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In this supplementary material, we present some further
background knowledge, experimental details, ablation stud-
ies, and visualization results that do not fit into the paper
due to space limitations. We first introduce the background
of NeRF, followed by the detailed network architecture de-
scription and the ablation study for the size of the latent
feature and the number of views we used in the experiment.
Finally, we present more visualization results on H36M and
ZJU-MoCap datasets with novel views and poses.

Review of Neural Radiance Field. NeRF is a contin-
uous volumetric field representing the density and color
of the object or scene. For the color and density of a
point for the viewing direction d, NeRF finds the ray r that
goes through the field and predicts the density σ(x′) and
color value c(x′) for the 3-D point x′ on this ray following
σ(x′), c(x′) = F(x′, d, l) using an MLP network F(·). l is
a latent representation for the appearance of the object fol-
lowing [23]. The final predicted color C̃(r) projected on the
2-D plain for the ray r is accumulated with a random set of
quadrature points {hp}mp=1 ∈ [hn, hf ] following [24]

C̃(r) =

m∑
p=1

exp(−
p−1∑
q=1

σqδq)(1− exp(−δpσp))c(p) (9)

where hn and hf represent the near and far bound of the
field for the sampled points. δp is the distance between two
quadrature points hp and hp+1. Due to the performance of
under-fitting on high-frequency patterns, NeRF includes a
position encoding γ(x) for projecting the point x, normal-
ized to [−1, 1], to the high dimension space following

γ(x) = (sin(20πx), cos(20πx), ...,

sin(2L−1πx), cos(2L−1πx))
(10)

We follow [24] to use the three normalized coordinates of
the point x′ with L as 10 and three of the Cartesian viewing
direction unit vector for d with L as 4.

Network Architectures. In our experiment, we have five
trainable modules in the proposed CAT-NeRF: neural ra-
diance field, neural blend weight field, frame-unique field
decoder, constant field decoder, and Tx2Former G(·).

For the neural radiance field, we follow [32] to build an
11-layer MLP for decoding color and density. The dimen-
sionality is set to 256 for the first 10 layers and 128 for the
final layer. The positional encoding γ(x) is sent to the first

MLP layer and concatenated with the output of the 4th layer
as the input for 5th MLP layer. The position encoding for
the viewing direction γ(d) and appearance code l is sent to
the 9th and 10th concatenated with the previous layer’s out-
put. Density σ and color c are predicted from the 8th and
the last MLP layers, respectively.

For the frame-unique and constant field decoders, we
use two identical 2-layer MLP networks but do not share
weights. The dimensionality for all layers is set to 64. For
the neural blend weight field, we use an 8-layer MLP fol-
lowing [32] where every layer is 128-d. We use the concate-
nation of the outputs from the constant and frame-unique
field encoders along with γ(x) as input for the first and fifth
MLP layers. The final projection of ∆w is produced with
the exponential output from the last layer. We use ReLU
as the activation function following every MLP layer for
all our networks except the final output layer. We set the
dimensionality of features in Tx2Former G(·) as 128 for
both two layers and include one layer of Transformer en-
coder [46] for T1 and T2 in our experiment.

Size of Latent Features. In our model, we introduce us-
ing the 128-dimension features for both frame-unique fea-
ture and constant feature representation. We show five dif-
ferent variations in the dimensionality for features repre-
sentation in Table 6. Note that when we only have one 128-
D feature vector for the frame-unique feature, the method
defaults to Animatable NeRF. Compared with using the
unique feature representation for every individual frame, we
see that the constant feature alone boosts the performance
for dynamic human body rendering and outperforms the
original Animatable NeRF. When using the frame-unique
feature along with the constant representation, the network
shows the best PSNR value, while results for using 64-dim
or 128-dim features do not change greatly.

Number of Training Viewpoints. In addition to the main
experiments where we use three training camera viewpoints
for H36M, we also assess the performance and robustness of
using fewer camera viewpoints comparing CAT-NeRF with
Animatable NeRF. We train our network on one (viewpoint
0), two (viewpoint 0 and 1), and three (viewpoint 0,1 and
2) camera viewpoints, respectively, and report the PSNR
results on the reconstruction of viewpoint 3 for inference.

We show the results in Table 7. With the maximum
available viewpoints, both methods show the best perfor-
mance for dynamic body shape rendering. When we reduce
the available number of available viewpoints in the train-
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Figure 6. Visualizations for novel pose and novel view on H36m datasets comparing (a) Animatable NeRF and (b) ours. Images in the
column of AN are the outputs from Animatable NeRF.

Feat. Dim ψc 0 64 128 64 128
ψu 128 64 128 128 0

PSNR 22.05 24.16 24.52 24.35 23.14

Table 6. Ablation results for different feature dimensions used by
constant feature ψc and frame-unique features ψu of the network.

ing set from 3 to 2, our proposed CAT-NeRF shows better
consistency than Animatable NeRF, with only a 0.03 drop
for PSNR, while Animatable NeRF drops 0.3. When the
number of cameras is reduced to one, both methods fall sig-
nificantly, while CAT-NeRF still achieves a PSNR value of
21.97, similar to the Animatable NeRF three-viewpoint re-
sult of 22.05. Mining the temporal constancy assists the
model in extracting and extending the frame-level knowl-
edge to video-level knowledge, helping the model achieve
better performance even with only one training viewpoint.

Visualization Results on H36M and ZJU-MoCap. In
addition to the visualization results we show in our sub-
mission, we present more visualizations for both datasets
on both novel view and novel pose settings compared with

# of Viewpoints 1 2 3

Animatable NeRF 20.78 21.75 22.05
Ours 21.97 24.49 24.52

Table 7. PSNR results for different numbers of training viewpoints
compared with Animatable NeRF.

Animatable NeRF [32]. We show the results for H36M in
Figure 6 and ZJU-MoCap in Figure 7.

With CAT-NeRF, we see better-detailed reconstructions
than Animatable NeRF on both datasets. For example, for
both novel view and novel pose settings in the last row of
Figure 6, Animatable NeRF introduces wrinkles that should
not appear at the front of the person, while our method cre-
ates a more precise image. We can also observe similar dif-
ferences in the bottom left example in Figure 7, where Ani-
matable NeRF fails to reconstruct the stripes on the shirt. In
contrast, CAT-NeRF generates an image with a more pre-
cise boundary for the patterns and wrinkles on the clothes.
In addition to the framewise results in the figures, we also
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Figure 7. Visualizations for novel pose and novel view on ZJU-MoCap dataset comparing (a) Animatable NeRF and (b) ours. Images in
the column of AN are the outputs from Animatable NeRF.
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Figure 8. Visualization resutls for novel poses and novel views
settings for examples in H36m and ZJU-MoCap dataset.

attach a video for each dataset in the supplementary folder.
For the quality of predicted images of two datasets, we

observe that, compared with H36M, visualization results
on ZJU-MoCap are generally better. Since the number of
samples used for training in H36M is smaller and pose
differences between the frames are significant, H36M is a
much harder dataset to render from a novel viewpoint or for
novel poses compared with ZJU-MoCap. In addition, ZJU-
MoCap has 4 camera viewpoints available during training,
while H36M only has 3. In our submission, we present the
visualization results from H36M to compare on a more chal-
lenging dataset for dynamic human body rendering.

Comparison with the Latest State-of-the-Art Meth-
ods: We compared our method with some of the latest state-
of-the-art methods such as HumanNeRF [49], TAVA [18],
and ARAH [47] as shown in Figure 8. However, as most of
these methods do not have results on H36m, the more com-
plex dataset with fewer cameras and more action variations,

and the experimental settings were not exactly the same, we
rerun the experiments on the two public datasets used in
our paper. We present qualitative comparisons on examples
from H36m and ZJU-Mocap, where we zoom in on the cor-
responding body parts. Our approach achieves more precise
boundaries of patterns such as stripes and shoes, with fewer
artifacts such as wrinkles. Additionally, the key modules in
our method are portable and can be applied to these latest
state-of-the-art methods for further improvements.


