
Unbiased 4D: Monocular 4D Reconstruction with a Neural Deformation Model
– Supplemental Document –

Erik C.M. Johnson, Marc Habermann, Soshi Shimada, Vladislav Golyanik, Christian Theobalt
Max Planck Institute for Informatics, Saarbrücken, Germany

ecmjohnson@gmail.com, {mhaberma, sshimada, golyanik, theobalt}@mpi-inf.mpg.de

In this supplementary material, we present additional re-
sults in Section 1 and implementation details in Section 2.
Section 3 provides a derivation of the discrete opacity equa-
tion for bent rays and Section 4 shows the unbiased nature
of our rendering method. We provide a description of the
metrics used in our quantitative analysis in Section 5. Ad-
ditional details on the experiments performed are given in
Section 6, including how we compute the geometric prox-
ies for our human character scenes from the input images in
Section 6.8. Section 7 investigates the necessary accuracy
and resolution of the geometric proxies. Section 8 analyzes
the learned latent codes and demonstrates novel geometry
synthesis. Finally, we discuss some additional limitations
in Section 9.

1. Additional Results
Figures 1 and 2 show additional results for our synthetic

sequences: i.e., Cactus and RootTrans, respectively. We
include a qualitative visualization of the output’s Chamfer
distance to the ground truth where dark blue is zero and
red is above the mid-point between the mean and the max-
imum, both taken over the entire sequence. Note that over-
all our reconstructed surface has a very low error and only
a small region was not precisely reconstructed. Similar to
many monocular reconstruction methods, the majority of
our higher error regions are due to the monocular depth am-
biguity (rows 1 and 3 in Figure 1; and row 4 in Figure 2).
For further results, we also direct the reader to the video.

2. Implementation Details
We base our implementation on the codebase of

Wang et al. [19], which is implemented in PyTorch [10].
Our method consists of 3 Multi-Layer Perceptron (MLP)
networks: Bending, SDF, and Rendering. We provide a di-
agram showing the networks in Figure 3 and give additional
details in Table 1. We also configure the starting weights of
SDF using the geometric initialization method of Atzmon
and Lipman [2].

At the start of training we follow Tretschk et al. [17] and
initialize the latent codes with zeros. For each iteration dur-
ing training, we select 512 pixels uniformly over the image

Figure 1. Additional results for our Cactus sequence. We include
error coloring where blue is low error and red is high error, relative
to the entire sequence.

for which to fire rays. We sample 64 positions along each
straight ray, jitter these samples, and then importance sam-
ple 64 additional positions based on the Signed Distance
Field (SDF) values.

Network Activation Weight Normalization
Bending ReLU No

SDF SoftPlus (β = 100) Yes
Rendering ReLU Yes

Table 1. Network parameters used in our implementation.

3. Derivation of the Discrete Opacity α
(z)
i

Equation for Bent Rays
In this section we show that the derivation of discrete

opacity α
(z)
i (Section 3.2) follows from volume rendering

1

Figure 2. Additional results for our RootTrans sequence. We in-
clude error coloring where blue is low error and red is high error,
relative to the entire sequence.

Figure 3. Network diagram of our method. PE denotes Positional
Encoding [9] with the given number of additional frequencies.
The addition node performs element-wise addition while the plus
blocks represent vector concatenation.

principles and the definition of the opaque density ρi(r̃(t))
(Section 3.2, Equation 3). This analysis is similar to that in
the Appendix A of Wang et al. [19], where we extend their
derivation to any smooth parametric path.

Before beginning, we remind the reader that we render
along bent rays, which are parametric paths in R3:

r̃i(t) = r(t) + bi
(
r(t)

)
, r(t) = o+ td (1)

We direct the reader to Section 3.1 for the definition of these
terms. At each point on the bent ray there is an instanta-
neous viewing direction dr̃i(t)

dt which can be computed an-
alytically as:

dr̃i(t)
dt = d

dt

[
r(t)

]
+ d

dt

[
bi(r(t))

]
(2)

= d+
∂bi
∂r(t)

d
dt

[
r(t)

]
(3)

= d+
∂bi
∂r(t)

d (4)

where ∂bi

∂r(t) is the Jacobian of the bending network w.r.t.
its input r(t), a point along the straight ray. Note that, in
our case, the Jacobian exists everywhere since the bending
network is an MLP; thus our bent ray is a smooth parametric
path.

In Section 3.2, we define the opaque density as:

ρi(r̃i(t)) = max

{
−dΦs

dt

(
f(r̃i(t))

)
Φs

(
f(r̃i(t))

) , 0

}
(5)

where Φs is the Cumulative Distribution Function (CDF)
of the logistic distribution. In order to proceed, we must
expand the numerator through the chain rule:

dΦs

dt

(
f(r̃i(t))

)
= ϕs

(
f(r̃i(t))

)
d
dt

(
f(r̃i(t)

)
(6)

= ϕs

(
f(r̃i(t))

)[
∇f(r̃i(t)) · dr̃i(t)

dt

]
(7)

where ϕs is the Probability Density Function (PDF) of the
logistic distribution. There is no need to expand the instan-
taneous viewing direction now that we have demonstrated
its smoothness.

Placing Equation 7 into Equation 5, gives:

ρi(r̃i(t)) = (8)

max

{
−

ϕs

(
f(r̃i(t))

)[
∇f(r̃i(t)) · dr̃i(t)

dt

]
Φs

(
f(r̃i(t))

) , 0

}
(9)

There are two regions of interest identified in Appendix A
of NeuS [19]: a ray entering geometry and a ray exiting
geometry.

We first present the case where a ray is entering the ge-
ometry as depicted in Figure 4. Since we know that in this
case:

∇f(r̃i(t)) · dr̃i(t)
dt < 0 (10)

and that both ϕs and Φs are non-negative, we can drop the
maximum in the opaque density and return the numerator to
its more condensed form:

ρi(r̃i(t)) =
−ϕs

(
f(r̃i(t))

)[
∇f(r̃i(t)) · dr̃i(t)

dt

]
Φs

(
f(r̃i(t))

) (11)

=
−dΦs

dt

(
f(r̃i(t))

)
Φs

(
f(r̃i(t))

) (12)

2

Figure 4. Graphical depiction of a bent ray (traveling left to right)
entering an SDF surface. Note that the instantaneous viewing di-
rection and gradient of the SDF must have a negative dot product
for the bent ray to be entering the geometry.

The remaining derivation for the discrete opacity α
(z)
i fol-

lows exactly as in Appendix A of NeuS [19]:

α
(z)
i = 1− exp

−
∫ t(z+1)

t(z)
ρ(t)dt

= 1− exp

−
∫ t(z+1)

t(z)

−dΦs

dt

(
f(r̃i(t))

)
Φs

(
f(r̃i(t))

) dt

= 1− exp

(
ln
[
Φs

(
f(r̃i(t

(z+1))
)]

− ln
[
Φs

(
f(r̃i(t

(z))
)])

= 1−
Φs

(
f(r̃i(t

(z+1))
)

Φs

(
f(r̃i(t(z))

)
=

Φs

(
f(r̃i(t

(z))
)
− Φs

(
f(r̃i(t

(z+1))
)

Φs

(
f(r̃i(t(z))

)
Note that Equation 13 is non-negative (∵ f(r̃i(t

(z)) >
f(r̃i(t

(z+1)) and Φs is non-negative and monotonically in-
creasing) and as such is equivalent to a maximum with zero.

The second case to consider is where a ray is exiting the
geometry as depicted in Figure 5. Given that:

∇f(r̃i(t)) · dr̃i(t)
dt > 0 (13)

and that both ϕs and Φs are non-negative, Equation 5 gives
that ρi(r̃i(t)) = 0. Thus the discrete opacity α

(z)
i is:

α
(z)
i = 1− exp

−
∫ t(z+1)

t(z)
ρ(t) dt

 (14)

= 1− exp

−
∫ t(z+1)

t(z)
0 dt

 (15)

= 0 (16)

Since Equation 13 will be non-positive when exiting the
geometry (∵ f(r̃i(t

(z+1)) > f(r̃i(t
(z)) and Φs is non-

negative and monotonically increasing), we can write the

Figure 5. Graphical depiction of a bent ray (traveling left to right)
exiting an SDF surface. Note that the instantaneous viewing direc-
tion and gradient of the SDF must have a positive dot product for
the bent ray to be exiting the geometry.

derived equation for α(z)
i satisfying both cases as:

α
(z)
i = (17)

max

{
Φs

(
f
(
r̃i(t

(z))
))

− Φs

(
f
(
r̃i(t

(z+1))
))

Φs

(
f
(
r̃i(t(z))

)) , 0

}
(18)

4. Unbiased Nature of our Rendering Method

In this section, we show that our rendering method is
unbiased with respect to the surface of the object, i.e.
f
(
r̃i(t)

)
= 0, given that s becomes sufficiently small. This

demonstration follows a similar progression to that in the
Appendix B of Wang et al. [19]. We assume two theoretical
properties: that f is an SDF and that dr̃i(t)

dt is never the zero
vector. Both of these properties are enforced by penalizers
in our method (i.e. the Eikonal and divergence regulariz-
ers respectively), but are not strictly guaranteed. Specifi-
cally, the dr̃i(t)

dt ̸= 0 property follows from a divergence-
free bending network since this prevents the compression
of space necessary to give a stationary ray.

From Figure 4, it can be seen that for a smooth para-
metric path to intersect the surface, there must be a finite
region t ∈ (tl, tr) such that ∇f

(
r̃i(t)

)
· dr̃i(t)

dt < 0. We can
re-write the weight as:

ω(r̃i, t) = T (r̃i, t) ρ(r̃i(t))

= exp

(
−
∫ t

0
ρ(r̃i(τ)) dτ

)
ρ(r̃i(t))

= exp

(
−
∫ tl

0
ρ(r̃i(τ)) dτ

)
exp

(
−
∫ t

tl

ρ(r̃i(τ)) dτ

)
ρ(r̃i(t))

= T (r̃i, tl) exp
(
ln
[
Φs
(
f(r̃i(t))

)]
− ln

[
Φs
(
f(r̃i(tl)

)])
ρ(r̃i(t))

= T (r̃i, tl)�
����

Φs
(
f(r̃i(t))

)
Φs
(
f(r̃i(tl))

)
[
−∇f(r̃i(t)) · dr̃i(t)

dt

]
ϕs
(
f(r̃i(t))

)
�����
Φs
(
f(r̃i(t))

)
∴ ω(r̃i, t) =

T (r̃i, tl)

Φs
(
f(r̃i(tl))

)︸ ︷︷ ︸
constant w.r.t. t

[
−∇f(r̃i(t)) · dr̃i(t)

dt

]
ϕs
(
f(r̃i(t))

)
︸ ︷︷ ︸

F (t)

.

3

Then we can establish that for:

F (t) =
[
−∇f(r̃i(t)) · dr̃i(t)

dt

]
︸ ︷︷ ︸

G(t)

ϕs

(
f(r̃i(t))

)
, (19)

∃s > 0 such that F (t) is maximized by f(r̃i(t
∗)) = 0,

t∗ ∈ (tl, tr). Consider another value t† ∈ (tl, tr), t† ̸= t∗

where G(t†) = 1 is maximum and G(t∗) = ϵ is minimum
for some necessarily non-zero value ϵ. This corresponds to
the worst case for the unbiasedness since 0 < G(t) ≤ 1,
∀t ∈ (tl, tr). Then:

G(t∗)ϕs

(
f(r̃i(t

∗))
) ?
> G(t†)ϕs

(
f(r̃i(t

†))
)

(20)

ϕs(0)

ϕs

(
f(r̃i(t†))

) ?
>

G(t†)

G(t∗)
=

1

ϵ
. (21)

Taking the limit of the left-hand side of Equation (21) as s
approaches 0 and using the definition of the logistic PDF
ϕs:

lim
s→0

ϕs(0)

ϕs

(
f(r̃i(t†))

) (22)

= lim
s→0

exp
(

f(r̃i(t
†))

s

)
4

(
1 + exp

(
− f(r̃i(t†))

s

))2 (23)

= ∞ . (24)

Thus, for every possible ϵ, ∃s > 0 such that:

ϕs(0)

ϕs

(
f(r̃i(t†))

) >
1

ϵ
, (25)

which implies F (t∗) > F (t†), ∀t† ∈ (tl, tr), t
† ̸= t∗. □

5. Quantitative Metrics
This section presents the quantitative metrics used in our

paper in detail. We use the Chamfer Distance (CD) as de-
fined below:

CD(E,G) = E2G(E,G) + G2E(E,G)

=
1

|E|
∑
x⃗∈E

min
y⃗∈G

||x⃗− y⃗||22

+
1

|G|
∑
y⃗∈G

min
x⃗∈E

||y⃗ − x⃗||22

(26)

where E is the estimated mesh and G is the ground truth
mesh. In addition, we also report the unidirectional parts
shown above individually due to the difference in methods
to which we compare:

E2G(E,G) =
1

|E|
∑
x⃗∈E

min
y⃗∈G

||x⃗− y⃗||22, (27)

G2E(E,G) =
1

|G|
∑
y⃗∈G

min
x⃗∈E

||y⃗ − x⃗||22. (28)

As mentioned in the paper, the CD metric is not always
fair for each method which is why we also report the E2G
and G2E values separately. The E2G metric is unfair for the
novel view synthesis methods, that is NR-NeRF [17] and D-
NeRF [13]. This is because we must select a region in which
to employ marching cubes for generating geometry and this
selection affects the E2G metric. The G2E metric is unfair
for N-NRSfM [16] since this method only reconstructs the
visible surface of the object.

6. Experimental Details
We present hyperparameters and additional details for

the experiments with respect to our method and previous
works. Sections 6.1, 6.4, 6.6, and 6.7 give the experimen-
tal details for Ub4D, LASR, DDD, and N-NRSfM, respec-
tively. As a reminder, the datasets used are summarized in
Table 2.

6.1. Ub4D

The hyperparameter settings for the experiments pre-
sented are contained in Table 3. Our loss weights are all
relative to the colour weight:

L = LCOL + ωSEGLSEG + ωEIKLEIK + ωNBRLNBR

+ ωDIVLDIV + ωFLOLFLO
(29)

Additionally, for the RealCactus experiment we use con-
stant ωNBR and ωDIV weights, rather than the 1

100 factor ex-
ponentially increasing schedule of Tretschk et al. [17].

We give the time to apply marching cubes over the scene,
which is independent of scene, in Table 4. This is given
without applying frustum culling since that is an insignif-
icant portion of the total runtime and is scene and region
dependent.

6.2. NR-NeRF [17]

We run NR-NeRF [17] in the manner shown in their
code1. We use the default parameters provided by the au-
thors and sweep the threshold to find the threshold giving
minimal metric (5 for the Cactus scene and 10 for the Root-
Trans scene). We cannot fairly consider the estimate to
ground truth metric since NR-NeRF produces surface cross-
ings throughout the volume, thus we crop the total volume
to a slightly (10%) expanded bounding box of the ground
truth.

6.3. D-NeRF [13]

We run D-NeRF [13] in the manner shown in their code2.
We use the default parameters provided by the authors and
sweep the threshold to find the threshold giving minimal

1https://github.com/facebookresearch/nonrigid_
nerf

2https://github.com/albertpumarola/D-NeRF

4

https://github.com/facebookresearch/nonrigid_nerf
https://github.com/facebookresearch/nonrigid_nerf
https://github.com/albertpumarola/D-NeRF

Name Creation Frames Resolution Geometric Proxies? GT?
Cactus Blender [5] 150 1024×1024 Yes (decimated GT) Yes

RootTrans Blender [5] 150 1024×1024 Yes (SMPL [11]) Yes
Lego Blender [5] 150 800×800 No No

Humanoid Real World 171 960×1280 Yes (SMPL [11]) No
RealCactus Real World 150 1080×1920 No No

Table 2. Summary of the datasets introduced in this work. GT indicates access to ground truth geometry in the form of per-frame meshes.
Synthetic scenes are above the dashed line, real-world captures below.

Scene Iterations (1000) Training (hours) ωSEG ωEIK ωNBR ωDIV ωFLO λ1 λ2

Cactus 300 17.0 1.0 0.5 20000 200 10 700 75
RootTrans 450 26.4 1.0 0.5 20000 200 10 700 75

Lego 450 19.9 0.75 0.25 10000 100 0 - -
RealCactus 450 22.1 1.5 0.75 15000† 50† 0 - -
Humanoid 450 21.5 1.25 0.25 50000 200 10 700 75

Table 3. Hyperparameters used in acquiring results presented. † indicates a constant weight without the increasing schedule of
Tretschk et al. [17].

Resolution March Time
(seconds) (hours)

64 14 0.00
128 69 0.02
256 536 0.15
512 4224 1.17

1024 34.99×106 18.32

Table 4. Time required to march geometry (without frustum
culling).

metric (400 for the Cactus scene and 400 for the RootTrans
scene). Note that D-NeRF has failed to produce reasonable
geometry for the RootTrans scene, which we hypothesize
is due to the large camera motion. We cannot fairly con-
sider the estimate to ground truth metric for the same rea-
son discussed for D-NeRF in Section 6.3. The same region
cropping to a slightly (10%) expanded bounding box of the
ground truth.

Note that it appears that D-NeRF [13] has failed for the
RootTrans scene. We also try different thresholds (specifi-
cally, 40 which is the default in the D-NeRF code) and run
the scene 6 times: 3 of these produce no geometry at all
for all tried thresholds while 3 produce some geometry not
accurately representing the RootTrans scene.

6.4. LASR [20]

We run LASR [20] in the manner shown in their code3.
We progressively increase the number of bones and faces in
a coarse-to-fine manner following the configurations pro-
vided. This progression is shown in Table 5. For the Root-
Trans sequence, we use a slightly modified version of the
code. This was to prevent a complete failure case where
bone re-initialization without CNN re-initialization results
in the mesh entering a local minimum that no longer repro-
jects on the image. This code modification was made with
the assistance of the lead author of LASR [20].

Step Bones Faces Hypotheses Epochs
r1 21 1280 16 20
r2 26 1600 1 10
r3 31 1920 1 10
r4 31 2240 1 10
r5 36 2560 1 10

final 36 2880 1 10

Table 5. A subset of parameters used when running LASR [20].

6.5. ViSER [21]

We run ViSER [21] in the manner shown in their code4.
For the initialization phase, we use the frames ranges shown

3https://github.com/google/lasr
4https://github.com/gengshan-y/viser-release

5

https://github.com/google/lasr
https://github.com/gengshan-y/viser-release

in Table 6. The selection of these frame ranges was done in
accordance with the guidance that "the viewpoint coverage
is large enough" [21].

Dataset Start frame End frame
Cactus 10 40

RootTrans 10 40

Table 6. Frame ranges used for initialization when running
ViSER [21].

6.6. Direct, Dense, Deformable [22]

We run the method of Yu et al. [22] in the manner shown
in their code5. We empirically explored a set of values and
found those of Table 7 to perform best when comparing re-
sults after rigid alignment with ICP [3] to the ground truth.

Parameter Value
Photometric weight 1

ARAP weight 20

Table 7. A subset of parameters used when running the method of
Yu et al. [22]. If not mentioned otherwise, we use the parameters
as proposed in the original code.

6.7. Neural Non-Rigid Structure-from-Motion
(NRSfM) [16]

We run Neural NRSfM in the manner shown in their
code6. In order to acquire the Multi-Frame Optical Flow
(MFOF) W matrix used as input by this implementation,
we use the Matlab [7] code of Ansari et al. [1]. Addition-
ally, this implementation requires input in a specific format
which is computed using proprietary code provided by the
authors. The loss function weights used are given in Ta-
ble 8.

Parameter Value
β 1

γ 1× 10−4

η 1

λ 0

Table 8. A subset of parameters used when running the method
of [16].

5https://github.com/cvfish/PangaeaTracking
6http://vcai.mpi-inf.mpg.de/projects/Neural_

NRSfM/

6.8. Human Geometry Proxy

To generate the proxy geometry for our human charac-
ter sequences (i.e. the RootTrans synthetic sequence and
the Humanoid real-world sequence), we employ SMPLify-
X [11] to obtain the root orientation and joint angles of
SMPLX [11] human mesh model from the input image se-
quence. We then solve the 2D reprojection based optimiza-
tion L2D to obtain the 3D root translation of the human
mesh:

L2D =
1

K

K∑
k=1

∥∥Π(Xk)− pk
∥∥2
2
, (30)

where Π(·) and K represents the perspective projection op-
erator and the number of joints, respectively. Xk and pk
denotes the kth 3D joint keypoint obtained from [11], and
pseudo GT 2D joint keypoints obtained from OpenPose [4].
To solve the optimization, we use Adam [6] optimizer with
the camera intrinsics estimated by COLMAP [14], [15], and
use a fixed height for the human model of 180 cm. Finally,
we transform the vertices using the estimated camera ex-
trinsics to place the model in world space.

7. Geometric Proxy Resolution Ablation
While our experiments have used a complete SMPLX

model [11] for the RootTrans scene as described in Sec-
tion 6.8, we have identified that the geometric proxy could
be reduced further. This is shown by the use of only a 12
vertex skeleton for the Humanoid scene. A proxy that sum-
marizes the motion of the scene by coarsely tracking the
extremities would be sufficient. This could allow the use
of skeleton tracking systems (e.g. [8]) rather than methods
with dense mesh output like SMPLify-X [11]. We validate
this possible approach in Figure 6 by reducing the SMPLX
mesh to just 7 vertices (one on each extremity, two on the
body, and one on the head). This 7 vertex proxy is suffi-
cient to constrain Ub4D to produce a single canonical copy,
rather than the multiple copies when no proxy is supplied
(see Figure 5(b) in the main paper).

8. Per-Frame Latent Code Analysis and Novel
Geometry Synthesis

In Ub4D, the entirety of the model’s understanding of
time is encoded into a per-frame latent code provided to the
bending network. Initializing these latent codes with ze-
ros gives our latent space a valuable property: a smooth,
semantically meaningful latent representation. Demonstrat-
ing such a latent representation allows us to interpolate la-
tent codes for certain applications, e.g. temporal super-
resolution. It also opens the door for employing such
deformation models using latent codes to analyze motion
(e.g. periodicity detection, metrically comparing deforma-
tion states).

6

https://github.com/cvfish/PangaeaTracking
http://vcai.mpi-inf.mpg.de/projects/Neural_NRSfM/
http://vcai.mpi-inf.mpg.de/projects/Neural_NRSfM/

Figure 6. Comparison of the scene flow loss with full SMPL proxy
(10.4k vertices) and just seven vertices from the SMPL proxy.

To validate the semantic meaning of our latent represen-
tation we perform PCA [12] on the 64 dimensional learned
latent codes. The results are shown in Figure 7. Note that
even though the latent space is never directly constrained in
Ub4D, neighbouring frames (i.e. similar colors in Figure 7)
tend to be nearby.

Figure 7. 2D PCA of learned 64D latent codes for the RootTrans,
Cactus, Lego, and Humanoid scenes. The first two principal com-
ponents explain 38%, 32%, 25%, and 24% of the variance, respec-
tively. The colors correspond to frames. Note how similar colors
are nearby.

We wish to compare against the standard latent code ini-
tialization approach: random Gaussian initialization. How-
ever, the same concept of performing PCA [12] does not
suffice. This is because PCA uses directions of maximum
variance and randomly initialized latent codes could struc-
ture themselves “inside” of the variance. While a more

complex dimensional reduction technique (e.g. t-SNE [18])
could yield results, a failure to visualize a meaningful struc-
ture would not definitively show that such a structure does
not exist. Therefore, we use a reduced latent code dimen-
sion allowing visualization without dimensional projection.

Taking the Cactus scene, we train using 2D latent
codes: once initializing with zeroes as proposed in
Tretschk et al. [17] and once initializing with random Gaus-
sian samples. We show the resulting learned latent codes in
Figure 8. Note how spatially coherent the zero-initialized
latent codes become during training, whereas the random
Gaussian initialized latent codes do not have this property.
Observing the particular structure of the zero-initialized
case and slight clustering of similar frames in the ran-
dom Gaussian initialization, one could imagine these latent
codes as charged molecules, with similar states attracting
and differing states repelling, resulting in a particular fold.

Figure 8. Learned 2D latent codes for the Cactus scene showing
the latent code provided to the network without any dimensional
projection. We initialize with zeroes on the left and random Gaus-
sian samples on the right. The colors correspond to frames. Note
how similar colors are nearby for zero-initialized latent codes,
whereas the random Gaussian initialization does not give rise to
such a property (although some local structuring is interesting).

Some applications require semantically meaningful la-
tent codes which we have demonstrated in the analysis
above. This allows us to generate entirely new geometries
by providing novel latent codes. Figure 9 shows samples
of a novel latent path for the 2D latent codes from the left-
hand side of Figure 8 (see webpage or video for a better
visualization). A further investigation is required into the
ability to generate new geometries from novel latent codes,
particularly when using higher dimensional latent codes or
exceeding the convex hull of the observations.

9. Additional Limitations
One limitation of Ub4D is that errors in the geometric

proxy can increase the Chamfer distance of our reconstruc-
tion. Our scene flow loss is designed such that it does not re-
quire highly accurate correspondences to allow us to handle
large deformations and prevent multiple canonical copies;
however, we still inherit errors from the geometric proxy.

7

Figure 9. Synthesizing entirely new geometries with novel latent
codes. Red dot in latent space plot shows the provided latent code
while grey dots show the original sequence. Note the smoothness
and plausibility of the deformation.

Figure 10 illustrates this for a geometric proxy that is offset
from the ground truth which results in the region with a high
error on our reconstruction. Note that our method results in
a decreased Chamfer distance for this frame compared to
the geometric proxy (0.76 vs 0.92).

Another limitation is that acquiring a geometric proxy
may limit application if results without the scene flow loss
are not satisfactory. Figure 11 shows one example of a com-
mon issue encountered without the scene flow loss. In this
case, an additional appendage is used to satisfy the recon-
struction losses while not grossly violating the other regu-
larizers of our method.

Figure 10. Impact of a significant geometric proxy error. Red
regions have a higher Chamfer distance to the ground truth.

References
[1] Mohammad D. Ansari, Vladislav Golyanik, and Didier

Stricker. Scalable dense monocular surface reconstruction.
In International Conference on 3D Vision (3DV), 2017. 6

[2] Matan Atzmon and Yaron Lipman. Sal: Sign agnostic learn-
ing of shapes from raw data. In Computer Vision and Pattern
Recognition (CVPR), 2020. 1

[3] Paul J. Besl and Neil D. McKay. Method for registration
of 3-d shapes. In Sensor fusion IV: Control Paradigms and
Data Structures, 1992. 6

[4] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A.
Sheikh. Openpose: Realtime multi-person 2d pose estima-

Figure 11. Example of our method without the scene flow loss
using an additional appendage to satisfy the reconstruction losses.

tion using part affinity fields. Transactions on Pattern Anal-
ysis and Machine Intelligence (TPAMI), 2019. 6

[5] Blender Online Community. Blender - a 3D modelling and
rendering package. Blender Foundation, 2018. 5

[6] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann LeCun,
editors, International Conference on Learning Representa-
tions, ICLR, 2015. 6

[7] MATLAB. R2020a. The MathWorks Inc., Natick, Mas-
sachusetts, 2010. 6

[8] Dushyant Mehta, Srinath Sridhar, Oleksandr Sotnychenko,
Helge Rhodin, Mohammad Shafiei, Hans-Peter Seidel,
Weipeng Xu, Dan Casas, and Christian Theobalt. Vnect:
Real-time 3d human pose estimation with a single rgb cam-
era. In ACM Transactions on Graphics (TOG), 2017. 6

[9] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view
synthesis. In European Conference on Computer Vision
(ECCV), 2020. 2

[10] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Mar-
tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Py-
torch: An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2019. 1

[11] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani,
Timo Bolkart, Ahmed A. A. Osman, Dimitrios Tzionas, and
Michael J. Black. Expressive body capture: 3d hands, face,
and body from a single image. In Computer Vision and Pat-
tern Recognition (CVPR), 2019. 5, 6

[12] Karl Pearson. Liii. on lines and planes of closest fit to
systems of points in space. In The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science,
1901. 7

8

[13] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and
Francesc Moreno-Noguer. D-NeRF: Neural Radiance Fields
for Dynamic Scenes. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2020.
4, 5

[14] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Computer Vision and
Pattern Recognition (CVPR), 2016. 6

[15] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys,
and Jan-Michael Frahm. Pixelwise view selection for un-
structured multi-view stereo. In European Conference on
Computer Vision (ECCV), 2016. 6

[16] Vikramjit Sidhu, Edgar Tretschk, Vladislav Golyanik, Anto-
nio Agudo, and Christian Theobalt. Neural dense non-rigid
structure from motion with latent space constraints. In Eu-
ropean Conference on Computer Vision (ECCV), 2020. 4,
6

[17] Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael
Zollhöfer, Christoph Lassner, and Christian Theobalt. Non-
rigid neural radiance fields: Reconstruction and novel view
synthesis of a dynamic scene from monocular video. In In-
ternational Conference on Computer Vision (ICCV), 2021.
1, 4, 5, 7

[18] Laurens Van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. In Journal of Machine Learning Research
(JMLR), 2008. 7

[19] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. Neus: Learning neural im-
plicit surfaces by volume rendering for multi-view recon-
struction. In Advances in Neural Information Processing
Systems (NeurIPS), 2021. 1, 2, 3

[20] Gengshan Yang, Deqing Sun, Varun Jampani, Daniel Vlasic,
Forrester Cole, Huiwen Chang, Deva Ramanan, William T
Freeman, and Ce Liu. Lasr: Learning articulated shape re-
construction from a monocular video. In Computer Vision
and Pattern Recognition (CVPR), 2021. 5

[21] Gengshan Yang, Deqing Sun, Varun Jampani, Daniel Vlasic,
Forrester Cole, Ce Liu, and Deva Ramanan. Viser: Video-
specific surface embeddings for articulated 3d shape recon-
struction. In Advances in Neural Information Processing
Systems (NeurIPS), 2021. 5, 6

[22] Rui Yu, Chris Russell, Neill DF Campbell, and Lourdes
Agapito. Direct, dense, and deformable: Template-based
non-rigid 3d reconstruction from rgb video. In International
Conference on Computer Vision (ICCV), 2015. 6

9

	. Additional Results
	. Implementation Details
	. Derivation of the Discrete Opacity i(z) Equation for Bent Rays
	. Unbiased Nature of our Rendering Method
	. Quantitative Metrics
	. Experimental Details
	. Ub4D
	. NR-NeRF Tretschk2020
	. D-NeRF pumarola2020dnerf
	. LASR yang2021lasr
	. ViSER yang2021viser
	. Direct, Dense, Deformable yu2015direct
	. Neural nrsfm sidhu2020neural
	. Human Geometry Proxy

	. Geometric Proxy Resolution Ablation
	. Per-Frame Latent Code Analysis and Novel Geometry Synthesis
	. Additional Limitations

