
CAMM: Building Category-Agnostic and Animatable 3D Models from
Monocular Videos Supplementary Material

Tianshu Kuai Akash Karthikeyan Yash Kant Ashkan Mirzaei Igor Gilitschenski
University of Toronto

A. Summary
In Section B, we present additional details on the

method. Section C provides additional details on the loss
functions and optimization process. In Section D, we show
more experimental results on each dataset. In Section E,
we show examples of learned anchors and their correspond-
ing associations. Section F provides additional discussions
on the proposed two-stage optimization pipeline. Section G
and Section H include the discussions on our method’s limi-
tations and potential negative impact. In Section I, we show
examples of failure cases. In Section J, we provide addi-
tional details on our iiwa dataset. Finally, we provide a list
of the important variables used in the paper along with their
state space and descriptions in Section K.

B. Method Details
B.1. Canonical representation

We use the same canonical appearance, shape and fea-
ture representations as in BANMo [18], where the color
c ∈ R3, the Signed Distance Function (SDF) value v ∈ R,
and the canonical feature ϕ ∈ R16 of a point x ∈ R3 in the
canonical space are given by separate Multi-Layer Percep-
tion (MLP) Networks FC, FS, and Fϕ, respectively:

c = FC(x,d,ψl)

v = FS(x)

ϕ = Fϕ(x), (1)

where d ∈ R2 is the viewing direction and ψl ∈ R64 is
a learnable latent code that captures the environment illu-
mination conditions following [9]. Similar to [13, 19], we
compute the density σ ∈ R in the canonical space as:

σ = Ψβ(v), (2)

where Ψβ is cumulative of a Laplacian distribution with
zero mean and learnable scale β, and v is the value of the
SDF at the point x.

To perform volumetric rendering for the pixel of interest
xt
I ∈ R2 at time t, we first sample N points along the cam-

era ray corresponding to the pixel in deformed space. As

our implicit representations of the shape and appearance are
defined in canonical space, we first transform the sampled
points back to the canonical space [11,18] using the learned
backward kinematics. Let the i-th point along the canoni-
cal space camera ray be xi, and its corresponding color and
density queried from the MLP networks be ci and σi, we
then follow the volumetric rendering process in NeRF [10]
to get the rendered color at the pixel of interest cr as:

cr =

N∑
i=1

Ti(1− exp(−σiδi))ci

Ti = exp

(
−

i−1∑
j=1

σjδj

)
, (3)

where Ti is the accumulated transmittance between the
camera center to the i-th sampled point, δi is the interval
between consecutive sampled points.

B.2. Recovering proper kinematic chain

In this section, we provide additional details on how to
recover a proper and connected kinematic chain after all the
joints in the canonical space are transformed into the de-
formed space using unconstrained transformations.

Given the canonical kinematic chain as P =
{pi | i = 1, . . . , nj}, and the initial optimization stage’s
learned unconstrained anchor transformations T̂t from the
canonical space to the deformed space, we can then apply
T̂t to transform the canonical kinematic chain joints P to
the deformed space as:

P̂t = Ct
na∑
i=1

(wai
T̂t

i)P, (4)

where P̂t = {p̂i | i = 1, . . . , np} is the set of uncon-
strained kinematic chain joints in the deformed space at
time t. These unconstrained joints cannot form a proper
kinematic chain that preserves the hierarchical order of con-
nections and consistent kinematic chain length, because the
unconstrained transformations T̂t are learned without any
knowledge of the kinematic chain. To recover the proper

1



kinematic chain, we follow Algorithm 1 to obtain the re-
vised location of the joints in hierarchical order denoted by
P̃ = {p̃i | i = 1, . . . , nj}. Given the joints’ revised loca-
tions, we can infer the anchors’ revised transformations T̃t

by enforcing pre-defined associations between anchors and
the kinematic chain links in the deformed space.

Algorithm 1 Recovering proper kinematic chain

for j = 1 : nj in hierarchical order do
for pk ∈ Children(pj) do
µ← ∥pk−pj∥2

∥p̂k−p̂j∥2

p̃k = p̃j + µ(p̂k − p̂j)
tk ← p̃k − p̂k

for pd ∈ Descendants(pk) do
p̂d ← p̂d + tk

end for
end for
j ← j + 1

end for

B.3. Additive residuals to kinematic chain

We introduce a learnable additive residual term for
each kinematic chain link during the kinematic chain
optimization stage. Given the canonical kinematic
chain as P = {pi | i = 1, . . . , nj} and its correspond-
ing links as L = {ℓjk = (pj ,pk)}(nj−1), let R =
{ri | i = 1, . . . , (nj − 1)} be the set of learnable residuals.
We clip the residuals to avoid drastic changes on the kine-
matic chain initialization for stable training as:

R̃ = γ tanh(R), (5)

where R̃ = {r̃i | i = 1, . . . , (nj − 1)} are the set of clipped
residuals and γ is a hyper-parameter that ensures the change
of each kinematic chain link’s length is within (−γ,γ).

We update the canonical kinematic chain with the latest
residuals R̃ in each iteration to obtain the updated kinematic
chain P̃ = {p̃i | i = 1, . . . , nj} following Algorithm 2.
Specifically, we start from the root joint of the kinematic
chain and update each link’s length by changing the corre-
sponding joint’s position in a hierarchical manner to ensure
that we do not break the kinematic chain. After the residual
update, we compute the new set of association parameters
for each anchor with respect to the updated kinematic chain
for kinematic chain driven deformations.

C. Additional Implementation Details

In this section, we provide additional details on the loss
functions and optimizations.

Algorithm 2 Kinematic chain update with residuals

for j = 1 : nj in hierarchical order do
for pk ∈ Children(pj) do
µ← ∥pk−pj∥2+r̃k

∥pk−pj∥2

p̃k = p̃j + µ(pk − pj)
tk ← p̃k − pk

for pd ∈ Descendants(pk) do
pd ← pd + tk

end for
end for
j ← j + 1

end for

C.1. Loss functions

Similar to [18], we impose reconstruction losses on the
2D observations, including 2D images, foreground masks,
and optical flow. We follow the volumetric rendering pro-
cess described in B.1 to obtain predicted color and fore-
ground mask values. To render optical flow, we follow [18]
to transform canonical space points to consecutive frames’
deformed spaces, and use the camera projection model to
find their corresponding positions on the 2D image. We
then compute their difference as the optical flow at the point
of interest. The reconstruction losses are formulated in the
same way as in [10, 16–18, 20], where we compute the dif-
ference between the rendered and the actual observations:

Lrecon =
∑
xI

∥or − ogt∥2 , (6)

where or and ogt are the pairs of rendered and ground-
truth 2D observations (2D images, foreground masks, op-
tical flow) at pixels of interest xt

I ∈ R2 at time t.
We apply soft argmax descriptor matching [2, 8, 17, 18]

at the pixel of interest xt
I , to find the most probable corre-

sponding surface point xm ∈ R3 in the canonical space by
matching learned canonical feature embeddings at the ob-
ject’s surface with the pre-trained DINO ViT [1] features.
Let xc ∈ R3 be the point that corresponds to the pixel of
interest xt

I based on backward kinematics. To supervise the
canonical feature embedding, we follow [18] to minimize
the difference between these two points’ positions as:

L3d-match =
∑
xI

∥xm − xc∥22 . (7)

Let πt be the camera project model at time t, we transform
xm from the canonical space to the deformed space using
learned forward kinematics, and use πt to project it to image
coordinates. We follow [5,17,18] to enforce the consistency
at the image coordinate level by minimizing the difference



between the obtained point and xt
I :

L2d-match =
∑
xI

∥∥∥∥∥πt

(
Ct

na∑
i=1

(waiT
t
i)xm

)
− xt

I

∥∥∥∥∥
2

2

. (8)

In addition, we follow [6, 18] to encourage consistency in
terms of learned forward kinematics and backward kine-
matics. Specifically, we transform each point xt

i along the
sampled camera ray in the deformed space to the canonical
space using backward kinematics, and then transform each
point back to the deformed space. We encourage the result-
ing point xt′

i to be at the same position as xt
i:

Ltransform =
∑
i

Ti

∥∥∥xt′

i − xt
i

∥∥∥2
2
, (9)

where xt
i is the original sampled point along the camera

ray, xt′

i is the sampled point that undergoes a backward and
a forward transform, and Ti the accumulated transmittance
between the camera center to the i-th sampled point, which
we use as the weight for individual sampled points.

During the kinematic chain optimization stage, we also
introduce regularization on the anchors and learned trans-
formations by minimizing the differences between the re-
vised anchors based on the kinematic chain and the uncon-
strained anchors from learned unconstrained anchor trans-
formations T̂t

i predicted by FA:

Lanchors =

na∑
i=1

∥∥∥ãi − T̂t
iai

∥∥∥2
2
, (10)

where ãi is the revised anchor based on kinematic chain
constraints and T̂t

i is the unconstrained rigid transformation
from the canonical space to the deformed space given by the
MLP network FA for the canonical space anchor ai.

C.2. Optimizations

Our model is trained using the Adam [3] optimizer with
weight decay on a single RTX 3090 GPU. In the initial op-
timization stage, we use an initial learning rate of 0.0005
and update it using one-cycle policy [12] and cosine anneal-
ing [7]. Inspired by [18], we introduce a separate MLP net-
work after the initial optimization stage that takes in a 3D
point, and outputs a skinning weight residual with respect
to each anchor that adds to the Euclidean distance based
skinning weights before normalization, to obtain smoother
deformed surface. All the MLP networks and learnable pa-
rameters are optimized jointly during training. For the iiwa
dataset, we do not update the kinematic chain link lengths
with additive residuals because iiwa is considered a rigid
robot arm without deformable surface, and its kinematic
chain initialization is generally a single chain that already
captures its articulation modes.

a) Canonical
Representations

b) Re-posed
Objects

Figure 1. Pose manipulation examples. In a) we show the learned
canonical representations of the objects for in-the-wild datasets.
We perform pose manipulations using optimized kinematic chain
and show the reposed kinematic chain and meshes in b).

D. Additional Results

D.1. More qualitative results

We test on in-the-wild monocular captures of various de-
formable and articulated objects [18]. We use off-the-shelf
pre-trained models to obtain foreground masks [4], initial
root pose estimation [18] and optical flow [15] for each
frame of the in-the-wild dataset videos. We show manual
pose manipulation results in Figure 1, and 3D surface re-
construction results in Figure 2 for in-the-wild datasets.

We also include video examples of manual pose manip-
ulations by re-posing the kinematic chain, and the 3D re-
construction results for poses in training videos for each
dataset. Please refer to the videos in the supplementary ma-
terial for better visualization.

D.2. More quantitative results

We report quantitative 3D surface reconstruction results
for iiwa (Table 1), Eagle (Table 2), AMA-swing (Table 3),
and AMA-samba (Table 4) evaluated in 3D Chamfer Dis-
tances in centimeters and F-scores at distance thresholds of
1%, 2%, and 5%. Note that for the AMA dataset, we train



a) Images b) Reconstructions c) Kinematic Chains 

Figure 2. 3D surface reconstruction results. In a) we show some
RGB images from the in-the-wild datasets. In b) we show the
reconstructed 3D meshes and in c) we show the corresponding
kinematic chains for the same frame.

Table 1. 3D surface reconstruction results on iiwa dataset eval-
uated in 3D Chamfer Distances (↓) and F-scores (↑) at distance
thresholds of 1%, 2%, and 5% averaged across all frames.

Method CD F@1% F@2% F@5%

5 anchors 7.40 26.76 51.16 79.84
10 anchors 5.52 28.69 56.53 85.61
20 anchors 5.95 28.56 55.17 83.51

with DensePose feat. 5.64 28.85 55.67 85.79
w/o feat. 7.26 25.16 47.33 73.82

w/o kine. chain opt. 5.69 26.90 52.44 81.81

Table 2. 3D surface reconstruction results on Eagle dataset eval-
uated in 3D Chamfer Distances (↓) and F-scores (↑) at distance
thresholds of 1%, 2%, and 5% averaged across all frames.

Method CD F@1% F@2% F@5%

12 anchors 4.51 43.20 81.86 98.88
25 anchors 4.21 43.41 83.38 99.22
50 anchors 4.38 42.21 82.52 98.91

with DensePose feat. 4.31 43.07 82.45 99.11
w/o feat. 4.31 43.51 82.81 98.98

w/o kine. chain opt. 7.44 25.30 57.87 94.40

each model using all the sequences (both swing and samba),
and report results on swing and samba separately.

E. Anchors and Associations

The anchors are optimized to model the modes of the
deformations, and the skinning weights are optimized w.r.t.
anchors. By enforcing deterministic associations between
the anchors and the kinematic chain, the transformations

Table 3. 3D surface reconstruction results on AMA-swing eval-
uated in 3D Chamfer Distances (↓) and F-scores (↑) at distance
thresholds of 1%, 2%, and 5% averaged across all frames.

Method CD F@1% F@2% F@5%

17 anchors 12.41 24.37 45.69 78.10
35 anchors 9.69 29.17 53.29 85.20
70 anchors 12.49 25.62 46.72 77.45

with DensePose feat. 8.96 33.68 58.46 86.49
w/o feat. 9.88 27.60 52.15 84.42

w/o kine. chain opt. 11.13 26.54 48.88 80.69

Table 4. 3D surface reconstruction results on AMA-samba eval-
uated in 3D Chamfer Distances (↓) and F-scores (↑) at distance
thresholds of 1%, 2%, and 5% averaged across all frames.

Method CD F@1% F@2% F@5%

17 anchors 11.76 25.51 49.09 81.52
35 anchors 9.22 29.81 54.20 86.91
70 anchors 11.72 25.74 48.72 80.69

with DensePose feat. 8.34 33.89 60.16 88.66
w/o feat. 9.24 27.06 52.88 87.37

w/o kine. chain opt. 9.80 31.86 55.34 84.69

of anchors can be directly inferred from user-defined kine-
matic chain transformations. Therefore, we can make good
use of optimized anchors and their corresponding skinning
weights, instead of optimizing the skinning weights w.r.t.
kinematic chain joints from scratch. In Figure 3, we show
the learned deformation anchors and their associations to
the kinematic chain links for each dataset. The anchors
move along with the kinematic chain links to keep the asso-
ciation parameters constant at all times to enable re-posings
directly driven by the kinematic chain.

Note that our proposed kinematic chain driven deforma-
tions formulation is capable of modeling twists of a kine-
matic chain link about its axial direction even though our
kinematic chain is defined as connected line segments. An
additional rotation matrix that represents the rotation about
the axial axis of the link is pre-multiplied to rotate the an-
chor around its associated link for twist effects.

F. Necessity of Two-Stage Optimization

Since we do not have access to any shape prior or tem-
plate, building both object’s shape and kinematic chain from
scratch simultaneously is a highly ill-conditioned optimiza-
tion problem given only a collection of monocular videos.
Our proposed two-stage optimization simplifies this prob-
lem by taking advantage of the techniques in the existing
template-free surface reconstruction method [18] to extract
an initial estimate of the 3D shape, which allows us to
use RigNet [14] to extract an initial estimate of the kine-



Figure 3. Anchors and associations. Anchors (white dots around
the kinematic chain) and their corresponding associations (line
segments between anchors and kinematic chain links) for the syn-
thetic and AMA datasets.

matic chain. The two-stage scheme significantly reduces
the search space for the underlying rigid structure of the ob-
ject and makes the optimization much more stable.

As RigNet [14] operates on 3D mesh, it’s possible to
directly apply RigNet to the initial optimization stage re-
sults to obtain an animtable model driven by RigNet’s pre-
dicted skinning weights. However, it would yield three
problems. The first problem is that the skinning weights
predicted by RigNet are based on a static mesh without
any knowledge from the videos (dynamic scenes). These
weights are inaccurate and not optimized for the deforma-
tion modes that occurred in the videos. The second prob-
lem is that RigNet suffers from significantly large memory
consumption and runtime. The author of RigNet recom-
mends users to only predict skinning weights for kinematic
chain joints on low-resolution mesh (≤ 5,000 vertices) on
its code repository [14] to prevent running out of hardware’s
memory and extremely long runtime. Our approach does
not have this bottleneck as we do not rely on the skinning
weights predicted by RigNet. We build the associations be-
tween anchors and the kinematic chain to animate object
meshes regardless of the resolution. The third problem is
that directly using the RigNet initialization combined with
the anchors would lead to poor results. As reported in the
Tables in the main paper and the supplementary material,
we achieve consistent improvements on all datasets with our
proposed kinematic chain optimization stage.

G. Limitations
Input dependencies. In our pipeline, we leverage an off-
the-shelf model [15] to extract optical flow from monocu-
lar videos, and use ground-truth foreground masks from the
datasets for optimizations. For the Eagle and iiwa datasets,
we use the ground-truth root poses, while for the AMA

Case A Case B

Figure 4. Failure case examples. In Case A, the mesh of the
person’s right arm collapses despite the kinematic chain being able
to represent the correct pose. In Case B, the dog’s tail and back
legs are missing due to bad reconstruction.

dataset, we leverage a pre-trained PoseNet [18] for root
pose initializations and jointly optimize them during train-
ing. Therefore, our pipeline’s performance is affected by
the quality of these inputs, and it requires a generic root
pose estimator to enable our pipeline to work on any object
of interest because PoseNet [18] is only suitable for humans
and quadruped animals.
Kinematic chain initialization. We use a category-
agnostic skeleton estimator, RigNet [14], on the initial 3D
mesh estimate of the object to obtain kinematic chain ini-
tialization. However, the underlying structures and articula-
tion modes vary across different object categories, requiring
users to tune a RigNet’s test-time hyper-parameter that con-
trols how dense the joints are distributed within the object’s
mesh. We encourage the users to run RigNet multiple times
on the same initial estimate of the mesh with different test-
time hyper-parameters, and select the kinematic chain that
agrees with the object’s underlying structure and articula-
tion modes the most before optimizing it.

H. Potential Negative Impact
As our approach effectively builds a 3D animatable

model of an object using monocular videos, it can be poten-
tially used for malicious purposes, such as generating fake



a) Images b) Masks c) Meshes

Figure 5. Examples of our iiwa dataset. We show examples of
a) RGB images, b) corresponding foreground masks, and c) cor-
responding ground truth meshes for three randomly picked frames
in the dataset. Note that the meshes are re-scaled for better visual-
ization in the figure.

videos or other formats of illegal content. Since monocu-
lar videos are often easy to acquire in the real world, it is
important to ensure our method is used with prior consent.

I. Failure Cases
We show some example failure cases in Figure 4. In

Case A, the mesh of the person’s right arm collapses at the
pose shown in the figure despite the correct kinematic chain
pose. This is because the deformation anchors are not opti-
mized well to handle the desired pose. In the cases of train-
ing with fast-moving objects and large self-occlusions in
the videos, the reconstruction results sometimes suffer from
significant degradation, as shown in Case B. The dog’s tail
is moving very fast in the training video and often causes
self-occlusions at the back of the dog, making the over-
all optimization much less stable and sometimes converge
to poor results. In such cases, we recommend tuning the
hyper-parameters in training or gathering more videos with
360 degrees captures of the object to make the training more
stable. In general, objects that are moving slowly with 360
degrees captures are usually easier to train.

J. Additional Details on iiwa Dataset
We created a new dataset that contains four video se-

quences of an animated KUKA LBR iiwa robot arm.

The synthetic model of the robot arm is obtained from
BlenderKit. We animate the robot arm in Blender and ren-
der the videos of the robot arm’s motion. Each video con-
tains 400 frames in total. Note that for each frame in the
video sequences, the camera pose, foreground mask, and
3D mesh of the robot arm are also included in the dataset
for quantitative evaluation purposes. We show examples of
our dataset in Figure 5.

K. Notations
In Table 5, we list the important variables used in this

paper, along with their state space and descriptions.



Table 5. Notations. A list of the important variables used in the paper.

Symbol State space Description

FC MLP MLP for color in canonical space
FS MLP MLP for SDF in canonical space
Fϕ MLP MLP for canonical feature in canonical space
FA MLP MLP for unconstrained transformations of anchors
pi R3 i-th kinematic chain joint in canonical space
p̂i R3 i-th unconstrained kinematic chain joint
p̃i R3 i-th revised kinematic chain joint
ai R3 i-th deformation anchor in canonical space
ℓjk link Kinematic chain link between pj and pk

Ct SE(3) Object root pose w.r.t the canonical root pose at time t
Tt

i SE(3) Transformation of anchor ai at time t

T̂t
i SE(3) Unconstrained transformation of anchor ai at time t

T̃t
i SE(3) Revised transformation of anchor ai at time t

Ht
i SE(3) Forward kinematics of kinematic chain joint pi at time t

wai R Forward skinning weight w.r.t anchor ai
wt

ai
R Backward skinning weight w.r.t anchor ai at time t

R Rnj−1 Unclipped additive residuals for kinematic chain
R̃ Rnj−1 Clipped additive residuals for kinematic chain
xt
I R2 Pixel of interest at time t
ψt

a R128 Learnable latent code for anchor transformations at time t
ψl R64 Learnable latent code illumination conditions
πt R3×4 Camera projection model at time t



References
[1] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,

Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In
ICCV, 2021. 2

[2] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter
Henry, Ryan Kennedy, Abraham Bachrach, and Adam Bry.
End-to-end learning of geometry and context for deep stereo
regression. In ICCV, 2017. 2

[3] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint, 2014. 3

[4] Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross Gir-
shick. Pointrend: Image segmentation as rendering. In
CVPR, 2020. 3

[5] Nilesh Kulkarni, Abhinav Gupta, David F Fouhey, and Shub-
ham Tulsiani. Articulation-aware canonical surface map-
ping. In CVPR, 2020. 2

[6] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang.
Neural scene flow fields for space-time view synthesis of dy-
namic scenes. In CVPR, 2021. 3

[7] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient
descent with warm restarts. arXiv preprint, 2016. 3

[8] Diogo C Luvizon, Hedi Tabia, and David Picard. Human
pose regression by combining indirect part detection and
contextual information. In Computers & Graphics, 2019.
2

[9] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi,
Jonathan T Barron, Alexey Dosovitskiy, and Daniel Duck-
worth. Nerf in the wild: Neural radiance fields for uncon-
strained photo collections. In CVPR, 2021. 1

[10] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 1, 2

[11] Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien
Bouaziz, Dan B Goldman, Steven M Seitz, and Ricardo
Martin-Brualla. Nerfies: Deformable neural radiance fields.
In ICCV, 2021. 1

[12] Leslie N Smith. A disciplined approach to neural network
hyper-parameters: Part 1–learning rate, batch size, momen-
tum, and weight decay. arXiv preprint, 2018. 3

[13] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. Neus: Learning neural implicit
surfaces by volume rendering for multi-view reconstruction.
In NeurIPS, 2021. 1

[14] Zhan Xu, Yang Zhou, Evangelos Kalogerakis, Chris Lan-
dreth, and Karan Singh. Rignet: Neural rigging for articu-
lated characters. In SIGGRAPH, 2020. 4, 5

[15] Gengshan Yang and Deva Ramanan. Volumetric correspon-
dence networks for optical flow. In NeurIPS, 2019. 3, 5

[16] Gengshan Yang, Deqing Sun, Varun Jampani, Daniel Vlasic,
Forrester Cole, Huiwen Chang, Deva Ramanan, William T
Freeman, and Ce Liu. Lasr: Learning articulated shape re-
construction from a monocular video. In CVPR, 2021. 2

[17] Gengshan Yang, Deqing Sun, Varun Jampani, Daniel Vlasic,
Forrester Cole, Ce Liu, and Deva Ramanan. Viser: Video-

specific surface embeddings for articulated 3d shape recon-
struction. In NeurIPS, 2021. 2

[18] Gengshan Yang, Minh Vo, Natalia Neverova, Deva Ra-
manan, Andrea Vedaldi, and Hanbyul Joo. Banmo: Building
animatable 3d neural models from many casual videos. In
CVPR, 2022. 1, 2, 3, 4, 5

[19] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Vol-
ume rendering of neural implicit surfaces. In NeurIPS, 2021.
1

[20] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan
Atzmon, Basri Ronen, and Yaron Lipman. Multiview neu-
ral surface reconstruction by disentangling geometry and ap-
pearance. In NeurIPS, 2020. 2


