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Figure 1. (a). GenSim takes a template garment on the canonical body pose and the target body pose as an input, and deforms the garment
to simulate it on the target pose. We can observe in the overlayed output that the simulated garment obeys the geometry of the underlying
body shape and the pose (b). GenSim is a generic garment simulator. In contrast to other existing methods, our single-trained model of
GenSim works for a variety of garments. GenSim trained on tops and skirts from CLOTH3D [4] dataset but generalizes well on unseen
garment types such as pants, shorts, tshirt, and tank from VTO dataset [21, 23] and garments from CLOTH3D [4] test set with a variety of
body poses and shapes. Please refer to Sec. 4 and Supplementary for more results.

Abstract
In this paper, we propose a novel generic garment simu-

lator to drape a template 3D garment of arbitrary type, size,
and topology onto an arbitrary 3D body shape and pose.
Existing learning-based methods for 3D garment simula-
tion methods train a single model for each garment type,
with a fixed topology. Most of them use supervised learn-
ing, which requires huge training data that is expensive
to acquire. Our method circumvents the above-mentioned
limitations by proposing GenSim, a generic unsupervised
method for garment simulation, that can generalize to gar-
ments of different sizes, topologies, body shapes, and poses,
using a single trained model. Our proposed GenSim con-
sists of (1) a novel body-motion-aware as-rigid-as-possible
(ARAP) garment deformation module that initially deforms
the template garment considering the underlying body as
an obstacle and (2) a Physics Enforcing Network (PEN)
that adds the corrections to the ARAP deformed garment
to make it physically plausible. PEN uses multiple types of
garments of arbitrary topology for training using physics-
aware unsupervised losses. Experimental results show that
our method significantly outperforms the existing state-of-
the-art methods on the challenging CLOTH3D [4] dataset
and the VTO [23] dataset. Unlike the unsupervised method
PBNS [5], GenSim generalizes well on unseen garments
with varying shapes, sizes, types, and topologies draped on
different body shapes and poses.

1. Introduction

Simulating 3D garments of varying types and sizes on
3D humans of arbitrary body shapes and poses is an impor-
tant problem with direct applications in virtual try-on, gar-
ment authoring, garment catalog generation, etc. Although
Physics-Based Simulation (PBS) approaches are preferable
for accurate and realistic simulation of garments on 3D hu-
mans, they are computationally expensive and require ex-
pert intervention.

Recently, there has been a growing interest in data-driven
learning-based simulation approaches [5, 6, 9, 12, 17, 18, 22,
23, 26–29, 32] as they reduce dependency on experts, and
the time complexity of the simulation significantly. How-
ever, they have several limitations. Many of these meth-
ods 1) Work on fixed garment type: for instance PBNS [5],
SNUG [22], [21], [23], VBones [17] and DD3DG [32] can
simulate only the garment template/type which is used for
training thereby requiring a new model for each garment
type. 2) Work on fixed body shapes: VBones [17] and
PBNS [5] work on the fixed body shape used for training.
3) Assume fixed garment topology: methods such as Deep-
Draper [27], and TailorNet [18] assume different sizes of
garments to have the same number of vertices, hence cannot
model loose and long garments such as skirts and dresses,
which require more number of vertices to accurately rep-
resent the geometry (wrinkles and folds). A comparison
of various methods based on their ability to handle various
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Table 1. Comparison of state-of-the-art garment simulation meth-
ods based on the generalization ability of a single trained model.
At test time, our method can handle garment and body property
variations using a single trained model that is generalized for all
garment and body types. *DD3DG cannot handle poses that are
very different from the training motion types.

variations during testing
body
shape

body
pose

garment
Types

garment
topologies

body
topologies

Supervised

DD3DG [32] ✓ ✓*
NCLOTH [8] ✓ ✓
VBones [17] ✓
TAILORNET [18] ✓ ✓
LVTON [21] ✓ ✓
GARNET [10] ✓ ✓
DeepDraper [27] ✓ ✓
DeePSD [6] ✓ ✓ ✓ ✓
GarSim [28] ✓ ✓ ✓ ✓

Self-Supervised SNUG [22] ✓ ✓

Un-Supervised PBNS [5] ✓
GenSim (ours) ✓ ✓ ✓ ✓ ✓

variations during testing is shown in Table. 1.
The existing supervised methods are trained primarily by

minimizing L2 distance w.r.t the PBS data. Minimizing
such L2 distance jointly for multiple tight and loose gar-
ments tends to learn average displacement and compromise
the physical plausibility of the deformation.

PBNS [5] is an unsupervised garment deformation
model. Nevertheless, it is a pose-space deformation [13]
model that takes only the body pose parameters as input and
predicts a garment-specific pose deformation matrix. Hence
it cannot be trained for multiple garments simultaneously.
In this paper, we aim to circumvent the limitations of PBNS
by proposing a garment simulator that takes both the gar-
ment and body as input, along with other factors affecting
garment deformation on a 3D human body. In particular, we
propose a two-stage method to deform a garment over a 3D
human body (refer Fig. 2). First, given a template body pose
and the target pose (therefore, the relative motion between
these poses), we estimate body motion-aware as-rigid-as-
possible [24] garment deformation iteratively by avoiding
garment-body collisions. This stage roughly aligns the tem-
plate garment on top of the target body but doesn’t ensure
physical properties such as local smoothness, or the forces
acting on the clothes due to gravity, stretching, bending, etc.
In the next stage, the ARAP-deformed garment, the body
geometry, and the motion information from the template
pose are sent to a Physics Enforcing Network (PEN) to en-
sure the physical plausibility of the garment by adding a cor-
rection to the ARAP-deformed garment. The PEN creates
an encoded garment graph with latent node and edge fea-
tures representing the body and garment features. The latent
features get processed by a message-passing graph network
and decoded to generate a physically plausible garment de-
formation. The message-passing graph network representa-
tion helps our method generalize to an arbitrary number of

vertices/topologies of both the garment and body meshes.
Our motion-aware garment deformation algorithm ensures
that there are no body-to-garment collisions. PEN lever-
ages this information to ensure that the predicted garment
displacement locally avoids the body-garment collision.
Our contributions can be summarized as follows:

• We propose GenSim, a generic method for unsu-
pervised 3D garment simulation. To the best of our
knowledge, our method is the first unsupervised gar-
ment simulator that can be trained simultaneously for
multiple types of garments of varying sizes, and topol-
ogy, and bodies of different shapes and poses. It gener-
alizes on unseen garments of different types, and sizes,
along with different body shapes and poses.

• We propose a novel Motion-Aware ARAP Garment De-
formation method that roughly aligns the template gar-
ment on the target body pose.

• We propose a Physics Enforcing Network (PEN) that
corrects the output of the Motion-Aware ARAP mod-
ule to make the deformation physically plausible. PEN
is trained in an unsupervised manner with the help of
loss functions for physical plausibility.

2. Related Work
In this section, we review learning-based methods for

garment deformation in three categories: supervised, self-
supervised, and unsupervised. A comparison table with all
these categories is shown in Table. 1.
Supervised methods mainly rely on the L2 loss between
the predicted garment deformation and the ground-truth
PBS data for training. Majority of the existing methods
[4, 6, 8, 10, 14, 17, 18, 26, 27, 30] follow the supervised ap-
proach. DeepDraper [27] and TailorNet [18] train different
models for different types and topologies of garments. Tai-
lorNet [18] learns low-frequency and garment style-specific
high-frequency models and combines them using RBF ker-
nel to finally get a body shape, pose, and style-aware gar-
ment deformation model. Similarly, DeepDraper [27] uses
coupled geometric and multiview-perceptual constraints to
train for each type of garment. DeepWrinkles [12] proposes
a learned Pose Space Deformation [13] conditioned on
temporal features. LVTON [21] learns a garment-specific
non-linear mapping for pose-aware garment deformation.
Methods like DeePSD [6] and CLOTH3D [4] need a huge
amount of PBS data to train their respective models. More-
over, as mentioned by the respective authors in their pa-
pers, these methods fail to work on loose garments such as
dresses, long skirts, etc. In a very recent attempt, VBones
[17] propose a method to predict deformation for loose gar-
ments. It uses the concept of virtual bones and concepts
of skinning with these bones to animate the garment based
on the underlying body sequence. Another recent method,
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Figure 2. GenSim has a two-step approach for garment simulation. The first step is a novel Motion-Aware ARAP garment deformation,
which takes as input the template garment draped on a body in the canonical pose, and roughly aligns the template garment on the target
body pose (Sec. 3.1). The second step is a Physics Enforcing Network (PEN) which takes the ARAP deformed garment G as input and
predicts the per-vertex displacements δ to make G physically plausible. PEN first creates an encoded garment graph with latent node η and
edge π features (Sec. 3.2). The latent features are obtained by encoding various factors such as the geometry of both the garments and the
body (Fgar,Fbody)), relative body motion d⃗, relative position of garment vertices (u⃗, v⃗), vertex masses M, etc, (Sec. 3.2.1). The encoded
graph is then processed through a message-passing graph network block (Sec. 3.2.2). The final processed graph node features are then
used by the decoder to predict per vertex displacements δ which are added to G to get the final physically corrected plausible garment (Sec.
3.2.3). The overall energy of G+ δ is low compared to G which shows PEN is making ARAP deformed garment G physically plausible.

DD3DG [32] learns a per-garment generative model for
motion-guided garment deformation. However, both [32]
and [17] are garment specific and cannot handle variable
topology garments. For every new type of loose garment,
both needs to train a new model.
Self-supervised methods such as SNUG [22], use the pre-
viously inferred frames to drive the dynamics of garment
vertices and predict the deformation of the same on the tar-
get body pose in a self-supervised manner. This method is
also a garment specific model, i.e, it can only be evaluated
on the same template garment which is used for training the
model.
Unsupervised methods such as PBNS [5] do not use
ground-truth data, instead, they cast garment deformation
as an energy minimization problem, and derive losses based
on various energies such as potential energy due to gravity,
strain energy, bending energy, etc. PBNS trains a single
model for each outfit and body pair which is a major limita-
tion. Practically, it is infeasible to train for every outfit and
body pair. Our method GenSim alleviates this problem.
GenSim being an unsupervised method, it can be trained
simultaneously for multiple variations of garment type, size,
shape, body shapes, and poses. GenSim is capable of gen-
eralization on unseen garment shape sizes, topologies, and
body shapes and poses using a single trained model.

3. Methodology
GenSim simulate the template garment G on the tar-

get body B in an arbitrary pose in two-steps. In the first
step, it roughly aligns the template garment on the target
body pose using our novel Body Motion-aware as-rigid-as-
possible garment deformation module (Sec.3.1). The first

step doesn’t account for the physical constraints. Hence,
we introduce a novel Physics Enforcing Network (PEN)
(Sec.3.2), that adds the corrections to the roughly aligned
garment in the second step to make it physically plausible.
Next, we describe both steps in detail.

3.1. Step 1 - Body Motion-Aware ARAP
The traditional ARAP algorithm [24] has been widely

used to edit the meshes while keeping the local rigidity of
the mesh as much as possible. It takes an initial mesh (ver-
tices and faces), a set of handle vertices, and their displaced
locations. Handle vertices are the set of mesh vertices usu-
ally manually selected and displaced by a user. ARAP keeps
the position of handle vertices fixed to their displaced loca-
tions, and estimates the displacements for the non-handle
vertices preserving the local rigidity in the mesh as much as
possible. This traditional ARAP cannot be applied in our
scenario because, 1. the set of handle vertices are unknown
and can be different for every target body pose, 2. the artic-
ulated human body under the garment which will act as an
obstacle while deforming non-handle vertices.
Our proposed approach to deform a garment in the presence
of the human body as an obstacle is explained in the Algo-
rithm 1. The handle vertices are the garment vertices under
the direct influence of the force exerted by the motion of
the underlying body. Let us assume, we have the indexes of
handle vertices of the garment in the set H and their dis-
placed locations in G̃i, ∀i ∈ H. We will discuss in Sec.
3.1.1 how to automatically obtain H and G̃. We first com-
pute the displacement vector g⃗i for each of the ith handle
vertex with respect to its position in the template garment
(Alg. 1 line 2). Instead of setting the handle vertices di-
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Algorithm 1: Motion Aware ARAP Garment Deformation
Inputs: G̃, G, B, n̂, H, t, Output: G

1 I = {1, ...,m} // index set of garment vertices
2 g⃗i = G̃i − Gi ,∀i ∈ H
3 Ωi = Gi, ∀i ∈ H
4 for itr ∈ {1 ... nitr} do
5 Si = Ωi + ĝi × (||⃗gi|| t), ∀i ∈ H
6 G = ARAP(S, G)
7 νi = FindClosest(Gi, B) ,∀i ∈ {I \ H}
8 ζi = (Gi − Bνi

) · n̂νi
,∀i ∈ {I \ H}

9 φ = {i | ζi ≤ 0, ∀i ∈ {I \ H}
10 Gi = Gi + n̂νi |ζi|, ∀i ∈ φ
11 Ωi = Si, ∀i ∈ H
12 end for

rectly to their final location i.e., G̃ , we move the handle
vertices iteratively towards their final location in the direc-
tion of the vector g⃗i and solve for the non-handle vertices G
using ARAP (Alg. 1 line 6). The step size of the movement
is controlled by t. Next, we solve for the collision (if any) of
non-handle vertices with the body. For each deformed non-
handle vertex Gi, we find the index νi of the closest body
vertex (Bνi

) (Alg. 1 line 7) and its unit normal (n̂νi
). The

projection of the body to the garment vector onto the unit
normal vector can indicate the collided vertices (Alg. 1 line
8-9). We resolve the collision by moving the collided gar-
ment vertices towards the closest body vertex normal n̂νi

with a magnitude of |ζ| (Alg. 1 line 10). We fix the total
number of iterative steps nitr = 10 and t = 1.0/nitr for
all our experiments. We observe that the movement of the
garment handle vertices directly to their final location i.e.,
t = 1.0 and nitr = 1, leads to significant collision with the
underlying body. In many cases, garment collision would
be on the opposite side of the body, which would be diffi-
cult to solve. Hence, we fixed the location of handle vertices
in a step-wise manner (Alg. 1 line 5) and resolve collision
with every ARAP estimate (Alg. 1 lines 7-10).

Figure 3. Handle vertices location estimation: The grey circle
shows the leg moved due to motion. Refer Sec. 3.1.1 for details.

3.1.1 Handle Vertices for Motion-Aware ARAP
Let B and B contain the vertices of the body in the canon-
ical and the target body poses respectively, and ω is the in-

Algorithm 2: Handle Vertices for ARAP
Inputs: B, B, G, ϵ, ω, Outputs: G̃, H

1 I = {1, ...,m} // index set of garment vertices
2 νi = FindClosest(Gi, B) ,∀i ∈ {I \ ω}
3 d⃗i = Bνi

− Bνi
,∀i ∈ {I \ ω}

4 u⃗i = Gi − Bνi
,∀i ∈ {I \ ω}

5 τi = ûi · d̂i ,∀i ∈ {I \ ω}
6 H = {i |τi ≤ ϵ}, ∀i ∈ {I \ ω}
7 qi =

d⃗i·u⃗i

||d⃗i||
,∀i ∈ {I \ ω}

8 G̃i = Gi + d̂i (||di|| − qi) ,∀i ∈ H
9 G̃i = Bi + n̂i ||ui|| ,∀i ∈ ω

10 H = H ∪ ω

dex set of the garment pin vertices. We first find the relative
motion d⃗i of the body vertex closest to each template gar-
ment vertex (Alg. 2 line 2 & 3). Similarly, we compute
the relative position vector u⃗i of the template garment ver-
tex with respect to the closest body vertex (Alg. 2 line 4).
The angle between u⃗i and d⃗i can indicate the set of garment
vertices that are under the direct influence of the force due
to the body motion (Alg. 2 line 6). Fig.3(a) shows an in-
tuitive diagram where the vertices in magenta would be the
handle vertices, and in greens are the non-handle vertices
(assuming only one leg has been moved). The locations of
the handle vertices are computed by moving them along the
direction of motion with a magnitude (||d|| − q) (Alg. 2
lines 7-8). We move the garment pin vertices such that their
relative positions with respect to the body surface pin area
remains approximately the same (Alg. 2 lines 9). We finally
update the handle vertices index set H by adding pin ver-
tices to that set so that ARAP doesn’t change the location
of pin vertices.

3.2. Step 2 - Physics Enforcing Network

The Body Motion-aware ARAP deformed garment
G obtained after step-1 may not be physically plausible
as it is deformed under as-rigid-as-possible constraints. To
make is physically plausible, we introduce Physics Enforc-
ing Network (PEN) that for every vertex predicts a displace-
ment or correction δ. The corrections are added to the G to
make it physically plausible. Refer to Fig. 2, we first encode
the whole garment into a graph, where each node and edge
corresponds to a garment mesh vertex and mesh edge. We
associate a latent feature, estimated using factors affecting
the physics of the garment deformation to each graph node
and edge. Our choice of using graph-based representation
is to make our network invariant to the node and edge per-
mutations and number of garment vertices and edges, there-
fore, to enforce arbitrary relational inductive bias via edge
connections [3, 14, 15, 19].
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3.2.1 Encoded Garment Graph
The physical plausibility of the deformed garment depends
on several factors such as the shape and size of the template
garment, the body motion, etc. We encode such features
into the garment graph node feature. Similarly, we encode
the relative position of the edge end-vertices of the garment
mesh into the edge features of the garment graph. Let ηi
and πl denote the ith and lth latent node and edge feature
vectors of the encoded garment graph respectively.
Latent Node Features: We first encode the geometry
of each vertex of the template garment and the underly-
ing body mesh using a geometry encoder. Let Fgar

i and
Fbody

νi
denote the latent geometry feature of ith template

garment vertex and its closest body vertex Bi. The latent
geometric feature vectors are concatenated with the rela-
tive position of garment vertex w.r.t its closest canonical
pose body vertex u⃗i = Gi − Bνi

, the relative position of
ARAP deformed garment vertex w.r.t its closest target pose
body vertex v⃗i = Gi − Bνi , the normal vector n̂i of the
body vertex Bνi

, the pin vertex indicator pi (pi = 1 for
pin vertices else 0), the body motion vector d⃗i, and the
mass Mi of the garment vertex, which is proportional to
the area of its associated faces. The concatenated input
[Fgar,Fbody, u⃗, v⃗, d⃗, n̂, p,M] is processed through a node
encoder to get the latent node feature vector ηi.
Latent Edge Features: We find the relative position of
edge end-vertices in G and G as Eij = Gj − Gi and
EARAP
ij = Gj − Gi respectively. Encoding both Eij and

EARAP
ij using latent edge feature π helps the network to cor-

rect any significant elongation/compression in the ARAP-
deformed garment edges.

3.2.2 Message Passing Graph Network Module
We use a message-passing algorithm similar to [3] where
every node aggregates the information/features from its in-
cident edges, process them to update its own feature, and
broadcasts to its neighboring nodes. Similarly, every edge
takes the features from its end nodes and updates its own
features. We repeat the message-passing for L steps and
get the final updated encoded garment graph and pass it
to the displacement decoder. The node and the edge up-
date function (Nedge(·), Nnode(·)) are approximated using
MLP, and we use the average operation as the aggregation
function. Refer, to supplementary material for the detailed
algorithm.

Figure 4. Body-aware direction of displacement to avoid collision
with the local body surface. Refer to Sec. 3.2.3 for detail.

3.2.3 Displacement Decoder
The final encoded garment graph node features are used by
the decoder to produce per vertex direction D̂ and the mag-
nitude w of the displacement, which is added to the ARAP
deformed garment vertices so that the final garment defor-
mation becomes physically plausible. The final predicted
deformed garment Gpred = G+ D̂ w.

To ensure that the direction of displacement D̂ of a gar-
ment vertex Gi is not inducing any collision with the local
body surface patch around its closest body vertex Bνi , we
restrict it to be outwards to the local body surface patch i.e.,
in the half-space towards the unit normal n̂i of the body
vertex Bνi

. Consider, Fig. 4 where a garment vertex and its
closest body vertex are shown in magenta and black respec-
tively, and n̂ is the body vertex unit normal. The direction D̂
can be in the black gradient region in Fig.4(a), which is the
half-space created by the plane (blue) in Fig.4(b) orthogo-
nal to the unit normal n̂. The vector D̂ can be obtained as a
convex combination of vectors n̂ and b̂. Let [b1, b2, b3] are
the coefficients of the b⃗, and b̂ = b⃗/||⃗b||. Since, b⃗ is orthog-
onal to n̂, we have n̂ · b⃗ = 0. Following this we can write
b3 = −b1n1−b2n2

n3 , where [n1, n2, n3] are the coefficients of
the known body vertex unit normal n̂.

The decoder predicts the coefficients b1, b2, a convex
combination factor ρ, and the magnitude of the displace-
ment w for each garment vertex. The third coefficient b3 of
the direction vector can be estimated from the predicted b1

and b2 as explained above. The unit direction vector D̂ is
then obtained as D̂ = D⃗/||D⃗||, where D⃗ can be estimated
as shown below in Eq. 1.

D⃗ = |ρ| n̂+ (1− |ρ|) ∗ ρ

|ρ|
b̂ (1)

ρ is the output of Tanh activation, hence we use |ρ|, to
ensure the convex combination (0 ≤ |ρ| ≤ 1) of n̂ and b̂.
To consider both b̂ and −b̂ as valid solutions( since n̂ · b̂ =
n̂ · -b̂ = 0) we multiply b̂ with the factor ρ/|ρ| as this factor
can be either +1 or −1 and is predicted by the decoder.

3.3. Training Losses

We train Physics Enforcing Network (PEN) end-to-end
using unsupervised training losses.
Restrain Energy: The first loss is fabric-aware that resists
significant deformation of the garment edges. The length
of an edge (i, j) in the template garment is ||E ij ||, and
the corresponding edge length in the deformed garment is
||Epred

ij ||. The φij captures the absolute difference between
the length (Eq. 2). The total restrain energy can be com-
puted as

φij = | ||Epred
ij || − ||E ij || | (2)

ℓstr =
∑

(i,j)∈E

(φij − µfabric

σfabric

)2

(3)
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where, µfabric and σfabric are the fabric-specific mean and
standard deviation of absolute edge length differences. The
µfabric and σfabric can be estimated by fitting a Gaussian
model to a small subset of physics-based simulation frames
of different garment types (shirt, trousers, tops, etc), or sim-
ple cloth under different obstacle motions (need not to be
the human body). We took a total of random 50 signif-
icantly different simulated frames of garments of varying
types (randomly chosen shirts, t-shirts, trousers, skirts, and
tops). The garments, clothes, body, and obstacle motions
used are entirely different from the dataset used in this pa-
per. Refer supplementary for the plot of µfabric and σfabric.
Bending Energy: The bending loss term measures the en-
ergy due to the angle between two adjacent garment faces
[7, 25, 31]. We model it as

ℓben =
∑
(i,j)

||Epred
ij ||2

4(A1 +A2)

(θ2
2

)
(4)

where, A1 and A2 are the areas of the adjacent faces,
Epred
ij is the common edge connecting two adjacent faces,

and θ is the dihedral angle between the adjacent faces.
Pin Vertices Loss: We restrict the movement of the pin ver-
tices from their respective location in the ARAP deformed
garment G which prevents the garment to fall down. We
apply the L2 regularization loss between vertices in G and
Gpred. Here, ω is the index set of pin vertices.

ℓpin =
∑
i∈ω

|| Gi − Gpred
i ||2 (5)

Potential Energy: The potential energy loss term measures
the energy due to the gravitational force. We model it as
below, where g is the gravitational acceleration, zi is the
height of the final deformed garment vertex Gpred

i , and Mi

is the mass of the garment vertex. We compute potential
energy loss for all the non-pin vertices.

ℓpe =
∑

i∈{I\ω}

Mi g zi (6)

Mesh Smoothness Loss: To enforce locally smooth sur-
faces of predicted garment mesh Gpred, we apply Lapla-
cian smoothing loss with cotangent weights. Here, △ is the
Laplacian smoothing operator.

ℓsm = △(Gpred) (7)
Garment-to-Body Collision Penalty Loss: Our direction
of displacement by design avoids collisions locally (Sec.
3.2.3). However, if the garment vertex needs to move a
lot i.e., when the magnitude of the displacement is large,
in such cases even though the direction is in the right half-
space (Sec. 4) the vertex may collide with the non-local
body surfaces. This happens mainly when the garment lies
between the two body parts, where the normal of both the
body parts are facing each other (e.g., the garment lies be-
tween the folded leg i.e., between the back side of the thigh

and the calf muscle body area). To handle those cases we
apply a garment-to-body collision penalty loss as below:

ℓcol =
∑
i∈I

max(−n̂i(Bνi
− Gpred

i ), ϵcoll) (8)

where, Bνi
is the body vertex closest to the final deformed

garment vertex Gpred
i , and n̂i is the unit vertex normal of

Bνi . ϵcoll is the collision threshold for robustness. Please
see the supplementary for an example. PEN is trained using
the total loss L (Eq. 9). An ablation on the loss term is
shown in the Sec. 4.4.

L = γ1ℓstr+γ2ℓben+γ3ℓpin+γ4ℓpe+γ5ℓsm+γ6ℓcol (9)

Here, γ′s are the balancing weights of the loss terms.

4. Experiments
We train GenSim on a subset of 175 sequences with

tops and skirts outfits from the training split of the
CLOTH3D [4] dataset and we test on 60 sequences from
the test split from this dataset.

4.1. Results on CLOTH 3D Test Set
Quantitative: To demonstrate that our unsupervised
method predicts more accurate physically plausible garment
deformations, we train two variants of GenSim - one with
our main unsupervised losses (Eq. 9) as described in Sec.
3.2, and another using L2 loss on predicted garment ver-
tices. We compare both variants on the test set using metrics
for average edge compression/elongation w.r.t their length
in the template garment, garment surface quality smooth-
ness measured using the Laplacian loss term as in Eq. 7,
and the percentage of garment vertices collisions with the
body. As the per results in Table 2, GenSim trained with
physics-based losses produces better quality garment defor-
mations owing to lower edge distortion, smoother garment
surfaces, and significantly lower body-to-garment collision.
In the first variant, the L2 loss learns the ground-truth data
in an average sense, which leads to elongation/compression
of some edges and collisions. On the other hand, unsuper-
vised losses in GenSim compute the garment deformation
that reduces the overall energy of the garment, while re-
straining edge lengths from changing too much, and also
avoiding collisions, thereby, producing better results.

Table 2. Quantitative Evaluation on CLOTH3D Test Set

Training Strategy Edge (mm) Smoothness Collision (%)
Supervised L2 + Smoothness + Collision Loss 3.8 0.0013 10.1
Unsupervised Physics Losses 1.9 0.0008 0.6

Qualitative: Sample qualitative results of GenSim on
various unseen body shapes, poses, and garments of var-
ious types, sizes, and topologies are shown in Fig. 5.
GenSim produces physically plausible simulations.
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Figure 5. Sample results on Test Set: GenSim produces physically plausible deformations for varying body shapes and poses, and
varying garment types and topologies. Check textured results of some of these outputs in Fig. 1(b), and more results in Supplementary.

Figure 6. Comparison with DeePSD and PBNS. DeePSD produces inferior results on the loose garments while PBNS produces unrealistic
artifacts between legs which is quite similar to the reported results in their paper in the case of skirts. PBNS is trained and tested on the
same garment template. DeePSD [6] requires supervised training using approx 7.5k sequences, however, for a fair comparison with ours,
we have trained it only on 175 sequences similar to GenSim . This shows GenSim trained in an unsupervised manner using a small
training set (175 sequences) accurately learns the physics of deformation, and can produce more accurate physically plausible results than
DeePSD.

Comparison with PBNS [5], and DeePSD [6]: We qualita-
tively compare with PBNS and DeePSD on CLOTH3D test
samples. Since PBNS is an outfit-body specific method, we
trained two PBNS models one for each outfit-body pair in
Fig. 6(a) & 6(h). DeePSD is trained on the same training
set of tops and skirts as GenSim. Note: For PBNS both the
training and testing garment template is the same, whereas
the testing garment template is unseen for both DeePSD and
GenSim during training. DeePSD suffers from collisions
(in Figs. 6(c), (f) & (j)), PBNS produces similar artifacts for
skirts (between legs) as mentioned in their paper [5] (Figs.
6(d), (g) & (k)).

4.2. Generalization on Unseen Garment Types

We evaluate the generalization capability of GenSim by
evaluating it on unseen garment types (dress, t-shirt, pant,
shorts, tank) of different topologies from VTO-dataset [23].
The results shown in Fig. 7 show that despite being trained
only on tops and skirts GenSim generalized well on un-
seen garments. We show qualitative comparison with VTO-
COLL [23] in Fig.8. Refer, to supplementary material for
additional results and comparison.

On random YouTube video: We show results of
GenSim draping unseen garments (pants, shorts, dress, and
tank) on unseen body shapes and poses in a frame of random
YouTube video in Fig. 9. We use PARE [11] to estimate the
body shape and pose of humans from the image.

Figure 7. Generalization on Unseen Garment Types.

Figure 8. Comparison with [23]. VTOCOLL [23] is a self-
supervised method and trained and tested on the same dress tem-
plate, whereas GenSim which is an unsupervised method never
seen dress during training, generalizes well on unseen garment
dress, and produces physically plausible simulations.

4.3. Implementation Details
We have implemented our method using PyTorch [1].

We use PointNet [20] for our geometry encoders, the
node and the edge feature encoders are MLPs. We train
GenSim using adam optimizer for 30 epochs with an ini-
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Figure 9. Draping unseen garment types (pants, shorts, dress and
tank) on unseen persons in a random YouTube video frame.

tial learning rate 0.0001 and reduce it by a factor of 10
at 20th epoch. We set γ1 = γ3 = γ4 = γ6 = 1e2,
γ2 = γ5 = 1.0, ϵ = −0.5 and ϵcoll = 0.003. The model
size of GenSim is ∼ 1MB. GenSim takes on average
∼ 0.9 secs [0.6(ARAP)+ 0.3(PEN)] for inferring a 3000
vertices skirt as compared to on average 5 minutes taken
by a physics based simulator ArcSim [16], similar time of
ArcSim also reported in [2]. The simulation of a garment
on a static body pose is invariant to the global body rotation
and position. Hence we first front align the target body pose
with respect to the template body pose (T-pose) by remov-
ing any global rotation and translation w.r.t the T-pose body
root joint. Refer to supplementary for details.

4.4. Ablation Study

Losses Justification: It is well understood that Laplacian
and the bending losses are important for maintaining the
quality of garment surfaces. We study the effect of poten-
tial energy loss, pin loss and restrain loss. We train three
variants of PEN on a small subset of 10 random sequences
of a short skirt. V1:(ℓpe+ℓben+ℓsm), this variant is trained
with potential energy loss (ℓpe), Laplacian smoothing loss
(ℓsm), and bending loss (ℓben), V2: in addition to all the
losses of V1 we add the pin loss (ℓpin), and in V3:, we add
restrain loss ((ℓstr) to the V2 losses. We can observe in Fig.
10, in the V1 version, since the gravitation force was the
only force acting on the vertices it leads to the fall down of
the garment. The V2 version holds the garment with the pin
vertices, however, the dominating gravitation energy pulls
the vertices downwards which results in arbitrary elonga-
tion of the edges. The third version V3 with additional re-
strain loss, restrict edges to elongate arbitrarily due to the
influence of the gravitation force. This demonstrates, all the
losses described in the Sec.3.3 are important and necessary
to train PEN in an unsupervised manner.
PEN output vs ARAP deformed garment: To demon-
strate that PEN adds meaningful displacements to the
ARAP deformed garment G to make it physically plausi-
ble, we show a displacement magnitude map in Fig. 11.
The garment and the underlying body shape and pose are
the same as Fig. 2. The maximum displacement magnitude
produced by the PEN is 75mm. We can observe PEN pre-
dicts the high magnitude of displacement for the vertices
where the garment needs to displace due to the gravita-
tional force, and where it falls on the body surface its mag-
nitude becomes almost close to zero. Also, while producing

Figure 10. Ablation study on loss terms.

the displacements for each vertex, PEN maintains the cloth
quality. We show the rendered normal map of the template
garment and the predicted garment in Fig. 12.

0 75mm

Figure 11. Displacement Magnitude Map: Per vertex magnitude
of displacement produced by the PEN. Refer to Sec. 4.4 for details

.

Figure 12. Normal Map of the Template Garment (top row) and
the predicted garment (bottom row). Refer to Sec. 4.4 for details.

5. Conclusion, Limitations and Future Work
We present the first unsupervised and generic garment

simulator GenSim that can simultaneously be trained for
multiple types of garments and generalize to the unseen
types of garments of varying sizes, and topologies. Our
Motion-aware ARAP initially does a rough alignment of the
template garment on the target body pose while avoiding
collisions with the body. Then the Physics Enforcing Net-
work adds the correction to the ARAP-deformed garment
using unsupervised losses to make it physically plausible.
Our results demonstrate generalization on unseen garments,
body shapes, and poses. However GenSim has one limi-
tation it doesn’t produce temporally consistent garment de-
formation as the training does not use temporal information.
Though there are no significant garment-garment collisions
in our results, since we don’t explicitly model it, we men-
tion this as another limitation of our method. We intend to
overcome the above limitations in the future along with han-
dling layered garments, and garments such as open shirts,
jackets etc.
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