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In this supplementary document, we provide technical
details on the proof of theorem 1.

1. Computation of the Observation Model
1.1. Model of the body motion

The SMPL’s skeleton is considered as a tree of kinematic
chains where the root is at the center hip [1]. The parent
joints for a given landmark point q is the set of all joints
contained in the serial kinematic chain linking the hip to the
joint where the landmark is linked. Every SMPL’s joint is 3-
rotational degrees of freedom. If the total number of ADoFs
is n, then a skeleton motion can be uniquely represented by
a real n-vector of angular motion Q = [w1,...,wy]. Let
us assume F = {1,...,n} as the set of global indices of
vector 2. Let us consider the 3-rotational joints index set
J = {1,...,v =24} of SMPL. For every joint i € J,
its motion is composed of a subset of differential ADoFs
Q; = [wsi—2,wsi—1, wgi]T. The vector of total articulated
motion can be re-written as a concatenation of the group of
differential joints’ motion 2 = [, ..., ,—24]. The twist
®; € se(3), j € J constructed from the unit axis of ro-
tation and translation allows us to obtain the rotation trans-
form thanks to the exponential e®i € SE(3) [2]. Where
se(3) is the Lie Algebra of the group of rigid transforms
SE(3). Let us consider a 3D skeleton’s point with constant
location q?, 1 < ¢ < [, in the reference frame attached to
joint 5 € J. [ being the total number of tracked body’s
point. The location q; of this point in the camera frame is
given as

q;,=T;q), (1)

where T; € SE(3) is the rigid transform from the camera
to the coordinate frame that is attached to j € J and is
given by

T; =P ... ePime® el 2)

Where [j1, ..., m] C J is the list of parents joints of j.
71 being always the camera to hip joint. The differential 3D
displacement of point q; due to pure differential 3-rotational
joint motion €2, in the camera frame, is given as

q;, = J; (q;) 25, (3)
where
0T 1 0T 1
J;(q;) = Rot ( T; ) q; + Trans ( T; ) , 4
! o, oQ;

is a 3 x 3 Jacobian matrix. Rot and Trans operators extract
respectively rotation and translation parts of an SF(3) matrix. If
we consider the effect of all differential 3-rotational joint motions
of the global skeleton on a given landmark point, then

Jy=24(q,)] Q. ®)

Where J; = 033 if joint j is not a parent of the joint to which
q, is attached. In SMPL model, the translation is considered to
be given in the camera frame and directly added to model’s ver-
tices. When combined with the rotation motion, the entire differ-
ential translation and articulated motion allows us to rewrite equa-
tion Eq. 5 as

q; = [Ji(q,) - Jy=24(q;)] @ +x. (6)

Where x € R? is motion in translation between camera and body
in camera frame. In this work, we do not distinguish between sep-
arate camera or body translation and we consider the link between
both entities as non-separable.

1.2. Model of the 2D landmark motion

q; = [Ji(q) -

Let us consider v(q) = (%, g)T as the perspective projection
of a 3D SMPL body’s point q = (z, %, z)". If this 3D point under-
goes a differential motion, then the 2D projection moves following

the linearized formula
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If we consider a set of [ of tracked body’s points and integrating
equation Eq. 5 in the above equation, then we obtain

v(q,) "
—P[ L [xT QT] . )
v(q,)

Where I is a 3-identity matrix and P is a 2] x 3/ matrix such that

F(q,)
P= (10)
F(q)
and L is 3/ x 3~y matrix such that
Ji(qy) Jn(ay)
L=| : Co . (11)
Ji(ay) In(qy)

With the paper notation, we adopt the following contracted expres-
sion

y=PI'x+PLQ, (12)

where y is the vector of all observed 2D differential displacements
in the noise free case. In the presence noise, equation 4 in the main
paper follows.

2. Proof of theorem 1

Proof 1 Let us consider (x*, S¥*) as the global minimum of prob-
lem Eq. 6. The Karush-Kuhn-Tucker (KKT) necessary and suffi-
cient conditions of problem Eq. 6 can be derived as follows

KKT-1:

(PLy+)" (z — PTx* — PLy+ Q3.) = aX (23,
(13)

KKT-2:
[PL]} (z—PTx* —PLy Q)| <, (14)
for all columns [P L], not in L.
KKT-3:
(PD)" (z—PIx* —PLy- Q) =0.  (15)
From equation ?? the non-zero concatenated elements of Q2 sat-
isfy Q3+ = (PLy+)" 2*. Where z* = (z — P T'x*). Condition
2) in theorem 1 can thus be rewritten as
3 ((PLy«)"2") = (16)

b ((PLV*)‘L z'—a (PLWTPLW) TS (PLy)* z*)>

If we take any differential kinematic vector O such that Oy« sat-
isfies

3 (Oy+) =X (. and a7
Oy = (PLy) 2" — a (PLWTPLV*y1 3 (O ).
(18)

Then it also satisfies the KKT condition of equation 13 as can be
seen below

KKT-1:(PLy+ )" (z = PTx* —PLy+ Op+) = (19)
(PLy+)" (z—PIx" —PLy+ ((PLy+)" 2" (20)
T —1

—a ((PLy-)"PLy:) = (ov*)>) -

(PLy+)" (z — PTx*) — (PLy+) 2" 1)
=0

+a X (Ov* )=

aX (Op+), (22)

then KKT-1: is filled by Oy+.
KKT-2: For all columns [P L], not in Liy+, (23)

‘[PL}E (z — PTx" — P Ly« Oy+)

‘[PL]}f (z—PTx" —PLy: (PLy)" 2" (24)

—a (PLV*TPLW) s (0 ))) ’
(25)
As Oy« is the solution of ??, then it satisfies
PLy+ (PLy+)t 2" = PLy« (PLy+)t (z— PIx") (26)
=PLy« (PLy:)TPLy. Q* (27)
= P Ly« QF, property of pseudo-inverse

(28)
=z" (29)

It follows that equation 25 implies
25 = KKT-2:a |[PL]T (PLy+)"" X (Oy+) (30)

< a, given condition 1) of theorem 1. 31

Thus KKT-2 is also filled by Ov~. With the same reasoning and
the result obtained from equations 26-29, it can be proven that

(PT)T (PLy+ )" 2 (0Oy+) =0, (32)
which satisfies KKT-3 if condition 3) of theorem 1 is filled.
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