypical net-
works by mapping our geometric priors to the Hyperbolic
metric. Extensive experiments on the ModelNet40 dataset
demonstrate the superiority of GPr-Net in few-shot learning
on point clouds compared to state-of-the-art methods. GPr-
Net achieves up to 170× fewer parameters that facilitate
faster performance and a 5% increase in accuracy compared
to related works.

Our contributions can be summarized as:

• We propose GPr-Net: a lightweight Geometric Proto-
typical Network designed for fast and efficient point
cloud few-shot learning.

• We propose an Intrinsic Geometry Interpreters++
(IGI++) to cohere intrinsic and high-frequency geo-
metric signatures of a point cloud which comprises
the following modules: 1) an Intrinsic Geometric In-
terpreter (IGI) to efficiently capture the local topology
of the point cloud; 2) our proposed novel Laplace vec-

tors to capture the abstraction of edges and corners in
point clouds.

• We propose employing the Hyperbolic / poincaré met-
ric to mitigate the challenge of distribution shift in pro-
totypical networks.

• We demonstrate the impact of our derived geometric
signatures on ModelNet40 and outperforms existing
state-of-the-art few-shot learning techniques by 5% in
accuracy with 170× fewer parameters.

2. Related Works
Point Cloud Analysis has been revolutionized by deep
learning models for 3D point cloud classification by
allowing us to learn more intricate and representative fea-
tures. Unlike traditionally handcrafted methods [26] [42],
these models can learn these features without any hu-
man intervention. There are two types of deep learning
methods: projection-based and point-based networks.
Projection-based [32] networks first transform irregular
points into a structured representation such as voxel [43] or
lattices and then use standard convolution neural networks
to extract view-wise or structural features. However, they
may encounter explicit information loss or higher memory
consumption. Point-based methods have become more
popular, exemplified by the likes of PointNet [24] and
other approaches like PointNet++ [25] and PointCNN [16],
and DGCNN [34], Point-MLP [20], HyCoRe [22],
EDC-Net [5], DCG-Net [4], which utilize convolution
or graph-based networks to achieve state-of-the-art per-
formance. While these deep learning methods require a
significant amount of annotated data, their generalization
capabilities on novel classes during training may be limited.
This limitation could potentially be a subject of future
research.

Few-shot learning (FSL) has emerged as a crucial field in
machine learning that aims to overcome the limitations of
traditional supervised learning methods, which require large
labeled datasets to generalize to new tasks. To achieve this,
several approaches have been proposed, including Prototyp-
ical Networks [30], which introduced the concept of pro-
totypes for few-shot classification, and Relation Networks
[33], which proposed a novel architecture that captures re-
lations between different instances to improve accuracy.
Model-Agnostic Meta-Learning (MAML) [9] takes a meta-
learning approach to few-shot classification, learning an ini-
tialization of the model that can be quickly adapted to new
tasks with only a few labeled examples. Recent research has
tackled the challenge of 3D point cloud learning with lim-
ited training data. Sharma et al. [28]. explore feature repre-
sentation through self-supervision, while LSSB [31] aim to
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Figure 2. We present an overview of the proposed GPr-Net framework, which processes point clouds in a few-shot episodic paradigm
using the proposed IGI [2] and Laplace vectors to generate geometric feature sets. These features are then mapped to a higher dimensional
permutation invariant feature using the symmetric operation A and a single Multilayer Perceptron (MLP) fθ . The Prototypical network fθ ,
utilizes the support and query geometric embeddings L⃗(Ψ(xs)) = Se and L⃗(Ψ(xq)) = Qe to predict few-shot labels. To overcome the
distribution drift challenge in Prototypical Networks, we employ the Hyperbolic Distance of Euclidean. For more details, please refer to
Section 3.2.2.

learn a discriminative embedding space for 3D model multi-
view images. However, authors in Enrich-Features [8] pro-
posed a novel few-shot point cloud classification paradigm
that effectively combines current fully supervised methods.
This approach utilizes feature fusion and channel-wise at-
tention to improve feature learning accuracy. These works
represent important strides in addressing the challenge of
3D point cloud learning with limited data.
Hyperbolic Metric Learning embeds hierarchical struc-
tures with low distortion [23]. It has been used for
non-Euclidean manifolds in various representation learning
frameworks. Early on, it was used for natural language pro-
cessing. Hyperbolic neural network [10] layers have been
shown to be better than Euclidean ones, and hyperbolic
variants have been explored for images and graphs [19].
Euclidean embeddings are insufficient for complex visual
data. Hyperbolic Image Embeddings [12] address this by
capturing hierarchical relationships with negative curvature,
improving few-shot classification accuracy on benchmarks
like miniImageNet [6] and CUB [35]. HyCoRe [22] in-
troduced a new method for using hyperbolic space embed-
dings to capture the part-whole hierarchy of 3D objects in
point clouds. This approach significantly improves the per-
formance of point cloud classification models. To the best
of our knowledge, no research has explored using hyper-
bolic representations for few-shot learning of point clouds,
despite their inherent hierarchical structure and ability to

mitigate distribution drift of Prototypical networks. There
exists a need for learning hyperbolic embeddings to capture
the compositional nature of 3D objects with can facilitate
the capture tree-like geometric hierarchy of the data, mak-
ing them a superior prior for 3D-FSL.

Our method for point cloud few-shot learning introduces
a novel approach that utilizes geometric signatures and Hy-
perbolic space to improve performance. It is distinguished
from existing methods by its lightweight, fast, and prag-
matic nature, requiring only a few episodes to train the chal-
lenging few-shot classification task.

3. GPr-Net

We present GPr-Net, a lightweight Geometric Prototypi-
cal Network designed for fast and efficient point cloud few-
shot learning. By leveraging intrinsic geometric features,
GPr-Net captures abstract information necessary for supe-
rior few-shot learning. Our proposed Intrinsic Geometry
Interpreters++ (IGI++) extracts fundamental features like
local topology, edges, and corners, while a single fully con-
nected layer maps aggregation of geometric features to a
higher dimensional point for episodic few-shot classifica-
tion. Furthermore, we enhance our model’s performance
by incorporating Hyperbolic space that yields sharp logits
for few-shot learning as depicted in Figure 2. Unlike pre-
vious methods, GPr-Net relies on statistical geometric fea-
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tures and is trained using a few-shot paradigm to simulate
real-life scenarios.

3.1. Notations and Strategies

Let P denote point cloud such that P = {p1, ...pn}
where pi ∈ Rd and n represents total number of points.
Inspired by the episodic paradigm of the Few-Shot Classi-
fication (FSL) task on Images [12] we incorporate a similar
algorithm with minimal changes for point cloud FSL. The
train set Dtrain and test set Dtest are designed such that
the categories of Dtrain ∩Dtest = ∅.

FSL is optimized for episodes containing pair
of K-ways and N -shots of the support set and
query set. NS samples are drawn from NC at
randomly selected K categories to form the sup-
port set S = {(P 1

s , y
1
s), ...(P

NS×K
s , yNS×K

s )}.
The remaining NQ form the query set
Q = {(P 1

q , y
1
q ), ...(P

NQ×K
q , yNQ×K

q )}. The goal is
to predict yiq via a model fθ(S,Q) by only utilizing labels
support set yis.

3.2. Network Design

We advocate using Prototypical Networks [30] as a
method of choice for point cloud few-shot learning due
to its simplicity and remarkable generalization of metric
learning. Prototypical Networks large rely on network de-
sign as it plays a key role in initializing representation met-
rics that significantly enhances the performance of few-shot
learning. Our network design comprises two fundamental
components: geometric feature extraction using proposed
IGI++ and metric learning with a single fully connected
MLP, both of which synergistically facilitate point cloud
few-shot learning.

3.2.1 Intrinsic Geometry Interpreter++

The FSL hypothesis of our network is notably aided by
learning the basic local geometric interpreters IGI++ that
incorporate Intrinsic Geometry Interpreters Ψ and Laplace
vectors L⃗. Following IGI which is proposed by VG-
VAE [2], we introduce IGI++ and introduced group devi-
ation vectors to facilitate the extraction of essential topo-
logical features as shown in Figure 3. Laplace vectors play
a crucial role in capturing abstract information related to
edges and corners of point clouds, which are essential for
few-shot learning.
Intrinsic Geometry Interpreter Ψ is a set of basic local
geometric features that are fast to compute and capture the
local intrinsic topology of the point cloud. Ψ of a point

Figure 3. Illustration of proposed framework Intrinsic Geometry
Interpreters++ (IGI++). Left: Ψ depicts computation of IGI fea-
tures (normal n̂, std vector s⃗, and edge vectors e⃗1, e⃗2) using query
point pi and two nearest neighbour pj1, pj2. Right: depicts com-
putation of Laplace vectors L⃗ using query point pi and neighbour
points pj1→k−1.

cloud P is given by:

Ψ =



pi = x, y, z; pi ∈ R3,

e⃗1 =
pj1−pi

||e⃗1||2 ; e⃗1 ∈ R3,

e⃗2 =
pj2−pi

||e⃗2||2 ; e⃗2 ∈ R3,

n̂ = e⃗1 × e⃗2; n̂ ∈ R3.

s⃗ = std(pj); s⃗ ∈ R3.

(1)

where (−→e1 ,−→e2) represents edge (relative positions) (1, 2)
respectively of a given point (position vector) pi, (|−→e1 |, |−→e2 |)
represents edge lengths, n̂ represent normals of point cloud
pi and s⃗ represent group deviation vector as illustrated
in Figure 3. Our proposed Ψ ∈ R15 captures a superior
geometric features due to group deviation vector s⃗, unlike
Enrich Features [8] where Ψ ∈ R14. The relative positions
and normals along with the position vector facilitate to
capture of local geometric information that aids point cloud
FSL. However, to capture abstract information such as
edges and corners, we propose Laplace vectors, which
extract high-frequency information to further improve our
network’s performance.

Laplace Vectors L⃗ are simple yet effective geometric sig-
natures that capture the distribution, magnitude, and direc-
tion of the query to group deviation that facilitates extract-
ing abstract information of edges and corners in a point
clouds as shown in Figure1 2. Laplace vectors are given
by:

L⃗ = pi
⊕ 1

K

K∑
j=0

(pj − pi) (2)

1We acknowledge Ruben Wiersma for assisting us with these vector
renderings.
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where pj are local points of pi in a given k-NN (k-
Nearest Neighbors) and pi ∈ R3, L⃗ ∈ R6 and ⊕ is con-
catenation operation. The Illustration of Laplace vectors is
depicted in Figure 3. Laplace vectors allow us to operate
with lower point density since they capture changes in lo-
cal neighbourhoods. We propose to extract 30-dimensional
Laplace vectors of 15-dimensional Ψ, i,e. L⃗(Ψ) capturing
superior geometric features as shown in Figure 1 towards
facilitating Point Cloud FSL.

3.2.2 Metric Learning

Metric learning is essential for few-shot learning since it
enables the computation of similarity metrics with limited
labeled data [30] [33]. To achieve this, we aim to learn
a distance metric that can robustly compare the similarity
between examples. In contrast to Euclidean spaces, hy-
perbolic spaces offer unique properties, such as exponen-
tial growth of volume with distance, that allow for more
effective modeling of complex hierarchical structures. To
achieve this, we propose using the Poincaré ball model to
embed features in hyperbolic spaces and perform efficient
computations such as distance measurements and gradient
updates. This is particularly useful in few-shot learning sce-
narios with limited labeled data and complex hierarchical
structures [12]. Hyperbolic distance considers hierarchical
relations between support and query examples, leading to
improved discrimination, as shown in Figure 2. The dis-
tance between two points x, y with curvature κ in Hyper-
bolic (Poincaré) manifolds Pκ is given by:

dPκ(x, y) =
1√
−κ

arcosh

(
−2κ∥x−y∥2

(1+κ∥x∥2)(1+κ∥y∥2)
+ 1

)
(3)

3.3. Prototypical Classification

We transform support and query point clouds into ge-
ometric feature vectors by L⃗(Ψ(pi)) given by Equation 1
and 2. The geometric features are aggregated using A a
symmetric operation (max, mean and, sum) to get a permu-
tation invariant global feature. The invariant global feature
is used as inputs to a single fully connected MLP fθ, which
makes predictions on the label of the query point cloud by
computing metric/embedding distance d(, ) between proto-
types µ and query embedding fθ

(
L⃗(Ψ(piq)

)
, where µ repre-

sents the mean of support embedding fθ
(
L⃗(Ψ(pis)

)
as de-

picted in Algorithm 1. To ensure that the predictions are
accurate, we normalize the results into a probability dis-
tribution [40] and calculate the cross-entropy loss [14] be-
tween this distribution and the actual ground truth labels.
This process facilitates the optimization of the network and
improves its ability to perform few-shot learning on point
clouds.

Algorithm 1: Training episode loss computation
for prototypical point cloud networks

Input: D = {(p1, y1), ..., (pN , yN )}, d(.)
/* where each yi ∈ {1, ...,K} and d(.) is

distance metric (Euclidean or

Hyperbolic) as mentioned in Eq.(3) */

Output: The loss J for a randomly generated
training episode.

1 V ← RANDOMSAMPLE({1,...,K}, NC)
2 for k = 1 to K do
3 Sk ← RANDOMSAMPLE (Dk, NS )
4 Qk ← RANDOMSAMPLE (Dk/Sk, NQ)
5 µ← 1

NC

∑
(pi,yi)∈Sk

fϕ(pi)
/* where µ is point cloud prototype and

fϕ() = fθ(L⃗(Ψ)) as mentioned in Eq.(1)

and Eq.(2) */

6 J ← 0 for k = 1 to K do
7 for (p, y) in Qk do
8 J ← J + 1

NCNQ

[
d(fϕ(p), µ) +

log
∑

k′ exp−d(fϕ(p), µ)
]

4. Experiments
In this section, we investigate the effectiveness of the

topological point embeddings generated by our classifier fθ
for few-shot 3D object classification, using the dataset Mod-
elNet40 [37]. ModelNet40 dataset encompasses 40 object
categories that include a collection of 12,311 models. Note
that our model is trained on an Nvidia GTX 1050ti GPU and
PyTorch 1.11 and we use geoopt [13] for the hyperbolic op-
erations.

4.1. Few-Shot 3D object classification

We evaluate the impact of the proposed IGI++ in our
network for point cloud few-shot learning. We report the
mean and standard deviation of our results with 95% confi-
dence scores across 6 experiments with different seeds to-
wards better reproducibility in Table 1. Unlike Enrich Fea-
tures [8] and SS-FSL [28] our model is trained and tested
in a few-shot setting, using only the coordinates (x, y, z) of
each point. To compute Laplace vectors the number of k for
the nearest neighbors is set to k = 40. The 30-dimensional
Laplace vector is mapped to a 32-dimensional point using
single MLP fθ as explained in Section 3.3. We use the SGD
(Stochastic Gradient Descent) optimizer for Euclidean met-
ric and RSGD [13] for hyperbolic metric, with a momen-
tum of 0.9 and weight decay of 0.0001, with the learning
rate reduced from 0.1 to 0.001 through the cosine annealing
in Algorithm 1 for 50 epochs of 4 train and 300 test few-
shot episodes. We ensure the FSL paradigm via maintain-
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Table 1. Few-shot classification results on ModelNet40 [37] dataset. With only 512 points, our method GPr-Net (Hyp) achieves state-of-
the-art accuracy on 5-way 10-shots and 10-way 10-shots, where Hyp represents Hyperbolic and Euc represnts Euclidean distance metric
in Algorithm 1. Additionally, we have provided the parameters and performed Forward/Backward pass evaluations for the methods their
source code was publicly available, using PyTorch-summary for a batch size of 150 indicating a 5-way 10-shot 20-query setting. The
quantitative results (accuracies in %) are represented in three styles: (1) best , (2) second best , (3) third best and ± represents mean and
standard deviation of 6 experiments with a different random seed.

5-way 10-waysMethod Num Points 10-shots 20-shots 10-shots 20-shots #Params F/B pass

3D-GAN [1] 1024 55.80 ± 10.68 65.80 ± 09.90 40.25 ± 06.49 48.35 ± 05.59 - -
Latent-GAN [36] 1024 41.60 ± 16.91 46.20 ± 19.68 32.90 ± 09.16 25.45 ± 09.90 - -

PointCapsNet [41] 1024 42.30 ± 17.37 53.00 ± 18.72 38.00 ± 14.30 27.15 ± 14.86 2.15M 39GB
FoldingNet [38] 1024 33.40 ± 13.11 35.80 ± 18.19 18.55 ± 06.49 15.44 ± 06.82 0.67M 5.7GB
PointNet++ [25] 1024 38.53 ± 15.98 42.39 ± 14.18 23.05 ± 06.97 18.80 ± 05.41 1.48M 149GB
PointCNN [16] 1024 65.41 ± 08.92 68.64 ± 07.00 46.60 ± 04.84 49.95 ± 07.22 - -

PointNet [25] 1024 51.97 ± 12.17 57.81 ± 15.45 46.60 ± 13.54 35.20 ± 15.25 3.47M 8.5GB
DGCNN [34] 1024 31.60 ± 08.97 40.80 ± 14.60 19.85 ± 06.45 16.85 ± 04.83 1.82M 53GB

SS-FSL (PointNet) [28] 1024 63.20 ± 10.72 68.90 ± 09.41 49.15 ± 06.09 50.10 ± 05.00 3.47M 8.5GB
SS-FSL (DGCNN) [28] 1024 60.00 ± 08.87 65.70 ± 08.37 48.50 ± 05.63 53.00 ± 04.08 1.82M 53GB

Enrich-Features [8] 1024 76.69 ± NA 85.76 ± NA 68.76 ± NA 80.72 ± NA - -
GPr-Net (Euc) 1024 74.37 ± 02.00 75.12 ± 02.08 62.14 ± 01.91 63.43 ± 02.05 1.24K 50KB
GPr-Net (Hyp) 1024 80.40 ± 00.55 81.99 ± 00.91 70.42 ± 01.80 72.83 ± 01.78 1.24K 50KB
GPr-Net (Euc) 512 74.04 ± 02.33 74.98 ± 02.42 62.31 ± 02.01 63.33 ± 02.21 1.24K 50KB
GPr-Net (Hyp) 512 81.13 ± 01.51 82.71 ± 01.28 71.59 ± 01.16 73.78 ± 01.99 1.24K 50KB

ing Dtrain ∩Dtest = ∅ such that, for each experiment, we
randomly sample T categories of data to form Dtrain and
rest categories without replacement form Dtest this meta-
training strategy aids in understanding true robustness of
the proposed method in FSL. For our experiments, we ran-
domly sampled T = 24 categories for training and 16 for
testing in ModelNet40 as suggested by [8]. Note that the
results of all other networks except Enrich-Features [8] in
Table 1 are derived from SS-FSL [28].

4.2. Comparison with State-of-the-art Methods

Our novel GPr-Net not only outperforms existing meth-
ods that rely on data-heavy pre-training tasks like SS-
FSL [28] or complex feature extractors [8] [39] in terms of
accuracy, but it also operates much faster. To demonstrate
this, we compared our proposed backbone architecture to
several open-source backbones and evaluated parameters,
few-shot classification accuracy, and parameters on the
ModelNet40 dataset [37], as suggested by PointMLP [20].
For example, SS-FSL (DGCNN) is a cumbersome model
that achieves impressive results with 1.82M parameters and
a forward/backward pass of 53GB, as shown in Table 1.
In contrast, our GPr-Net achieves state-of-the-art FSL ac-
curacy on point clouds while maintaining only 1.24K pa-
rameters, which is 280 times less than SS-FSL, and a for-
ward/backward pass of 50KB. This is particularly essential
for applications like robotics, self-driving cars, and others
that require deploying these models efficiently.

Our results with Hyperbolic-metric, presented in Table 1,

demonstrate that our method surpasses Enrich-Features [8]
by 5% for 5-way 10-shots and 3% for 10-way 10-shots.
However, when compared to SS-FSL [28], our method
achieves significant improvements of 18% for 5-way 10-
shots, 14% for 5-way 20-shots, 22% for 10-way 10-shots,
and 21% for 10-way 20-shots. These results highlight the
efficacy of our approach in addressing the challenging prob-
lem of few-shot learning for point clouds. Notice that we
achieve this by only 50 epochs, 4 training episodes and only
512 points. Remarkably, our method achieves the small-
est standard deviation across 6 experiments with different
random seeds, indicating its robustness and lack of bias to-
wards a particular category.

4.3. Ablation Studies

This section presents ablation studies to analyse the
impact of different designs of our proposed module on
few-shot point cloud classification.

Significance Laplace Vectors L⃗ is demonstrated in the left
of Figure 4. The results show that the GPr-Net with L⃗ out-
performs the one without in all cases of point density vari-
ation, as reported by the mean and standard deviation accu-
racy of 6 experiments for 5-way 10-shot tasks on the Hyper-
bolic variant of GPr-Net. The experiments were conducted
with 128, 256, 512, and 1024 points, and the superior per-
formance of the classifier with L⃗ suggests the significance
of extracting geometric features using Laplace vectors for
effective few-shot learning on point clouds.
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Figure 4. The Left: compares the few-shot accuracy of GPr-Net with and without Laplace vectors L⃗ as the point density varies. The
results indicate that incorporating Laplace vectors leads to superior performance. The Center: impact of k-Nearest Neighbors (k-NN) is
analyzed by varying k on GPr-Net with Laplace vectors. It is observed that k=40 yields the best results for 5-way 10 and 20-shots. Finally,
the Right: investigates the effect of hyperbolic curvature on few-shot accuracy. GPr-Net with κ → 1 hyperbolic metric outperforms the
Euclidean metric with κ → 0 for both 5-way 10 and 20-shots. Further details are provided in Section 4.3.

Local Neighbourhood Size justifies the effectiveness of the
Laplace vectors in our proposed GPr-Net for few-shot learn-
ing on point clouds, we conducted additional experiments to
determine the appropriate value of k in k-NN for comput-
ing Laplace vectors. We aim to determine the best value of
k that describes local topological changes such as edges and
corners, which are largely dependent on the size of the lo-
cal neighborhood. In the center of Figure 4, we present our
findings on the need for selecting an appropriate value of
k. We report the mean and standard deviation accuracy of 6
experiments for 5-way 10-shot and 5-way 20-shot tasks on
the Hyperbolic variant of GPr-Net. The experiments were
conducted with k=10,20,40 and 80 for 512 points in a point
cloud. Our findings suggest that k=40 is the optimal value
for 512-point density in both 10 and 20-shot cases.

Influence of Curvature κ plays a critical role in the per-
formance of hyperbolic metrics for point cloud few-shot
learning. The negative curvature allows for more efficient
space utilization, increasing the ability to distinguish be-
tween points. We perform experiments that show an in-
crease in curvature κ in Eq. 3 results in improved perfor-
mance for few-shot learning tasks, as the embeddings are
better able to capture the similarities and differences be-
tween point clouds. However, as κ approaches zero, the hy-
perbolic space approaches a Euclidean space, and the bene-
fits of the negative curvature are lost as Depicted in the right
of Figure 4. Therefore, it is essential to find the optimal cur-
vature for a given few-shot learning task to achieve the best
results. Our findings indicate that κ = 1.0 is the best suited
for 5-way 10-shots and 5-way 20-shots tasks for 512 points
with Laplace vectors and k = 40.

Performance Efficiency of proposed method GPr-Net is
conducted and we compare with CGNN [17] and CIA [39]
in a 5-way 1-shot and 5-way 5-shot learning setting. Our
method was trained for only 4 episodes, and we observed
competitive performance with the other two models, as

Table 2. The comparison of our proposed GPr-Net with state-of-
the-art methods CGNN [17] and CIA [39] in a 5-way 1-shot and
5-way 5-shot learning setting. The results demonstrate the com-
petitive performance of our method with significantly fewer pa-
rameters and faster training speed. Although CIA [39] achieves
state-of-the-art accuracy in both settings, our method achieved the
second-best result, trained with only 4 episodes.

Method 5-way
1-shot 5-shots

CGNN [17] - 76.85 ± NA
CIA [39] 75.70 ± 0.74 87.15 ± 0.47

GPr-Net (Euc) 64.12 ± 0.73 74.56 ± 1.03
GPr-Net (Hyp) 67.91 ± 1.07 79.09 ± 0.97

shown in Table 2. CGNN [17] and CIA [39] also aim
to learn representations and relations between prototypes
and query features by utilizing feature-matching methods
such as graph neural networks or self-attention mecha-
nisms, respectively. Although CIA [39] achieves state-of-
the-art accuracy in 5-way, 1-shot and 5-shot settings, we
still achieved the second-best result with significantly fewer
parameters and faster training speed. Unfortunately, since
the code for CIA [39] was not open-source, we were unable
to make a direct comparison in terms of speed.

4.4. Embedding Visualization

In the context of a 5way-10shot-50query setting on the
ModelNet40 [37] dataset, we present a visualization of
the features generated by our proposed GPr-Net. Specif-
ically, we compare the features obtained using the hyper-
bolic/Poincaré metric with those obtained using the Eu-
clidean metric. The left-hand side of Figure 5 corresponds
to the former, while the right-hand side depicts the latter.

It is worth noting that there exists a significant distribu-
tion shift between the support and query features in this set-
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ting. However, our proposed hyperbolic metric helps to mit-
igate the challenge of inter-class ambiguity by causing the
features to move towards the boundary of the Poincaré man-
ifold. This allows for better differentiation between classes,
leading to more accurate predicted labels.

Figure 5. A visualization of the embeddings learned for the
few–shot task. Left: Our 5-way task on Modelnet40 with Poincaré
metric. Right: Our 5-way task on Modelnet40 with Euclidean
metric. The two-dimensional projection was computed using the
UMAP [21].

4.5. Limitations

Notwithstanding the promising results achieved in our
study, we acknowledge certain limitations that need to be
addressed. First, due to the nature of our approach incor-
porating Hyperbolic Projection, it is currently hard to per-
form part segmentation on per-point embeddings. This is a
known limitation also faced by other works in the field, such
as HyCoRe [22]. As a result, we were unable to apply our
method to datasets that require part segmentation, limiting
the scope of our study. Another limitation of our method
is susceptibility towards noise due to the use of k-NN for
local grouping. Therefore, we exclude certain real-world
datasets, such as the Sydney and ScanObjectNN datasets,
which contain large amounts of noise.

Despite these limitations, we believe that our study offers
valuable insights into few-shot learning in point cloud set-
tings. We hope that our findings will inspire further research
to address these limitations and lead to the development of
more robust and effective methods for few-shot learning in
point clouds.

5. Conclusions
In this work, we have proposed a new perspective on

point cloud few-shot learning by challenging the assump-
tion of complex network designs and training strategies.
Our proposed lightweight Geometric Prototypical Network,
GPr-Net, leverages simple yet effective geometric signa-
tures, including the Intrinsic Geometry Interpreter and
Laplace vectors, to efficiently capture the intrinsic topol-
ogy of point clouds and achieve superior performance on

the ModelNet40 dataset. Additionally, employing a hyper-
bolic/poincaré metric for learning 3D few-shot features fur-
ther improves the effectiveness of our approach. Our exper-
imental results demonstrate that GPr-Net outperforms state-
of-the-art point cloud few-shot learning techniques with 5%
higher accuracy and 170× fewer parameters than all exist-
ing works.

6. Broader Impact

The focus of this study is on local geometric features
and selecting appropriate metric space that can enhance the
performance of few-shot learning in point cloud settings,
even when labeled data is limited.

Point cloud few-shot learning has the potential to impact
a wide range of fields. For example, robotics can acceler-
ate the training of robots to recognize new objects with a
small number of labeled examples, resulting in faster and
more cost-effective learning. In architecture and engineer-
ing, it can facilitate the design of complex structures with
limited labeled data by allowing shape analysis and thermal
analysis. Additionally, it can assist in environmental stud-
ies, such as land surveying, by making it easier to classify
and analyze 3D point cloud data with minimal labels.
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