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Figure 1. Feature visualization of different models on ImageNet. For the standard ResNet model, we use GradCAM for visualization. We
also compare our visualization with the Vision Transformer [10] (ViT-B-16) attention map. Note that our DGM model produces a very sharp
object shape.

Abstract

Deep networks for image classification often rely more
on texture information than object shape. While efforts have
been made to make deep-models shape-aware, it is often
difficult to make such models simple, interpretable, or rooted
in known mathematical definitions of shape. This paper
presents a deep-learning model inspired by geometric mo-
ments, a classically well understood approach to measure
shape-related properties. The proposed method consists of a
trainable network for generating coordinate bases and affine
parameters for making the features geometrically invariant
yet in a task-specific manner. The proposed model improves
the final feature’s interpretation. We demonstrate the ef-
fectiveness of our method on standard image classification
datasets. The proposed model achieves higher classification
performance compared to the baseline and standard ResNet
models while substantially improving interpretability.

1. Introduction

Advances in deep learning have resulted in state-of-the-
art performance for a wide variety of computer vision tasks.
The large quantity of training data and high computation
resources have made convolutional neural networks (CNN)
into a common backbone model for many tasks; including
image classification [21, 26, 32, 43], object detection [18, 20,
36], segmentation [2, 3, 37], unsupervised learning [5, 47],
and generative modeling [19, 30, 42].

A CNN consists of multiple spatially compact filters
which convolve over an input image, followed typically by
normalizations [25] and nonlinearities. The convolutional
kernel’s small spatial extent and weight sharing properties
make them efficient and translation equivariant. However,
this also implies that the kernel’s receptive field is limited
due to its small spatial extent. The local nature of the con-
volution kernels prevents them from capturing the global
context of the image. The long-range dependency, i.e., a
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larger receptive field, is achieved through stacking multiple
CNN layers and reducing the spatial dimension by pooling
operations.

However, it has been observed that the features from
this kind of architecture tend to be more receptive toward
texture than the shape of the object. For example, [17]
tackles this problem using a better shape-biased dataset like
Stylized-ImageNet. As opposed to this, incorporating the
shape bias more directly without changing training sets is
a natural choice. As we know, convolutional operations
intrinsically represent frequency selective operations, while
the shape is related to geometric concepts rather than specific
frequency bands. Therefore, different types of operations
that are more directly shape-sensitive are needed to promote
shape awareness.

In this work, we frame vision tasks like classification
through the geometrical properties of the object’s shape.
Rigid and non-rigid aspects of shape can be described in
terms of geometric moments. Geometric moments are a very
specific type of weighted averages of image pixel intensities,
where the weights are drawn from specific polynomial-type
basis functions. This operation can be expressed as a pro-
jection of the image on the bases. While classic theoretical
development around moments used specific choices of the
bases functions, their application to difficult tasks like im-
age classification has remained very limited. In this paper,
we revisit moments as a learnable spatial operation, intro-
ducing modules motivated by the image-projection analogy.
However, we leave the bases to be learned end-to-end in a
task-specific manner.

Geometric moments have a long history in the vision com-
munity for a wide variety of applications ranging from invari-
ant pattern recognition [1, 14, 24, 28], segmentation [16, 35]
and 3D shape recognition [11, 39, 46]. We propose a deep-
learning based architecture to extract invariant image mo-
ments for classification tasks. Our architecture consists of
two streams of convolutional networks; one extracts features
corresponding to the object, i.e., removes the background
from the image, and the second network learns the bases
from a 2D coordinate grid. Geometric moments are com-
puted by projecting features of the image to the learned bases.
In order to learn task-specific invariant moments to deforma-
tions, size, and location, we learn a simple transformation of
the coordinate grid and compute the geometric moments at
multiple levels. The geometric moment captures long-range
dependency without using any pooling layer or reducing the
spatial dimension. The computation cost of the geometric
moment is linear in the spatial dimension.

In particular, the proposed Deep Geometric Moment
(DGM) architecture provides four key benefits compared
to existing models.

• First, the model generates discriminative features for
the classification task by accounting for shape informa-

tion through the proposed deep geometric moments.
• Second, our model outperforms existing ResNet models

on standard datasets without using any pooling layer or
reducing the spatial dimension.

• Third, it provides easy access to interpretable features
at any level by simple re-projection of moments.

• Finally, compared to existing models, the DGM model
only requires finetuning the coordinate basis pipeline
without retraining all the model parameters.

Our goal is not to outperform all the latest developments
in vision, but to show that our proposed model can perform
comparably to standard models when trained from scratch,
produces interpretable results, and is easier to finetune.

2. Geometric moment
A moment for a given two-dimensional piece-wise con-

tinuous function f(x, y) is defined as:

mpq =

∫ ∞

−∞

∫ ∞

−∞
xpyqf(x, y)dxdy, (1)

where, (x, y) is the 2D coordinate and (p + q) is the order
of the moment. By uniqueness theorem [24], if f(x, y) is a
piece-wise bounded continuous function (i.e. it is non-zero
only on a compact part of the xy plane), then the moment
sequence mpq is uniquely defined for all orders (p+ q) by
f(x, y). Conversely, f(x, y) is uniquely determined by the
sequence mpq .

Equivalently, moments can also be seen as a ‘projection’
of the 2D function on certain bases of the form xpyq . Instead
of using the bases function of type xpyq, one can instead
also use orthogonal functions like Legendre or Zernike poly-
nomials [44] for better reconstruction.

Image moments are well-known invariant shape descrip-
tors with a long history of use in the computer vision litera-
ture to capture the geometrical properties of an image. For
example, m00 (0th order) represents average pixel intensity,
m10 (1st order) and m01 (1st order) represent xy centroid
coordinate and the combination of 1st and 2nd order can be
used to compute orientation.

We need discriminative moments, which are also invariant
to certain image transformations like rotation, translation,
and scale for the image classification task. An early work
by Hu [24] introduced a way to find invariant moments for
images. The Hu moments consist of seven moments, mostly
a combination of lower-order moments invariant under scal-
ing, translation, and rotation. While these basic sets of seven
Hu moments are provably invariant to rotation, translation,
and scale, their use has been limited since their discrimina-
tive power is not very high. Developing invariant moments
for the Legendre and Zernike polynomials for any arbitrary
order is also possible [7,13,28,29,48,51–53]. However, they
also have not significantly impacted contemporary image
classification tasks.
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In this paper, we seek to advance a new approach for
defining spatial operations for image classification networks,
whose structure is motivated by classic moment computation
but whose basis functions are left to be learned end-to-end
by a deep learning network in a task-specific way. This im-
plies that we are not seeking to replicate any of the classical
moments in an exact sense but to find ways to fuse moment-
like computations and let networks learn the suitable basis
functions for a given task. This approach is described in the
next section.

Geometric moments and deep networks: There has
been prior work in integrating geometric moments with deep
networks, as specifically applied to 3D shape classification,
from point-cloud data. For example, geodesic moment-
based features from an auto-encoder were used to classify
3D shapes [34]. On the other hand, CNNs were used as a
polynomial function to learn bases, and the needed affine
transformation parameters for 3D point cloud data based
shape classification [27]. This line of work was extended
in [33] which uses graph CNN to capture local features of
the 3D object. More recently, [45] and [49] replaced the
conventional global average pooling in CNN models with
invariant Zernike moment-based pooling for image classifi-
cation task. Contrary to these methods, our approach learns
bases as well as the affine parameters. Note that our work is
different from these approaches because a) we are interested
in natural image classification where moment computation
is challenging compared to 3D shape classification, due to
intensity variation, background variation, occlusions, etc, b)
architecturally our approach is more involved compared to
processing 3D object that are specified directly in terms of
coordinate locations.

Spatial transformer network (STN) [26] predicts the
affine transformation parameters for classifying images that
help in maximizing object detection accuracy and transforms
the 2D CNN feature grid accordingly. The spatial transforma-
tion of the feature grid acts as an attention module and brings
invariance to rotation, translation, scale, and different warp-
ing of the image data. [9] presents a spatially deformable
convolution and pooling kernel to bring invariance under
spatial transform. Recently, exotic techniques such as rota-
tionally invariant convolution and regularization loss have
emerged to incorporate invariance towards spatial transfor-
mations [6, 15, 50]. In our work, we do not transform the
CNN feature grid and instead a 2D coordinate grid that is
much simpler in terms of computation and implementation.

3. Deep geometric moments
CNNs are extremely good at capturing local context and

texture information to discriminate images, even in a com-
plex classification task, without an explicit ‘shape’ related
operation. On the contrary, geometric moments can cap-
ture the shape information exceptionally well and provide

discriminative cues in classifying images; however, their dis-
crimination power is quite limited and generally requires a
salient object over a homogeneous background. We advance
a new type of architecture that blends the strengths of both
approaches. We propose a deep geometric moment (DGM)
model that uses geometric moments along with CNNs for
classification by providing both shape and texture access.
The geometric moment for a discrete 2D function is given
by the discrete version of Eq. 1 :

mpq =
∑
x

∑
y

xpyqI(x, y) (2)

In the traditional usage of moments in vision, the num-
ber and order of moments is an experimental design choice.
Choosing the right number and order of moments depends on
the underlying tasks; large moments are useful for image re-
construction, whereas, for image classification, higher-order
moments are affected by noise and hence not very useful.
Thus, selecting the correct moment orders is essential. In
our method, we specify the required number of moments (in
terms of feature dimension), but the exact basis functions
and orders are learned by the networks end-to-end for spe-
cific tasks. Hence we will drop the subscript notation pq and
use the superscript notation c indicating the feature channel
number for moment m.

In our model defined by Eq. 3, we use CNNs to extract
relevant object features from the given images and project
them onto the learned coordinate bases per channel:

mc =
1

N ×N

∑
x

∑
y

gc(x, y)f c(x, y), (3)

where, N × N is the dimension of the image, gc(x, y)
is a learnable 2D polynomial function, and f c(x, y) is im-
age feature at coordinate location (x, y), and c refers to the
channel dimension of the feature, given by the CNN from
the image-feature stream (see top-stream in Fig. 2). Next,
to account for varying locations, sizes, poses, and defor-
mation, we allow our network to learn affine parameters to
appropriately deform the 2D coordinate grid during moment
computation.

In summary, the proposed model consists of three compo-
nents: 1) Coordinate base computation: uses a 2D coordi-
nate grid as input and generates the bases, 2) Image feature
computation: obtains image features through ResNet blocks,
and 3) Affine transform estimation: to transform the 2D coor-
dinate grid to enable invariance learning. An overview of the
DGM model is shown in Fig. 2. The architecture consists of
Level-1 and Level-2 blocks, where Level-1 is fixed, whereas
Level-2 can be replicated multiple times to create deeper
networks.

Coordinate base computation: For computing bases,
expressed as g(x, y) in Eq. 3, a 2D coordinate grid is used
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Figure 2. An overview of proposed Deep Geometric Moment (DGM) framework for image classification task. The model consists of two
blocks: Level-1 and Level-2 that consists of two pipelines : 1) CNN based image feature extraction and 2) coordinate bases computation.
The Level-2 block can be repeated number of times for computing moments, similar to depth concept in deep networks.

as an input. The 2D coordinate grid is represented by 2 ×
N ×N , where N ×N is the dimension of the input image.
Each entry in the coordinate grid indicates the normalized
2D pixel locations (x, y ∈ [0, 1]2). g(x, y) in Eq. 3 is
defined by a neural network that consists of two layers of
1× 1 convolution layer followed by a batch-normalization
and ReLU layer. This definition of g(x, y) processes each
location of the coordinate grid independently. We use only
two convolution layers in our experiments, but one can use
more layers to learn more complex or higher-order moments.
The output bases are of dimension C ×N ×N where C is
the number of moments/channels.

Image feature computation: Referring back to the term
f(x, y) in Eq. 3, also shown as a ResNet block in Fig. 2,
takes the image of dimension 3 × N × N as input, and
outputs a feature of dimension C×N ×N . f(x, y) is imple-
mented as a conventional ResNet block [21] with 3× 3 filter
kernel. Note that the geometric moments are insufficient for
capturing local features in the image. In contrast, the CNNs
with a kernel size of 3 × 3 or greater are very efficient in
capturing local properties. Therefore, we use a kernel of
size 3× 3 in ResNet blocks, which is a common choice in
state-of-the-art ResNet-based models. These image features
from the ResNet block are then projected on the bases by
performing element-wise multiplication, and moments are
obtained by using global pooling on the projected features.
Note that unlike the conventional definition of geometric
moment Eq. 1 where the same 2D image is projected to
each basis, in our method, different feature maps are pro-
jected to each basis. The projected feature map on the bases
highlights the important region in the feature map.

Affine transformation estimation: We first use the
canonical coordinate grid to compute the moments and

predict the affine parameters using these moments. The
prediction network consists of two fully-connected lay-
ers with a non-linear activation. The prediction network
takes the canonical moments (1× C) as input and outputs
each feature channel’s affine parameters (C × 6). Then,
the 2D coordinate grid CG is transformed according to:

C
′

G =

[
a11 a12
a21 a22

]
×CG+

[
tx
ty

]
, where, the 2×2 matrix is

the predicted affine parameters, tx and ty are the predicted
translation parameters and C

′

G is the transformed 2D coordi-
nate grid. We then use these transformed coordinate grids
to generate new bases and compute new moments for each
channel. Arguably, affine parameters are also limited in pro-
viding needed invariance and robustness, but this choice is
efficient and leads to good performance.

3.1. DGM classification model

The proposed DGM network for the image classification
task is shown in Fig. 2. It uses the computed coordinate
bases, convolution network-based features, and affine trans-
formation estimation and is trained end-to-end. The function-
ality of the model comprises of: 1) an image feature pipeline
that transforms an image to features through ResNet blocks,
and 2) a geometric moment pipeline that generates the bases
and computes the affine parameters and moments. The pro-
posed model does not use any pooling layer or reduce the
spatial dimensions across the networks. This preserves the
shape of the object, as opposed to pooling or reducing the
spatial dimension that distorts the final reconstructed shape,
limiting its interpretability. For simplicity, we also use the
same number of feature channels in each ResNet layer.

As shown in Fig. 2, Level-1 uses the canonical coordinate
grid to generate bases and the ResNet block to generate

4162



features from the image. We then project this feature on
the bases to compute the moments. The projected feature
acts as an attention map and is added to the original feature.
This feature map and geometric moments are then passed to
Level-2.

The Level-2 contains a ResNet block to process the fea-
tures further. This level also predicts the affine parameters
based on the moments from the previous level and trans-
forms the coordinate grid to regenerate the bases. Fig. 2
shows only two levels, but one can repeat the Level-2 block
multiple times for added depth. The moments from the fi-
nal level are used as input to the fully-connected layer to
generate class probabilities for the classification task.

Feature Visualization: To visualize the shape awareness
brought by the DGM approach, we describe a particular
to visualize the learned features that highlight the object’s
shape. By the uniqueness theorem [24], moments can be
used to reconstruct the original input, provided the bases are
complete. In our case, our learned bases are under-complete.
Using the moments as combination weights on the projected
features given by:

V =
∑
c

mc(Gc ⊗ F c), (4)

where, mc is the moment, Gc is the basis, F c is the image
feature for channel c, and ⊗ is element-wise multiplication,
we get a visualization of shape-related information in the
features.

4. Experimental results
We evaluate the proposed method for image classifica-

tion on standard datasets: CIFAR-10, CIFAR-100 [31], and
ILSVRC-2012 ImageNet [38] to validate the effectiveness
of our model. The performance of our model is compared
to a baseline model (ResNet model without pooling layers)
and standard ResNet models [21] across classification ac-
curacy (in %) and the number of parameters (in Million
M). Along with the classification performance, we also com-
pare the feature reconstruction qualitatively and semantic
segmentation. We train all models under the same training
hyperparameters. For CIFAR datasets, we train models up
to 150 epochs with a batch size of 128; for ImageNet, we
train for 100 epochs with a batch size of 256. We use SGD
optimizer with momentum = 0.9, weight decay = 5e−4,
and cosine learning rate decay with an initial learning rate
of 0.1.

4.1. How many levels do we need?

In this experiment, the ResNet block in the image feature
pipeline consists of only 1× 1 filter kernels, except the first
Conv layer. There is no interaction between neighboring pix-
els in this setting; the only interaction is through geometric

Table 1. Performance comparison of DGM model with increasing
levels on CIFAR datasets

Model Params CIFAR CIFAR
(M) 10 (%) 100 (%)

DGM Level-1 0.44 84.79 59.07
DGM Level-2 1.37 88.77 68.07
DGM Level-3 2.30 90.09 69.72
DGM Level-4 3.23 90.28 70.56
DGM Level-4 (w/o affine) 2.03 88.47 66.6

moments and affine transformation of the coordinate grid.
Each level in our DGM model consists of a ResNet block
with two ResNet layers, a coordinate bases generator defined
with two convolutional layers, and two fully connected lay-
ers for affine parameters prediction. This setting helps us
understand the overall contributions of the coordinate bases
and the affine transformation.

Table 1 reports the DGM model’s classification perfor-
mance and the number of parameters as we increase the
number of levels in the model. In Level-1, we use the canon-
ical coordinate grid to generate the bases. The results show
that DGM Level-2 performs significantly better than DGM
Level-1 on both the CIFAR-10 and CIFAR-100 datasets.
This performance improvement reflects the effectiveness of
transforming the coordinate grid to regenerate better bases.
We also see that the performance difference between the
Level-3 and Level-4 model is minimal. In DGM Level-4 w/o
affine transform (last row), we do not transform the coordi-
nate grid; hence the bases in this case, remain the same for
every image. Without affine transformation, the model’s per-
formance drops, indicating the effectiveness of using affine
transformation. Also, increasing the levels beyond 4 does
not significantly improve the classification performance but
is accompanied by a large increase in the number of parame-
ters and computation; hence, we use only Level-4 in all the
experiments.

4.2. Comparison with baseline ResNet model

Table 2. Performance comparison of proposed DGM model and
baseline ResNet model (without pooling layers) on CIFAR datasets

Model Params CIFAR CIFAR
(M) 10 (%) 100 (%)

ResNet-18 (w/o pooling) 9.62 94.78 76.93
DGM ResNet-18 11.61 95.51 80.60

ResNet-34 (w/o pooling) 18.94 95.46 78.42
DGM ResNet-34 21.06 96.27 82.13

The baseline model in this experiment is constructed in
the same manner as our DGM model but without projec-
tion onto the coordinate bases. The baseline models are
similar to standard ResNet models without pooling layers
or reducing the spatial dimension. Without the reduction
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Table 3. Performance comparison of proposed DGM model with
baseline ResNet model (without pooling layers) on ImageNet
dataset

Model Params Accuracy
(M) (%)

ResNet-18 (w/o pooling) 9.89 68.42
DGM ResNet-18 11.88 72.36

ResNet-34 (w/o pooling) 19.20 73.34
DGM ResNet-34 21.32 75.63

in the feature’s spatial dimension, the receptive field of the
filter kernels reduces and hence weakens the long-range de-
pendency captured by the model. This experiment helps us
establish that the moments effectively capture long-range
dependency without reducing the spatial dimension of the
features. We use global pooling on the features from the last
ResNet layer of the baseline model to get the final feature
vector for classification.

In Table 2, the baseline ResNet-18 and ResNet-34 models
are based on the standard ResNet models with a constant
number of feature channels (256) in every layer and with-
out any pooling layers or reducing the spatial dimensions.
DGM ResNet-18 and DGM ResNet-34 are also of 4 levels,
with coordinate grid size of 32 × 32. Table 2 shows that
the proposed DGM models perform much better than the
baselines on both CIFAR datasets. The performance im-
provement validates the effectiveness of using coordinate
bases pipeline.

For comparison on the ImageNet dataset, we use ResNet-
18 and ResNet-34 type architectures on a grid size of 32×32.
We divide the 256 × 256 image into 8 × 8 patches and
use a linear embedding layer similar to Vision Transformer
(ViT) [10] to reduce the spatial dimension to 32 × 32, fol-
lowed by the DGM model. For the embedding layer, we use
a convolution layer with 8× 8 kernel and stride of 8. Both
baseline and DGM models consist of 3× 3 filter kernels and
256 feature channels and are trained under the same hyper-
parameters. Table 3 shows that the proposed DGM model
provides an improvement of ∼ 4% (in the case of ResNet-
18) over the baseline model with the same feature extraction
pipeline. The performance of baseline models is less than
the standard ResNet models. This performance reduction
in the baseline models is mainly due to no pooling layers
or reduction in features’ spatial dimension, which results
in a low receptive field. Our DGM model’s performance is
comparable to the standard ResNet model but without a spa-
tial dimension reduction, showing that moments effectively
capture the required long-range dependencies.

4.3. Comparison with standard ResNet model

Table 4 and 5 compare the proposed DGM model
with conventional ResNet models [21]. The number
of feature channels in the standard ResNet model is

Table 4. Performance improvements of DGM models over standard
ResNet model (with pooling layers) on CIFAR datasets

Model Params CIFAR- CIFAR-
(M) 10(%) 100(%)

ResNet-18 11.17 95.37 77.35
DGM ResNet-18 11.61 95.51 80.60
ResNet-34 21.33 95.58 78.83
DGM ResNet-34 21.06 96.27 82.13
MobileNet [23] 3.93 93.62 73.53
DGM MobileNet 4.50 96.33 82.19

Table 5. Performance comparison of DGM model with standard
ResNet model (with pooling layers) on ImageNet dataset

Model Params Accuracy
(M) (%)

ResNet-18 11.69 71.23
DGM ResNet-18 11.88 72.36
ResNet-34 21.80 74.58
DGM ResNet-34 21.32 75.63
ResNet-50 25.56 76.92
DGM ResNet-50 23.51 77.06
MobileNet [23] 4.20 70.66
DGM MobileNet 4.76 72.69

(64, 128, 256, 512); whereas, in our DGM model, the num-
ber of feature channels is 256 in ResNet-18 and Resnet-34
and 512 in ResNet-50 across all levels. The naming of our
DGM model is based on the number of layers used in the
image feature pipeline (similar to the standard ResNet model
naming convention). The standard ResNet models use pool-
ing layers to reduce the spatial dimensions up to 8× 8 in the
final layer, whereas, in our DGM model, the final feature’s
spatial dimension is 32× 32.

Table 4 shows that the proposed DGM models perform
better than the standard ResNet models on both CIFAR-10
and CIFAR-100 datasets. The DGM model improves the
accuracy of ∼ 1% on CIFAR-10 and ∼ 3% on CIFAR-100.
Table 5 compares the DGM model with the standard ResNet
model on the ImageNet dataset. We observe that our DGM
model is better than the standard ResNet model while using a
similar number of parameters but without using any pooling
layers.

The computation cost in our DGM model is much higher
than conventional ResNet, which is attributable to the fact
that we do not reduce the spatial dimension of the image
features. However, one can reduce the computation cost in
the image pipeline using the channel-wise convolution [23,
40]. In Table 4 and 5, DGM MobileNet has very less number
of parameters, but performs comparable to DGM model with
conventional ResNet layers. Details about the computation
cost of our model are provided in the supplementary.
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Figure 3. Visualization at different levels for DGM ResNet-34 model on the ImageNet dataset. We note that at higher levels our model is
able to separate the background information from the object’s shape compared to initial levels.

4.4. Feature visualization

A major advantage of keeping a higher spatial dimen-
sion of features is interpretability at different levels. The
feature vectors can be easily visualized by a reconstruction
step as given by Eq. 4. Fig. 1 compares Level-4 visualiza-
tion as a heatmap for a few randomly selected images from
the ImageNet dataset for our DGM model against baseline
ResNet and standard ResNet models. The visualization for
the baseline model is just a weighted sum of the final Conv
layer activation based on the global feature. For the standard
ResNet model, we use GradCAM [41]. We also compare our
visualization with the current attention-based Vision Trans-
former [10] (ViT-B-16) model, which is pre-trained on the
ImageNet-21K and finetuned on ImageNet-1K datasets. As
shown in Fig. 1, the GradCAM visualizations of the stan-
dard ResNet-18 model generate a blob-like shape around
the critical region in the image, with no discernible object
shape. While it gets better for the baseline ResNet-18 model,
the heatmaps are still diffuse, and the shapes are not very
distinct. However, with DGM model, object shapes are crisp,
with improved classification accuracies. Also, our heat map
is much sharper than the vision transformer attention map
(Vit-B-16).

Additionally, in the DGM model, we can visualize fea-
tures at different levels providing much better-debugging
capability, as shown in Fig. 3. At initial levels, the heatmap
is noisy, and the model is not able to able to separate the
object from the background clearly as compared to higher
levels. Additional qualitative results for analysis are pro-
vided in Supplementary.

4.5. Finetuning

For DGM finetuning, we only need to retrain the coor-
dinate bases pipeline, and the final classifier layer, while

Table 6. Classification performance on fine-tuning of pre-trained
ImageNet DGM model on CIFAR datasets

Model Params CIFAR CIFAR
(M) 10(%) 100(%)

DGM ResNet-18 11.69 93.79 75.83
DGM ResNet-34 21.32 94.01 77.51
DGM MobileNet 4.76 93.87 75.92

Table 7. Mean Corruption Error (mCE) comparison of DGM with
standard ResNet model on ImageNet-c dataset

Model Params Clean ↑ mCE ↓
(M) Acc. (%) (%)

ResNet-50 25.56 76.92 74.97
DGM ResNet-50 23.51 77.06 71.74

freezing the image feature exaction pipeline. The coordinate
bases pipeline contains significantly fewer parameters and
requires less computation. We finetune our ImageNet pre-
trained DGM model for only 30 epochs on CIFAR-10 and
CIFAR-100 datasets. The network is finetuned using a SGD
optimizer with a cosine decay learning rate and an initial
learning rate of 0.01. Table 6 shows the accuracy of the
finetuned model on the CIFAR-10 and CIFAR-100 datasets.
The performance of the finetuned model drops as compared
to DGM trained from scratch, but it performs equally well
to the standard ResNet model trained from scratch.

4.6. Performance under color distortion

We evaluate the effect of color distortions on DGM per-
formance by testing it on ImageNet-C [22]. The ImageNet
pretrained DGM model used for this experiment does not
use any color augmentation during training, making it a suf-
ficiently challenging task. The DGM ResNet-50 and Grad-
CAM ResNet-50 visualization for two distortions is shown
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Figure 4. Visualization from DGM and standard ResNet model under two different color distortion (Blur (1st row) and Fog (4th row) from
Imagenet-C). Our model (3rd and 6th row), is able to produce consistent shape across different distortion compared to standard ResNet (2nd

and 5th row).

in Fig. 4. The figure shows that our model captures the ob-
ject shape very well under different challenging distortions
like fog and blur. The GradCAM heatmap for the ResNet-50
is not very consistent across distortions as compared to our
DGM model. For quantitative performance, we use the mean
Corruption Error (mCE) metric (lower is better) [22]. We
choose our DGM model such that it performs comparably
to the standard ResNet-50 model on clean images but with
fewer parameters. Table 7 shows DGM model provides an
improvement of 3.2 points on the corrupted images.

4.7. Semantic image segmentation

The DGM model is evaluated on the PASCAL VOC
2012 [12] and Cityscapes [8] semantic segmentation bench-
mark datasets. We use a Level-5 DGM model with ResNet-
50 as the image-feature pipeline pretrained on the ImageNet
dataset. The number of parameters in the Level-5 DGM
ResNet-50 is almost identical to the standard ResNet-50
model (∼ 25M). We use the same training hyperparameters
as in the DeepLabv3+ model [4]. We test the effectiveness of
our model with two different segmentation heads; first, with
just two 1× 1 Conv layers as segmentation head that takes
the final 2D features rescaled by factor of 4, and second,
DeepLabv3+ segmentation head, which consists of atrous
convolution with different rates to capture long range depen-
dencies. In Table 8, we observe that our model performs
comparable to the standard DeepLabv3+ model, even with a
very simple segmentation head on both datasets. This shows
that geometric moments are effective in capturing long range
dependencies. Our model shows improvements of 1.5%
points on Pascal VOC and 0.7% points on Cityscapes Val
sets compared to the standard ResNet model.

Table 8. Semantic segmentation perfomance on PASCAL VOC
2012 [12] and Cityscapes [8] val set in terms of mean intersection
over union (mIoU)

Backbone Segmentation PASCAL Cityscapes
head VOC (mIoU) (mIoU)

ResNet-50 1× 1 Conv 68.59 71.92
DGM-ResNet-50 1× 1 Conv 78.43 74.77
ResNet-50 DeepLabv3+ 78.36 75.34
DGM-ResNet-50 DeepLabv3+ 79.89 76.03

5. Conclusion
In this work, we propose a geometric moment-based deep

learning model that explicitly captures shape-related infor-
mation in an end-to-end learnable fashion. The DGM model
improves the interpretability of features while also learn-
ing discriminative features. The quantitative and qualitative
results on standard image classification and segmentation
datasets show that our method performs better than the corre-
sponding baseline and standard ResNet models. In addition,
the DGM model provides easy interpretability at different
levels while also providing ease of finetuning on a given
dataset. Further, our model captures the object’s shape even
under extreme affine and color aberrations while performing
better than existing approaches. We believe that DGM can
improve the performance of other vision tasks, such as object
detection and generation, and can be generalized to other
modalities like video, RGBD, and volumetric data.
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