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Abstract

Motion prediction and planning are key components to
enable autonomous driving. Although high definition (HD)
maps provide important contextual information that con-
strains the action space of traffic participants, most ap-
proaches are not able to fully exploit this heterogeneous
information. In this work, we enrich the existing road ge-
ometry of the popular nuScenes dataset and convert it into
the open-source map framework Lanelet2. This allows easy
access to the road topology and thus, enables the usage of
(1) spatial semantic information, such as agents driving on
intersecting roads and (2) map-generated anchor paths for
target vehicles that can help to improve trajectory predic-
tion performance. Further, we present DMAP, a simple, yet
effective approach for diverse map-based anchor path gen-
eration and filtering. We show that combining DMAP with
ground truth velocity profile information yields high-quality
motion prediction results on nuScenes (MinADE5=1.09,
MissRate5,2=0.18, Offroad rate=0.00). While it is obvi-
ously unfair to compare us against the state-of-the-art, it
shows that our HD map accurately depicts the road ge-
ometry and topology. Future approaches can leverage this
by focusing on data-driven sampling of map-based anchor
paths and estimating velocity profiles. Moreover, our HD
map can be used for map construction tasks and supplement
perception. Code and data are made publicly available at
https://felixhertlein.github.io/lanelet4nuscenes.

1. Introduction
Enabling fully autonomous driving has been a long-

standing goal in research [1]. The main drivers fuelling this
strong interest are the expected benefits: autonomous vehi-
cles could at the same time increase efficiency, safety, and
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(a) Original nuScenes Map (b) Our Lanelet2 Map

(c) Hierarchical Road Topology

Figure 1. We convert the nuScenes map 1(a) into the open-source
map format Lanelet2 1(b) to enable easy access to the full road
geometry and topology in a hierarchical structure 1(c).

convenience. In order to attain this objective, a number of
challenging tasks need to be solved reliably, such as per-
ception, prediction, planning, and control. High definition
(HD) maps are highly beneficial for tackling numerous sub-
tasks, as they contain detailed information about the sur-
roundings of a vehicle. This does not only include informa-
tion on the road geometry and the road topology but also
on traffic rules and adjacent areas, such as walkways and
bicycle lanes.

While the performance of perception modules has in-
creased rapidly in recent years [2], [3], inaccurate sensor
measurements, occlusion and limited sensor range are still
common challenges. Accurate and reliable HD maps can
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help to correctly interpret observed senor data and serve as
a backup by providing an additional layer of redundancy.
Thus, they can improve the robustness of perception mod-
ules, which is beneficial for subsequent downstream tasks.
In addition to that, the easily accessible road topology of
HD maps provides important information for prediction and
planning tasks. By mapping traffic participants onto lanes
within an HD map, it is possible to infer semantic relation-
ships between traffic participants. Such semantic relation-
ships include driving on neighboring lanes or intersecting
roads, which are highly relevant for prediction and plan-
ning [4]. Moreover, the road topology enables the conve-
nient computation of all valid and drivable paths for a given
target vehicle. We refer to this set of possible paths within
the map as anchor paths. Anchor paths can help to diver-
sify prediction hypotheses [5] and to avoid mode collapse,
where predictions only follow a sub-set of the possible driv-
able paths. Furthermore, anchor paths contain information
on the full road geometry and hence, can be used to con-
strain predictions to lie on the road by clipping them onto
the road boundaries. Finally, existing HD maps are also
crucial to enable research for HD map construction.

In this work, we present an approach to enhance the HD
road maps of the popular nuScenes dataset [6]. While the
dataset already provides detailed information on the geom-
etry of the roads and their surroundings, it is not straight-
forward to infer the full road topology, since intersections
are not modelled explicitly. We bridge this gap by pro-
viding an approach to automatically convert the nuScenes
map to the popular automated driving format Lanelet2 [7],
which enables convenient access to the full road topology.
Lanelet2 is an open-source map format and extends the
original Lanelet format [8], which is more lightweight com-
pared to other formats such as OpenDRIVE, yet power-
ful enough for all major needs in autonomous driving [9].
Unlike other existing open-source map formats, Lanelet2
comes with a C++ toolkit that features numerous auxiliary
functionalities. Thus, Lanelet2 has recently been adopted
as the default map format for several new datasets [10]–[12]
and is supported by many tools [13]–[17].

Our map conversion process includes several steps to en-
sure a highly accurate road geometry and road topology.
Minimal manual effort is required to handle rare edge cases
and the maps can easily be extended, e.g. by adding reg-
ulatory elements, such as speed limits. Since we preserve
correspondence to the nuScenes IDs, additional informa-
tion from the original dataset can easily be queried and inte-
grated. Finally, by exploiting the information of the implic-
itly defined lane connectivity graph of the Lanelet2 map,
we present a simple, yet effective algorithm called DMAP
to generate a set of diverse drivable anchor paths for a target
vehicle, which can be readily used for trajectory prediction
and planning tasks. We show, that when combined with the

ground truth velocity profile, our map-based anchor path
generation approach yields high-quality results for motion
prediction on nuScenes. This suggests that our map accu-
rately depicts the road geometry and topology and further,
that future approaches can leverage our work to focus on
data-driven sampling of map-based anchor paths and esti-
mating velocity profiles.

The main contributions of our work can be summarised
as follows:

• We enrich the existing road geometry information of
the nuScenes dataset to enable easy access to the full
road geometry and topology,

• We present an approach for the generation and the
diversity-based filtering of map-based anchor paths
called DMAP, and

• We evaluate DMAP by combining it with the ground
truth velocity profiles to validate the quality of our map
and anchor paths.

This paper is structured as follows. We present related
work in Sec. 2. Subsequently, we introduce the map con-
version approach in Sec. 3 and the anchor path generation
in Sec. 4. The quantitative and qualitative evaluation is pre-
sented in Sec. 5 and the paper concludes with Sec. 6.

2. Related Work

We first review the literature on existing datasets. Af-
terwards, we present related work on map formats, relevant
applications and semantic information in the context of au-
tonomous driving.

Datasets There are many datasets focusing on perception
for autonomous driving [2], such as KITTI [18], [19], Apol-
loScape [20], and Waymo Open [21]. These datasets seek
to advance research in areas such as 2D and 3D object de-
tection. Other datasets such as INTERACTION [10], Lyft
prediction dataset [22], inD [11] and SIND [12] are top-
view datasets, which focus on highly interactive traffic sce-
narios and do not contain raw sensor data. They provide de-
tailed information on the trajectories of traffic participants
and seek to advance research for trajectory prediction and
planning. Notably, all but the Lyft prediction dataset use the
Lanelet2 [7] map format. The nuScenes [6] and the Argov-
erse [23], [24] datasets provide a multiplicity of annotations
and enable research in both fields, perception and motion
planning. For further details on existing datasets and their
applications, we refer to Chen et al. [25].

HD Map Formats Currently, there is no unique standard
format for HD road maps. While there are proprietary
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solutions available, we focus on three popular open for-
mats for HD maps [26]: OpenDRIVE1, Apollo Maps and
Lanelet2 [7]. OpenDRIVE was developed by the Associa-
tion for Standardization of Automation and Measuring Sys-
tems (ASAM). The format was originally designed for the
usage in driving simulators. Roads are represented by ref-
erence paths, which can be specified by five different types
of functions. Lanes within the road are defined by a lat-
eral offset from the reference path. Some concepts, such
as pedestrian islands, are cumbersome to model in Open-
DRIVE [9]. Furthermore, it pursues a top-down approach
and thus, as requirements increase, the representation of the
map information becomes increasingly complex.2 Apollo
Maps builds on top of OpenDRIVE and adjusts it for the
usage with Apollo3. Main differences compared to Open-
DRIVE include the description of geometries, which are
represented as a set of points in the Apollo format. Other
differences include the definition of junctions and the num-
ber of supported object types. We refer to Gran [27] for a
detailed analysis of the differences. Finally, Lanelet2 [7]
extends the earlier Lanelet [8] map format. Limitations of
the first Lanelet version, such as only allowing lane changes
at fixed points, have been resolved. It is a lightweight for-
mat that covers all major needs for autonomous driving and
is easier to use than OpenDRIVE [9]. Moreover, it is tai-
lored to map the real world and it is the only map format
that provides a full framework which is available as open-
source. The framework is implemented in C++ with wrap-
pers for ROS and Python. It provides utilities for common
tasks, such as generating a lane connectivity graph, match-
ing vehicles onto the correct lanes even in difficult scenarios
and converting global to local coordinates. For more details
on the concept and utility of the Lanelet2 format, we refer
to Poggenhans et al. [7] and for the comparison with other
formats to Althoff et al. [9] and Bao et al. [26].

Many popular datasets, such as nuScenes [6] and Lyft
prediction [22] provide their own map format together with
utility tools to improve usability. We argue, that a compre-
hensive and flexible map format such as Lanelet2 is well-
suited for applications in prediction and planning. Further-
more, using a unified open-source map format eases data
processing and could accelerate research by the community.

Applications High-definition road maps are commonly
used for prediction and trajectory planning in the context
of autonomous vehicles. Generally, we can distinguish two
types of approaches for processing and representing map
data. Raster-based methods, such as [5], [28]–[30], an-
alyze raster-based representations of a scene, often using

1See https://www.asam.net/standards/detail/opendrive/
2For details we refer to the OpenDRIVE manual and the analysis of

Poggenhans et al. [7].
3See https://github.com/ApolloAuto/apollo.

CNNs. However, learning important features from such a
high-dimensional space and achieving scale-, rotation- and
road-layout invariance can be challenging. Moreover, they
have a finite resolution, large memory consumption when
used for long distances, and finally, memory consumption
grows linearly in the number of channels that are used.

Vector-based methods, on the other hand, exploit the
graph structure of the underlying problem by representing
the entities as nodes and their relation by edges. Exam-
ples for such approaches include VectorNet [31], LaneGCN
[32], P2T [33], Autobot [34], and THOMAS [35]. How-
ever, these approaches often only use centerlines to rep-
resent lanes and are not able to directly exploit details of
the road topology, e.g. by considering all valid map-based
driving options. Deo et al. [36] predict possible anchor tra-
jectories using graph-based policies and condition the final
prediction on one such policy. The recently proposed FRM
[4] focuses explicitly on reasoning over future relationships
of traffic participants.

Our contributions can enrich vector-based methods by
providing spatial semantic information as well as diverse
map-based anchor paths. In contrast to Deo et al. [36], an-
chor trajectories can be provided purely map-based without
the necessity of training data. Moreover, our lane connec-
tivity graph can facilitate reasoning over future relationships
as in [4], since semantic relationships of traffic participants
can be directly inferred from the HD map.

Semantic Information Rather than using only the agent’s
state information such as position and velocity, a number
of approaches try to exploit semantic information about the
agents, their interactions and the environment in which they
operate at a given time. Such information could be of var-
ious types: (1) driving maneuvers such as turning, pass-
ing, parking; (2) participant relations such as front, behind,
left, right; (3) environment relations such as isOnLane,
partOfRoad and so forth. The goal of these approaches is
to improve the accuracy and robustness of motion predic-
tion by considering the dynamics of the environment and
incorporating information of road networks and the behav-
ior of the objects within it. Spaccapietra et al. [37] present
an early work to conceptually model and enrich trajectories
with fine-grained semantic annotations by decomposing it
into a series of moves and stops such as moveAt, stopAt,
nextTo, orientation. This is later represented into a for-
mal ontology [38] with the aim of allowing structuring and
querying of the trajectory data. Following this idea, Hu et
al. [39] developed a geo-ontology design pattern for repre-
senting semantic trajectories which can be utilized in dif-
ferent domains related to navigation and monitoring. An
approach which uses prior knowledge of driving scenarios
modelled in an ontology to improve trajectory prediction
is presented in [40]. A survey on knowledge graph based
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methods for automated driving can be found in [41]. Fi-
nally, a comprehensive approach for integrating heteroge-
neous information such as agent interactions and road topol-
ogy from various autonomous driving datasets is proposed
in [42].

3. Map conversion
We convert the nuScenes map [6] to the Lanelet2 [7] for-

mat in multiple steps, while preserving correspondence to
the original nuScenes IDs. The conversion process is sum-
marized in Fig. 2 and the details are presented below.

3.1. Primitive Conversion

Lanelet2 uses primitives different from the ones defined
by nuScenes. Thus, we convert all relevant nuScenes prim-
itives into the new format. We start by converting all avail-
able nodes in the nuScenes dataset to Node entities in the
OSM format. Secondly, we parse all lanes to lanelets, which
are defined by two line-strings, so-called Ways, that repre-
sent the left and right border of the given road segment, and
a Relation entity, which combines the ways to a lanelet. We
split the lane boundary that is provided as a linear ring for
each nuScenes lane at the given start and stop lines. To as-
sign the attributes left and right reliably, we generate the
directed centerline between start and stop line and verify
whether a boundary element is connected with the center-
line in a clockwise or anticlockwise loop. The nuScenes
input map section is visualized Fig. 2(a) and the resulting
map is visualized in Fig. 2(b).

3.2. Centerline Interpolation

After converting all primitives to the Lanelet2 for-
mat, information at intersections is still missing, since the
nuScenes dataset does not contain lane data for this case.
Instead, the dataset provides lane connectors which encode
the centerline as a parametric curve to represent the connec-
tivity at intersections. We create additional lanelets from the
nuScenes lane connectors to cover the intersections. Trans-
forming (i.e. scaling, translating and rotating) the shape of
the centerline that is given by the lane connectors to match
the start and end points of their incoming and outgoing lanes
is problematic for the following reasons: (1) lane connec-
tors are not aligned properly with their respective incoming
and outgoing lanes and (2) the lane width frequently varies
between incoming and outgoing lanes. To resolve the align-
ment issue, we cut the incoming lane at the start point and
the outgoing lane at the end point of their respective lane
connector orthogonal to the centerline. This reduces the
length of the lanes and temporarily removes map informa-
tion, however, the proper alignment enables a better inter-
polations in the subsequent step. In the case of multiple
outgoing or incoming lanes, we cut off the union of all re-
dundant areas. The resulting map is visualized in Fig. 2(c).

(a) Original nuScenes Map (b) Primitive Conversion

(c) Cutting at Lane Connectors (d) Thickness Interpolation

(e) Before Lane Alignment (f) After Lane Alignment

(g) Before Pruning Overshoots (h) After Pruning Overshoots

(i) Merging Shared Ways (j) Before Length Normalization

(k) After Length Normalization (l) Final Map

Figure 2. Overview of the map conversion process: Step-by-step
improvement of the map quality.

To ensure realistic lane geometries at intersections, we
must also cope with the fact that lane thickness can vary
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between the incoming and outgoing lane. This is done by
generating two road segments along the centerline of the
lane connector: one with the thickness of the incoming lane
and one with the thickness of the outgoing lane. By interpo-
lating both generated road segment boundaries, we arrive at
a smooth thickness interpolation as visualized in Fig. 2(d).

3.3. Lane Alignment

A complete representation of the road topology is nec-
essary to infer the set of anchor paths at every given posi-
tion in the map. The Lanelet2 format implicitly defines the
road topology via shared primitives. The following relation
of lanes is defined by matching start and end points of the
respective lanes and a lateral relation is represented by a
shared Way between two lanelets. Such proper alignment
is frequently missing in the nuScenes map. To remedy this
and thus, make the full road topology easily accessible, we
implement an iterative cutting method. To enable the iter-
ative cutting method, we first need to discover which lanes
are parallel. This information is inferred from four different
sources: (1) lane dividers, (2) road dividers, (3) geomet-
ric proximity and (4) at intersections from the parallelism
of predecessors and successors. In the first two cases, the
information of the nuScenes dataset is directly mapped to
create lateral associations between lanes. Moreover, we an-
alyze the geometric similarity and proximity of lanes to de-
tect parallelism. Finally, at intersections, parallelism is in-
ferred by checking if both predecessors and successors are
parallel. If that is the case, we also create a lateral associa-
tion between the two intersection elements.

The iterative cutting method is then applied to groups of
laterally associated, i.e. parallel, lanes. We iteratively con-
sider pairs of lanes within such a group and cut the longer
one to the length of the shorter one. This procedure is re-
peated, until all lanes within the group have equal lengths
(cf Fig. 3). Afterwards, the lane partitions that were re-
moved during cutting are added to their longitudinally con-
nected lanelets. The comparison between the lane align-
ment steps is visualized in Fig. 2(e) and 2(f).

3.4. Pruning of Overshooting Lanes

Especially at intersections, lanes for different driving op-
tions can overshoot as visualized in Fig. 2(g). We remove
these overshoots since they alter the road geometry, i.e. cre-
ate non-existent lanelet overlaps. The overshoot removal
considers each lanelet in our map independently and we de-
note the considered lanelet in the following as base lanelet.
For each of the successors of the base lanelet, we com-
pute its approximate change in direction relative to the base
lanelet by calculating the cosine similarity of the respective
centerlines. Afterwards, we order the list of successors w.r.t.
this change in direction in order to retain straight and prune
curved lanelets. We consider all pairs of successors within

a

c b

1 2 3

Figure 3. Example for the iterative cutting of lanes. Starting with
lane (1) and (2), we first cut the longer (2) to the length of the
shorter lane (1) by cutting off area (a). This procedure is repeated
until all lanes within the considered group have the same length,
i.e. [(2), (3)] → cut off (b) and [(1), (2)] → cut off (c).

this list without repeated elements in sorted order. For each
such pair, the successor with less change in direction is used
as reference, and the other successor is labelled for pruning.
The pruning step considers each way separately. We deter-
mine all points of intersection between the two successors.
If there are multiple intersection points, we choose the one
that is at the largest distance from the base lanelet. The way
of the overshooting lane is projected for each dimension x
and y onto the reference way up to the intersection point. Fi-
nally, since this projection can lead to sharp edges, we apply
one-dimensional Gaussian filtering in the vicinity of the in-
tersection point. Vicinity is defined as d = min(4m, 0.25l),
where l is the length of the centerline. Since the Gaussian
filter can create another marginal overshoot, we apply the
pruning again without filtering. The same procedure can be
applied for predecessors. Moreover, we consider parallel
lanes for both cases (successors and predecessors) by ex-
ploiting the neighborhood relation of the road topology. An
example map after pruning is visualized in Fig. 2(h).

3.5. Merging Neighboring Lanes

Up to now, every lanelet consists of two unique ways.
As described in Sec. 3.3, Lanelet2 infers the roads’ topol-
ogy implicitly via shared ways and nodes. Thus, we utilize
the previously established lateral neighborhood relations to
merge shared ways. In case the two ways do not coincide
perfectly, we perform linear interpolation. The resulting
map is visualized in Fig. 2(i).

3.6. Lane Length Normalization

We follow Deo et al. [36] and normalize the map by
restricting the maximum lanelet length to 20m. To per-
form realistic cuts across the map, we apply them by iter-
ating over connected components, i.e. laterally associated
lanelets. For each such connected component, we first de-
termine the necessary number of cuts by considering the
maximum of the way lengths. Subsequently, we compute

3252



(a) Before Smoothing (b) After Smoothing

Figure 4. Since the nuScenes map contains lane geometries with
sharp edges (a), we apply Gaussian filtering to smooth the respec-
tive shapes (b).

equidistant cutting points. One way is chosen as reference
to calculate the orthogonal cutting lines through the cutting
points. We approximate the tangent at a given cutting point
using a 4m vicinity, since the centerline may contain sharp
edges. Afterwards, we cut all ways orthogonally w.r.t. the
approximated tangent. Finally, we create and update rela-
tions where necessary. A visual comparison of the map be-
fore and after lane normalization can be found in Fig. 2(j)
and 2(k).

3.7. Post-processing

Since the map at this point still contains some lanelets
with sharp edges, which do not comply with the Lanelet2
requirements, we apply shape smoothing as visualized in
Fig. 4. For this purpose a one-dimensional Gaussian filter
with σ = 2 is used in each dimension. Finally, some re-
maining edge cases regarding the road geometry and topol-
ogy are fixed manually. These issues are mostly caused by
rare edge cases (e.g. due to uncommon shapes) and inaccu-
racies in the original nuScenes map.

3.8. Lane Dividers

Ways form the boundary of lanelets and at the same time
contain information about the lane divider type, e.g. solid,
dashed, double solid, which prescribes the possibility of
lane changes. This information is essential for a valid road
connectivity graph and we thus, add lane divider types to
all ways. First, we transfer all information available in the
nuScenes dataset. Next, at all intersections we choose vir-
tual lines, to indicate the prohibition of lane changes. Fi-
nally, for all other ways we use a solid line as default. This
last group mostly comprises road boundaries.

3.9. Other Non-geometric Layers

Finally, we add the geometric information of stop lines,
traffic lights, pedestrian crossings and road surroundings,
i.e. walkways and carpark areas, to the map. The final map
version is visualized in Fig. 2(l). We export the map to the
Lanelet2 format and use the UTM projection to convert co-
ordinates into the latitude, longitude format. The automated

conversion process takes less than 5min per map on con-
sumer grade hardware.

4. Anchor Path Generation
Trajectory prediction frequently leads to mode collapse,

where multiple predictions resemble each other closely. In
order to diversify the prediction capabilities of existing ap-
proaches, we provide a simple, yet effective algorithm for
diverse map-based anchor path generation and diversity-
based sorting, called DMAP.

For an agent at any position on the map, the lane con-
nectivity graph prescribes all its valid driving options along
the road. We call this set of valid driving options the set of
anchor paths for a given starting point. Every anchor path
constitutes an ordered list of lanelet IDs, which can be used
for arbitrary interpolations, e.g. smoothly merging an agent
onto the centerline or driving with a constant offset from it.

For the task of trajectory prediction, having a diverse set
of anchor paths can be very beneficial as it helps to reduce
mode collapse and it additionally provides an initial trajec-
tory, from which only offsets need to be estimated. Two
parameters need to be freely configurable to use the anchor
path generation in practice: the number of anchor paths that
should be generated and the desired driving distance that
should be covered by an anchor path. The former depends
on the number of modes that should be estimated, while the
latter depends on the expected velocity profile of the agent.

To generate the relevant set of anchor paths, we re-
cursively query the lane connectivity graph for adjacent
lanelets to find all paths with a specified maximum length.
During this search, we do not allow lane changes in oppo-
site directions to reduce the search space. More precisely,
once an anchor contains a lane change to the left, no adja-
cent lanelets that would require a lane change to the right
are considered and vice versa. Note, that these anchor paths
usually exceed the desired length but can be easily cut. De-
pending on the local road geometry this might yield too
many anchor paths. For this case, we present a simple, yet
effective approach for downsampling the number of anchors
paths to the desired number. We create a similarity matrix
for all pairs of anchor paths by calculating the Intersection
over Union (IoU) between the two anchor path centerlines,
each with an additional 1m buffer. We determine an order
for all anchors by iteratively removing the least important
anchor based on diversity, which is defined as the sum over
the IoUs with all the remaining anchor paths. Finally, by
choosing the first n anchor paths from the sorted list, we
are able to provide diverse anchors. The procedure is visu-
alized in Fig. 5.

This anchor generation approach assumes knowing the
lanelet on which the considered agent is currently driving.
We infer this information by using a probabilistic matching
based on the agent position and its angle w.r.t. the center-
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(a) Before Reduction (b) After Reduction

Figure 5. Example for the reduction from 18 available anchor
paths of length 100m (a) to the most diverse five (b). We high-
light the start lanelet in green and visualize all anchor paths with
random color coding.

line. We allow a maximum distance of the vehicle bound-
ing box of 0.5m to consider a lanelet as a candidate and use
the Lanelet2 library to calculate the Mahalanobis distance
for each candidate [43]. For the calculation, we assume
a variance of 0.5m in x and y, and a covariance of 5 de-
grees. Subsequently, we consider all matches that deviate at
most 5% from the lowest observed Mahalanobis distance to
discard unlikely matches. We convert the remaining candi-
dates into a probability distribution by normalizing the Ma-
halanobis distance. To finally sample anchor trajectories,
we generate and sort the anchor paths for each lanelet can-
didate. The number of anchor paths for each lanelet candi-
date is then sampled according to the previously calculated
probability distribution. Since our anchor paths are sorted
by diversity, always the first n anchor paths are selected per
lanelet candidate.

5. Evaluation
We evaluate the quality of our HD map and the asso-

ciated anchor path generation approach in the following.
We present quantitative evidence that our high-quality an-
chor paths provide a strong baseline for lateral diversity in
Sec. 5.1. Subsequently, we present qualitative examples of
our anchor paths in Sec. 5.2 and insights into computational
costs in Sec. 5.3.

5.1. Quantitative Results

To provide quantitative evidence of the quality of our HD
map and our anchor retrieval approach DMAP, we evaluate
it for motion prediction on the nuScenes dataset. We match
each agent probabilistically onto the map and retrieve the
specified number of anchor paths as described in Sec. 4.

Since our approach only covers lateral diversity, i.e. a di-
verse set of possible driving options, we evaluate it assum-
ing the average past velocity as future velocity (DMAPv̄)
and by using the ground truth velocity profile information
(DMAP∗). Tab. 1 shows an unfair comparison with the
state-of-the-art, where DMAP∗ is the only approach hav-
ing access to the ground truth velocity profiles. The re-
sults provide evidence of the high-quality of our HD map
and anchor retrieval approach. DMAP∗ achieves the low-
est MinADE5 suggesting that our anchor paths closely re-
semble the possible driving options for an agent. The par-
ticularly low MissRate5,2 implies that the overall resem-
blance between the ground truth trajectories and our an-
chor paths is large, and thus, that our HD map accurately
depicts the road geometry and topology. Performance of
MinADE and MissRatex,2 does not improve significantly
when considering 10 instead of 5 anchor paths. This in-
dicates that our diversity-based anchor sorting successfully
identifies the general driving options and that to further im-
prove results fine-grained adjustments to our anchor paths
are needed. Moreover, our approach is the only one with
an Offroad Rate of 0.00, since our trajectories are directly
based on the road geometry. Finally, comparing DMAP∗

with DMAPv̄ , it becomes obvious that velocity profile esti-
mation is crucial to achieve high-quality motion prediction
results.

5.2. Qualitative Results

To find potential inaccuracies in our map, we manually
inspected all scenes where the MinADE across all available
anchor paths is larger than 4. We found five such scenes of
which three occurred at the same junction. Thus, we visu-
alize only the three relevant scenarios in Fig. 6. The error
cases include illegal driving maneuvers and agents driving
outside the lane or road. In most cases with a MinADE be-
tween 2 and 4, deviations seem to stem from the fact that
either agents do not follow the centerline closely or lane
changes were performed at locations different from the ones
specified by our anchor paths.

(a) Illegal Maneuver (b) Outside Lane (c) Offroad

Figure 6. Example cases where the MinADE across all our anchor
paths is above 4. The ground truth trajectory is highlighted in
blue, the start position of the agent in red and our anchor paths are
visualized with random colors.
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Model
Uses

Velocity GT MinADE5 MinADE10 MissRate5,2 MissRate10,2
Offroad

Rate
DMAPv̄ (ours) × 4.83 4.83 0.91 0.91 0.00
P2T [33] × 1.45 1.16 0.64 0.46 0.03
Autobot [34] × 1.37 1.03 0.62 0.44 0.02
THOMAS [35] × 1.33 1.04 0.55 0.42 0.03
PGP [36] × 1.27 0.94 0.52 0.34 0.03
FRM [4] × 1.18 0.88 0.48 0.30 0.02
DMAP∗ (ours) ✓ 1.09 1.07 0.19 0.18 0.00

Table 1. Unfair comparison with the state-of-the-art on the nuScenes dataset. ∗Note, that our approach is the only one that uses the ground
truth (GT) velocity profile and thus, can only be evaluated on the validation split.

5.3. Performance Evaluation

To analyze the computational cost of DMAP, we present
a 2D histogram showing the correlation between the number
of 100m long anchor paths found for a given start lanelet
and the corresponding computation time to find and sort
all anchors in Fig. 7. Note, that our implementation is
not optimized for speed, but rather should facilitate reusing
and adopting our code. The prescribed 100m anchor path
length corresponds to driving 60 km/h over a 6 s horizon.
We observe that 57.23% of lanelet have less than five an-
chors, and 79.13% less than 10. Regarding the computa-
tion time, the 25th, 50th and 75th percentiles are at 47.18ms,
241.41ms and 935.60ms, respectively. Furthermore, we
observe a very high number of anchor paths in scenarios
with numerous lane change possibilities in the vicinity of
intersections, as visualized in Fig. 8. Note, that these re-
sults are based on specified start lanelets while in applica-
tions such as motion prediction, matching an agent onto the
HD map is necessary. This matching process can yield mul-
tiple lanelet candidates, for each of which all anchor paths
should be considered.

6. Conclusion
Motion planning and prediction are key components nec-

essary for the success of fully autonomous driving. Vector
representations that interpret agents and lanes as nodes of a
graph have recently gained strong momentum. In this work,
we presented practical and easy-to-apply enhancements to
the existing HD map of the nuScenes dataset [6] which can
be readily leveraged for such graph-structured approaches.

We first presented our approach to enrich and convert
the existing map into the popular open-source map format
Lanelet2 [7]. This enhanced map allows easy access to the
full road geometry and topology, which enables the usage
of spatial semantic information (e.g. agents driving on in-
tersecting roads) and map-based anchor paths. Moreover,
we presented DMAP, a simple, yet effective approach for
generating map-based anchor paths and sorting them ac-
cording to their lateral diversity. Our evaluation shows that
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Figure 7. 2D histogram showing the correlation between the num-
ber of available anchor paths of length 100m and the compu-
tational cost by considering all lanelets across all maps of the
nuScenes dataset as starting point.

Figure 8. Visualization of edge cases with 140 (left) and 63 (right)
possible anchor paths. We added a slight random lateral offset to
each anchor path to improve visibility.

combining DMAP with the ground truth velocity profile in-
formation yields high-quality results for motion prediction
(MinADE5=1.09, MissRate5,2=0.18, Offroad rate=0.00).
This implies that the road geometry and topology are ac-
curately represented by our HD map. Future approaches
can leverage the potential of our HD map and DMAP by fo-
cusing on learning to select the most suitable anchor paths
and estimating velocity profiles.
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