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Abstract

The association task of assigning detections to tracks in
multi-person tracking has recently been improved by inte-
gration of a second matching stage for low-confident de-
tections that are usually discarded in the tracking process.
Despite its success, we find that this two stage matching has
some weaknesses. For example, high-confident detections
are preferred over low-confident detections in any case,
even if the low-confident ones are more accurate. There-
fore, a Combined Matching (CM) is proposed which con-
siders all possible assignments simultaneously in a single
matching stage and thus improves the association accu-
racy. Moreover, shortcomings of existing motion and ap-
pearance distance combinations are identified and a novel
Combined Distance (CD) for motion and appearance infor-
mation is introduced that significantly outperforms previous
fusion approaches. Furthermore, we propose an Occlusion
Aware Initialization (OAI) which prevents the start of ghost
tracks from duplicate detections under occlusion. The ef-
fectiveness of our components is shown with extensive ab-
lative experiments and the competitiveness of our tracker
is demonstrated on the MOT17 and MOT20 benchmarks,
where the current state-of-the-art is notably surpassed.

1. Introduction
Multi-person tracking (MPT) is a fundamental task

in computer vision with application areas including au-
tonomous driving, robotics, and surveillance. Most exist-
ing works divide the MPT task into detection and associ-
ation and solve the two sub-problems independently in a
tracking-by-detection based approach [1, 3–5, 9, 29, 36, 38,
42]. Typically, only high-confident detections are consid-
ered in the tracking process because a lot of false-positives
are among the low-confident detections that would intro-
duce ghost tracks, i.e., false-positive tracks, when using
them for track initialization. ByteTrack [42], however, in-
troduces a second association stage in which low-confident
detections are matched to the remaining unassigned tracks
that have not been assigned a high-confident detection in

(a) High-confident (cyan) and low-confident (yellow) detections.

(b) Tracks after two stage matching (baseline).

(c) Tracks after Combined Matching (ours).

Figure 1. Improved association with the proposed Combined
Matching (CM) approach. (a) High-confident detections and low-
confident detections (categorized by detection score) are shown.
(b) Previous methods [1,5,21,27,40,42] first match high-confident
detections to tracks before matching low-confident detections to
remaining unassigned tracks. This leads to an ID switch in the
middle frame. (c) In our CM, all detections are considered simul-
taneously. That allows better fitting low-confident detections to be
favored over high-confident ones which improves the association
and prevents the ID switch in the example. Note that in both strate-
gies, only high-confident detections are used to start new tracks.

the first stage. Since the low-confident detections are only
assigned to already tracked targets but are not utilized for
track initialization, association performance is improved
without the undesired start of ghost tracks. Because of its
success, this two stage matching (TSM) has been adopted
by many subsequent works [1, 5, 21, 27, 40]. However,
we find that the TSM has the following two shortcom-
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ings. First, high-confident detections are preferred over
low-confident ones without taking the matching distances
into account. Second, only active tracks are leveraged in
the second stage such that assignments of low-confident de-
tections to inactive tracks, i.e., tracks without assigned de-
tection in the previous frame, are not possible. To solve
these problems, we propose a Combined Matching (CM)
approach that considers all possible assignments simulta-
neously in a single matching stage and thus improves the
utilization of low-confident detections as well as inactive
tracks in the association process. Figure 1 depicts an exam-
ple sequence, where CM performs better than TSM.

Besides the matching strategy, the distance measures that
are used for representing the similarity between detections
and tracks highly influence the association performance.
As both motion and appearance information is valuable for
MPT, some trackers fuse the information and build a com-
bined distance measure [1, 9, 14, 35]. We identify several
weaknesses in those approaches and experiment with vari-
ous metrics for motion distance as well as different strate-
gies for calculating the appearance distance. On the basis
of our findings, we introduce a novel Combined Distance
(CD) for motion and appearance information that outper-
forms previous fusion approaches by a large margin.

After the association, unassigned detections are used for
track initialization. While usually a confidence threshold is
applied such that only high-confident detections start new
tracks, the surroundings of a detection are not taken into
account for track initialization. However, we argue that
unassigned detections that have high overlaps with tracks
are most likely duplicate detections and should be removed
before track initialization. Therefore, we propose an Oc-
clusion Aware Initialization (OAI) that computes for each
unassigned detection the Intersection over Union (IoU) with
all tracks and removes it if the maximum IoU exceeds a pre-
defined threshold which reduces the number of ghost tracks.

With the proposed tracking components, we build an ad-
vanced framework for MPT termed ImprAsso (Improved
Association). Our design choices are validated with com-
prehensive ablative experiments and the superiority of
ImprAsso w.r.t. other existing methods is demonstrated on
the two MPT benchmarks MOT17 [20] and MOT20 [6],
where state-of-the-art results are achieved. The main con-
tributions of our work are summarized in the following:

• A novel Combined Matching (CM) approach is pro-
posed which addresses the weaknesses of the com-
mon two stage matching and improves the utilization
of low-confident detections in the association.

• We introduce a Combined Distance (CD) for motion
and appearance information that significantly outper-
forms previous fusion methods and investigate various
strategies for the calculation of appearance distance.

• A new Occlusion Aware Initialization (OAI) technique
is proposed that takes the surroundings of unassigned
detections into account and prevents the start of ghost
tracks from duplicate detections under occlusion.

• Leveraging the proposed components, we build a
sophisticated tracking framework that surpasses the
state-of-the-art on the MOT17 and MOT20 datasets.

2. Related Work
We give an overview of related work on distance mea-

sures for the association task, matching strategies to assign
detections to tracks, and approaches for track initialization.

2.1. Distance Measures

The distance function to determine the similarity be-
tween so-far tracked targets and detections from the cur-
rent time step plays an important role in any tracking-by-
detection (TBD) approach. Hence, various distance func-
tions are applied in MPT. Many methods rely only on IoU
distance as motion information [3–5, 27, 42] due to its low
computational complexity in contrast to appearance infor-
mation for which a separate convolutional neural network
(CNN) is applied [9, 16, 29, 36, 38]. Such a CNN is often
adopted from the re-identification community and used to
extract high-dimensional features from the detected image
patches. Then, the cosine distance of these features is lever-
aged as appearance distance. There also exist some track-
ers that build upon a joint detection and embedding net-
work [15, 31, 35, 43]. As this network is trained to perform
detection and feature extraction simultaneously, a separate
CNN for appearance information becomes obsolete.

For a high association accuracy, it is beneficial to use
both motion and appearance information. DeepSORT [36]
calculates Mahalanobis distance between Kalman filter [12]
predicted track states and detections for motion informa-
tion instead of IoU. However, the Mahalanobis distance
is only used to prevent infeasible assignments and appear-
ance distance is taken for matching. StrongSORT [9], as a
further development of DeepSORT, combines Mahalanobis
and appearance distance by a weighted sum. The same
is done in JDE [35]. In our Combined Distance (CB),
we also fuse motion and appearance information with a
weighted sum, however, we do not use the Mahalanobis dis-
tance. The reason for this is that the Mahalanobis distance
gives only rough estimates of the object location when the
track state uncertainty is high [36]. Instead, we leverage
Distance IoU [44] for motion information which explicitly
models the normalized distance between the central points
of bounding boxes in addition to the standard IoU formu-
lation. Similarly, the Generalized IoU [22] is combined
with appearance information in SimpleTrack [14]. Another
fusion mechanism can be found in BoT-SORT [1], where
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the minimum of IoU and appearance distance is utilized.
We find that this approach does not fully exploit the po-
tential of both motion and appearance information because
either the one or the other one is used. Different from pre-
vious approaches [9, 14, 35], our CD additionally integrates
a minimum IoU requirement. This is important when much
weight is given to the appearance information and many tar-
gets are in the scene as the risk for confusing different per-
sons with similar appearances is high in crowded scenes.

When calculating the appearance cosine distance be-
tween detections and tracks, different strategies can be pur-
sued since for the tracks, features from multiple time steps
are used. DeepSORT [36] maintains for each track a feature
bank of the assigned detection features from the last time
steps and takes the minimum distance of all saved features
to the features of a current detection as appearance distance.
In [9,35], the track feature is consequently updated in an ex-
ponential moving average manner such that only one cosine
distance per track-detection pair needs to be calculated. We
combine the two approaches by computing a mean feature
from the feature bank which then is used as track feature in
the cosine distance calculation to the detection features.

2.2. Matching Strategies

Many TBD methods match high-confident detections to
tracks in a single stage [3,4,9]. In contrast, DeepSORT [36]
applies a matching cascade that favors recently observed
tracks. The motivation of the cascaded scheme is that
the accuracy of propagated locations of inactive tracks de-
creases over time. In StrongSORT [9], however, it is shown
that such a matching cascade decreases the performance
when the tracker gets better because the additional prior
constraints limit the association accuracy. ByteTrack [42]
proposes a second matching stage in which low-confident
detections are associated with unmatched tracks from the
first stage. The low-confident detections are not used to start
new tracks such that no ghost tracks from low-confident
false positive detections are introduced. The authors of
ByteTrack show that this two stage matching (TSM) im-
proves the tracking performance when integrated into var-
ious frameworks [42]. Consequently, TSM is adopted in
many following works [1,5,21,27,40]. Despite its success,
we identify two shortcomings of TSM: High-confident de-
tections are preferred over low-confident ones in any case
and no assignments of low-confident detections to inactive
tracks are possible. To solve these problems, we propose
a Combined Matching (CM) strategy that fuses the two
matching stages into one matching stage in which all possi-
ble assignments are considered simultaneously.

2.3. Track Initialization

In new Transformer [30] based tracking-by-attention
architectures, detection and tracking are integrated more

tightly than in TBD which also changes the concept of
track initialization. For example, TrackFormer [19] uses
a fixed number of object queries for recognizing new tar-
gets besides track queries that carry identity information of
already tracked targets. Thus, track initialization is to an ex-
tent learnt by the neural network itself, whereas in TBD, a
heuristic has to be applied that determines which detections
should initialize new tracks after the association.

Naturally, only unmatched detections with high confi-
dence are considered for track initialization such that no
or only few ghost tracks stemming from false positive de-
tections are started. Some TBD methods apply a higher
confidence threshold for initialization than for association
[1, 5, 27, 40, 42], i.e., when a target is detected once with
high confidence, detections with lower confidence can be
assigned to it in consecutive frames. To suppress false pos-
itive detections which occur only in single frames, many
methods first start tentative tracks that have to be confirmed
with assigned detections in consecutive frames before the
tentative tracks are activated [1, 3, 5, 9, 42]. Besides detec-
tion confidence and continuity, we think that the surround-
ings of a detection contain important information. Our Oc-
clusion Aware Initialization (OAI) takes this into account
by calculating for each unassigned detection the IoU to all
track boxes and prevents an initialization if the maximum
IoU exceeds an overlap threshold, arguing that the detec-
tion is probably a duplicate detection. Note that our OAI
also applies a confidence threshold and can additionally be
combined with the strategy of starting tentative tracks first.

3. Improved Association
In Section 3.1, we propose Combined Matching (CM)

which fuses previously used two matching stages to one
stage such that the usage of low-confident detections is im-
proved. A Combined Distance (CD) of motion and appear-
ance information for enhanced association accuracy is pre-
sented in Section 3.2. The Occlusion Aware Initialization
(OAI) to prevent the start of ghost tracks under occlusion is
introduced in Section 3.3 and finally, we give an overview
of the proposed tracking framework in Section 3.4.

3.1. Combined Matching

Before the presentation of ByteTrack [42], low-confident
detections Dl with score s below a tracking threshold strack
were typically discarded and only high-confident detections
Dh with s > strack were used in the tracking process.
In [42], a two stage matching (TSM) is proposed that first
assigns Dh to tracks T and afterwards assigns Dl to the re-
maining unmatched active tracks T a,u. We find that this
TSM hast two shortcomings: First, inactive tracks T i, i.e.,
tracks without assigned detection in the previous frame,
cannot be matched with Dl. Second, Dh are preferred over
Dl even if there exist Dl that fit much better than Dh.
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We solve these problems with a Combined Matching
(CB) approach that considers all possible assignments si-
multaneously. Distances between tracks and Dh (first
stage in TSM) and between tracks and Dl (second stage
in TSM) are combined in one distance matrix which then
is leveraged in a single matching stage. More precisely, let
T = {T1, . . . , Tm} and Dh = {Dh

1 , . . . , D
h
n} be the sets

of tracks and high-confident detections, respectively. The
distance matrix Dh = (dij)i∈[1,m],j∈[1,n] containing all dis-
tances between T and Dh is computed leveraging a distance
function dh. Equally, Dl is calculated for T and Dl with
distance dl. Note that arbitrary distance functions d can be
applied for dh and dl. Finally, Dl is multiplied with a nor-
malization factor β and then concatenated with Dh to get
the combined distance matrix D∗:

D∗ = (Dh βDl) (1)

For a reasonable combination, β should account for differ-
ent scales of Dh and Dl due to different distance functions
dh and dl. Moreover, a stricter maximum matching distance
dmax should be applied for Dl as they are more inaccurate
on average. To achieve this, we calculate β as the ratio of
the maximum distances dhmax and dlmax which are adopted
from the first and second stage of TSM, respectively:

β =
dhmax

dlmax

(2)

Thus, a maximum distance of d∗max = dhmax is applied in
the CM. Note that with this choice, the same assignments
as in TSM are possible with the desired extension that Dl

can be favored over Dh and also matched to T i.
Practically, we first employ TSM and tune the maximum

matching distances dhmax and dlmax. Then, β is calculated
with Equation (2) to apply the CM with D∗ from Equa-
tion (1). The linear sum assignment problem is solved with
the Hungarian method [13] that minimizes the overall costs
from the combined distance matrix D∗. Figure 2 illustrates
the benefits of our CM compared to the TSM baseline.

3.2. Combined Distance

It has been shown in previous works that fusing motion
and appearance information is beneficial in multi-person
tracking [1, 9, 35]. In BoT-SORT [1], appearance cosine
distance dAPP is integrated in the first stage of TSM. It is
combined with IoU based motion distance dMOT by taking
the minimum of dAPP and dMOT. We find that this fusion
mechanism is not optimal as either one or the other distance
is used but not both. Instead, combining dMOT and dAPP

as weighted sum with parameter λ is more promising:

dMOT+APP = λdMOT + (1− λ)dAPP (3)

Note that JDE [35] and StrongSORT [9] fuse motion and
appearance distance in the same way but use Mahalanobis

(a) TSM. (b) CM (β = 2).

Figure 2. Toy example of two stage matching (TSM) as in [42]
vs. our Combined Matching (CM) approach. (a) In the first stage
of TSM, active tracks T a and inactive tracks T i are matched with
high-confident detections Dh based on Dh. In the second stage,
unassigned active tracks T a,u are matched with low-confident de-
tections Dl based on D̃l. Unconsidered assignments are indicated
in gray. (b) In contrast, our CM considers all possible assignments
simultaneously. Instead of preferring Dh over Dl at any cost, we
introduce a normalization factor β that is multiplied with the dis-
tances Dl from low-confident detections Dl. This allows better fit-
ting detections from Dl to be matched (red circle) instead of more
inaccurate detections from Dh (black circle in (a)). Moreover, as-
signments of Dl to inactive tracks T i (blue circle) are possible.

distance for motion information. Since the Mahalanobis
distance is only a rough estimation of the object location
if the state uncertainty is high [36], IoU based distances are
a better choice for motion information as we will see in the
experimental evaluation. Besides IoU and Mahalanobis dis-
tance, we also experiment with the Distance IoU (DIoU)
from [44] for dMOT, which explicitly models the normal-
ized distance between the central points of bounding boxes.

One shortcoming of dMOT+APP from Equation (3) in
tracking on sequences with high-frame rates is that it allows
matches of non-overlapping boxes if both λ and dAPP are
small. Indeed, we find λ = 0.2 to be a good choice on the
utilized dataset and observe wrong matches when persons
with similar appearance occur, which frequently happens in
scenes with a large number of targets. Therefore, we inte-
grate a minimum IoU requirement of omin into Equation (3)
which yields the proposed Combined Distance dCD:

dCD =

{
λdMOT + (1− λ)dAPP if IoU > omin

dmax + ϵ otherwise
(4)

Here, dmax denotes the maximum allowed distance for
matching and ϵ is a very small value, e.g., 1e−5.

While only the current track state contributes to the mo-
tion distance dMOT, the appearance distance dAPP inte-
grates information from the past. Various strategies for
computing dAPP can be pursued and we experiment with
three different approaches: First, a feature bank is built for
each track with the features of the last nfeat assigned de-
tections and the minimum distance of these features to the
features of a current detection is chosen [36]. Second, only
one track feature is maintained that is updated in an expo-
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Figure 3. Overview of our tracking framework (own contributions in blue). Tracks from the previous frame Tt−1 are predicted with
camera motion compensation (CMC) and motion model (MM) yielding T̃t−1, while the detector (DET) is applied on the image It and a re-
identification model (REID) extracts appearance features from the detected image regions. Those are saved next to the bounding boxes in
the set of detections D. For high-confident detections Dh with score s > strack and low-confident detections Dl with s < strack, different
distances d to the predicted tracks T̃t−1 are calculated. The proposed Combined Distance (CD) of motion (dhMOT) and appearance distance
(dhAPP) from Equation (4) is leveraged for Dh, while only motion distance (dlMOT = 1− IoU) is used for Dl. The resulting two distance
matrices Dh and Dl are fused to D∗ according to Equation (1) in our Combined Matching (CM), where CAT denotes concatenation. After
solving the linear sum assignment (LSA) problem, the unmatched detections Du are compared with updated tracks T̃t in our Occlusion
Aware Initialization (OAI) module. Finally, new tracks T n

t are added to the updated tracks yielding the final set of tracks Tt.

nential moving average (EMA) manner [9, 35]. Third, we
propose to build a feature bank as in [36] but compute a
mean track feature by averaging the features of the feature
bank and then use this mean track feature for comparison to
the features of the current detections.

3.3. Occlusion Aware Initialization

To prevent the initialization of ghost tracks from single
false positive detections (FP), some approaches [1,3,5,9,42]
first start tentative tracks from unmatched detections {Du}
that have to be assigned a detection in ninit consecutive
frames before activation. Despite removing FP, this strategy
introduces ninit−1 false negatives for each correct track be-
cause tentative tracks do not contribute to the online track-
ing results. We argue that most of the FP in multi-person
tracking are duplicate detections when a decent detector is
used, especially in crowded scenes where it is difficult for
the detector to reason about object boundaries and dupli-
cate detections can easily occur. Therefore, we propose an
Occlusion Aware Initialization (OAI) technique that is ca-
pable of identifying duplicate detections and discards them
from starting new tracks. For each unmatched detection Du,
the IoU with all updated tracks {T̃} is calculated and if the
maximum IoU exceeds the overlap threshold omax, the de-
tection is removed. The OAI is illustrated for two updated
tracks and an unmatched duplicate detection in Figure 4.

3.4. Proposed Tracking Framework

The interplay of the proposed tracking components (Sec-
tions 3.1 to 3.3) is shown in Figure 3, where an overview of
our tracking framework is given. For an accurate modelling
of target and camera movement, we apply the NSA Kalman
filter [8] and the camera motion compensation from [28],
respectively. Following the current state-of-the-art (SOTA)

Figure 4. Illustration of Occlusion Aware Initialization (OAI).
Typically, unmatched detections like Du initialize new tracks in-
dependent from its surroundings. In contrast, we calculate the IoU
between unmatched detections and updated tracks {T̃} and com-
pare the maximum IoU with a predefined threshold omax. If the
overlap with an already tracked target is too high, the detection Du

is removed arguing that it is probably a duplicate detection.

methods in multi-person tracking [1, 5, 9, 21, 27, 33, 34, 42],
YOLOX [11] is deployed as detector. The re-identification
model is adopted from BoT-SORT [1] because this tracker
is most similar to our approach among the SOTA methods.
To further enhance the final tracking results, the Gaussian
Smoothed Interpolation (GSI) from [9] is leveraged.

4. Experiments
We first specify implementation details in Section 4.1.

Then, we briefly describe the utilized datasets and evalu-
ation measures in Section 4.2. The results of our ablative
experiments are analyzed in Section 4.3, before a compari-
son with the SOTA is made in Section 4.4.

4.1. Implementation Details

We use a YOLOX [11] detector in our tracking-by-
detection framework which was trained on the detec-
tion datasets CrowdHuman [25], CityPersons [41], and
ETH [10], as well as the tracking datasets MOT17 [20]
and MOT20 [6]. For ablative experiments on MOT17 train
and evaluation on the test sets, we adopt different model
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weights provided by the authors of ByteTrack [42]. Un-
less otherwise stated, the input resolution of the images is
(1400 × 800). The minimum score smin and maximum
IoU oNMS for filtering detections in the non-maximum sup-
pression (NMS) are smin = 0.1 and oNMS = 0.7, respec-
tively. The detections are separated into Dh and Dl with
strack = 0.6 and a threshold of sinit = 0.7 is applied for
initialization of tracks in the ablative experiments. For OAI,
the maximum overlap omax is empirically set to 0.55. The
best configuration of CD from Equation (4) uses DIoU for
dMOT, λ = 0.2, omin = 0.1, and a maximum distance
dhmax = 0.65. For calculation of dAPP, the size of the fea-
ture bank is nfeat = 15. The maximum IoU distance for
low-confident detections is empirically set to dlmax = 0.19
which yields β = 3.42 according to Equation (2). To enable
re-activation after occlusion, inactive tracks are kept for 35
frames without assigned detection before termination. The
interpolation parameter τ in GSI [9] is empirically set to 12.

4.2. Evaluation Datasets and Metrics

We follow the common practice to divide the MOT17
train split and use its second half as validation set for abla-
tive experiments [1, 9, 24, 28, 32, 37, 42, 45]. Both train and
test split contain 7 sequences for multi-person tracking with
complex scenarios including many occlusions, camera mo-
tion, and scenes at day and night. The MOT20 dataset is,
despite containing no camera motion, even more challeng-
ing comprising very crowded scenes (127 vs. 21 persons
per image [26]) – 4 for train and test each. Comparison with
the SOTA on the test sets is done by submitting the tracking
results to the evaluation server (https://motchallenge.net/ )
because the annotations are not publicly available.

With TrackEval [17], we compute HOTA [18] as our
main evaluation measure for tracking performance as it
takes association, detection, and localization accuracy
equally into account. In addition, we report MOTA [2] and
IDF1 [23], as well as the number of false positives (FP),
false negatives (FN), and identity switches (IDSW).

4.3. Ablation Study

We first conduct experiments with different association
measures including our Combined Distance (CD) and
various strategies for calculating appearance distance.
Then, our Combined Matching (CM) is compared with
two stage matching and the importance of matching low-
confident detections to inactive tracks (L2I) is investigated.
Afterwards, our Occlusion Aware Initialization (OAI) is
explored. Finally, we study the impact of our tracking
components on the final performance and examine different
interpolation methods to post-process our tracking results.

Distance measures. To analyze the effectiveness of
different motion- and appearance-based distances, we run
baseline experiments with only one matching stage. The

Table 1. Different distance combinations (one stage matching).

dMOT dAPP Comb. λ omin HOTA MOTA IDF1
Mahal - - - - 65.4 75.4 76.4
IoU - - - - 68.9 77.1 81.8

DIoU - - - - 69.0 77.1 82.0
IoU M. Cos ∗ Min - - 69.0 77.4 81.8

Mahal Cos ∗∗ Eq. (3) 0.02 - 69.2 76.7 82.6
IoU Cos Eq. (3) 0.5 - 69.2 77.4 82.3

DIoU Cos Eq. (3) 0.5 - 69.4 77.5 82.6
DIoU Cos Eq. (3) 0.2 - 69.9 77.2 83.4
DIoU Cos Eq. (4) 0.2 0.1 70.3 77.3 84.1

∗ Masked cosine distance from BoT-SORT [1]. ∗∗ JDE [35].

Table 2. Calculation of appearance distance (one stage matching).

Method Min dist. [36] Mean dist. Mean feat. EMA [35]
HOTA 69.5 69.9 70.3 70.3

results are depicted in Table 1. For a fair comparison,
the maximum matching distance dmax is tuned for each
configuration separately. When using only motion distance
dMOT, DIoU achieves slightly better results than the stan-
dard IoU, while Mahalanobis distance (Mahal) performs
much worse which confirms our claim that IoU based
distances are the better choice. Combining appearance
distance dAPP with IoU by taking the minimum as in
BoT-SORT [1], only a small gain of 0.1 HOTA is reached
although the cosine distance (Cos) is additionally masked to
prevent wrong assignments. Fusing dAPP with DIoU using
a weighted sum as in Equation (3) and setting λ = 0.2,
HOTA is significantly enhanced by 0.9 points showing the
high potential of appearance information when integrated
correctly. Note that λ = 0.2 means that 4 times the weight
is given to dAPP compared to dMOT. Enforcing a minimum
IoU requirement omin in our CD from Equation (4) yields
further decent improvements (+0.4 HOTA). Our CD out-
performs previous fusion approaches from BoT-SORT [1]
and JDE [35] by 1.3 and 1.1 HOTA, respectively.

Appearance distance calculation. Besides the way how
dAPP and dMOT are combined, how dAPP is calculated
is also important. Various strategies are examined in
Table 2. Using the minimum cosine distance from all
features of a feature bank as done in DeepSORT [36]
gives the worst results. Taking the mean distance performs
better. However, instead of averaging the distances, it
is beneficial to average the features and calculate the
cosine distance w.r.t. the mean feature. The same is done
within the EMA technique despite that an exponential
moving average in place of a simple average is used. Not
surprisingly, similar results are obtained. Since the simple
mean feature performs slightly better in our final tracker
(+0.1 HOTA w.r.t. EMA), we use it in all other experiments.
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Table 3. Two stage matching (TSM) vs. Comb. Matching (CM).

HOTA MOTA IDF1 HOTA MOTA IDF1
TSM 71.2 78.3 85.3 CM 71.5 78.5 85.8

Table 4. Matching of low-confident detections to inactive tracks
(L2I). ByteTrack is analyzed with and without CMC. Slightly dif-
ferent results w.r.t. the papers stem from re-implementation.

Tracker CMC L2I HOTA MOTA IDF1
ByteTrack [42] ✗ ✗ 67.9 77.8 80.1
ByteTrack [42] ✗ ✓ 67.9 78.1 79.9
ByteTrack [42] ✓ ✗ 69.0 78.3 82.2
ByteTrack [42] ✓ ✓ 69.3 78.7 82.6
BoT-SORT [1] ✓ ✗ 69.5 78.2 82.9
BoT-SORT [1] ✓ ✓ 70.2 78.6 83.3
Ours ✓ ✗ 71.1 78.2 84.9
Ours ✓ ✓ 71.5 78.5 85.8

Table 5. Ablation of our Occlusion Aware Initialization (OAI).

OAI ninit omax HOTA MOTA IDF1
✗ 1 - 71.1 78.3 85.2
✗ 2 - 71.1 78.3 85.2
✗ 3 - 71.0 78.2 85.2
✓ 1 0.5 71.4 78.5 85.9
✓ 1 0.55 71.5 78.5 85.8
✓ 1 0.6 71.4 78.5 85.7
✓ 2 0.55 71.4 78.5 85.8

Matching strategy. As already discussed in Section 3.1,
our Combined Matching (CM) has the advantage of
considering all possible assignments simultaneously which
is not the case in two stage matching (TSM). The resulting
improved tracking performance is shown quantitatively in
Table 3 and qualitatively in Figure 1, where tracking results
are visualized both for TSM and CM.

Low-confident detections to inactive tracks. Another
benefit of our CM is that it allows low-confident detections
Dl to be matched with inactive tracks (L2I). We apply L2I
in our tracking framework and also in ByteTrack [42] and
BoT-SORT [1] by utilizing inactive tracks in the second
matching stage. Results are summarized in Table 4. In
ByteTrack without camera motion compensation (CMC),
L2I yields no improvements, however, when integrating
CMC, L2I enhances HOTA by 0.3 points. We hypothesize
that this is because inactive tracks have inaccurately pre-
dicted locations when camera motion is not compensated
and matching those to Dl – that can also be inaccurate –
harms association accuracy. A plus of 0.7 and 0.4 HOTA is
obtained for BoT-SORT and our framework, respectively,
indicating that L2I improves the association when good

(a) Without L2I. (b) With L2I.

Figure 5. Qualitative example of L2I. (a) When not allowing
low-confident detections to be matched to inactive tracks (dashed
lines), hard-to-detect targets, e.g., due to occlusion, can get lost
when the inactive patience is over. As a consequence, a new track
is started (blue) when a high-confident detection is available again.
(b) Matching low-confident detections to inactive tracks (L2I) im-
proves identity preservation for occluded targets.

(a) Without OAI. (b) With OAI.

Figure 6. Qualitative example of OAI. (a) Without OAI, a du-
plicate detection missed by NMS starts a new track (red) which
causes an ID switch. The inactivated track is indicated with dashed
lines. (b) In OAI, the track information is leveraged to remove un-
matched detections with high overlaps to existing tracks. Thus, no
duplicate track is started and the ID switch is prevented.

motion models are used. A qualitative example, where L2I
prevents an IDSW is shown in Figure 5.

Track initialization. After the association, high-confident
unmatched detections are considered for track initializa-
tion. A common strategy is to first start tentative tracks
that become active after ninit consecutive assignments.
Differently, our OAI allows a detection to start a track
only if no overlaps above omax with other tracks exist.
The strategies are compared in Table 5. In our tracker,
no improvements are obtained for the baseline initializa-
tion, whereas OAI enhances HOTA up to 0.4 points for
omax = 0.55. Especially identity preservation is improved
with a plus of 0.6 IDF1. A qualitative example, where
OAI successfully removes a duplicate detection and as a
consequence prevents an IDSW can be found in Figure 6.

Component analysis. To investigate the impact of the
proposed tracking modules, we add one component after
another and evaluate the tracking performance in Table 6.
The first row is a baseline with two stage matching and
IoU distance. All of our tracking modules improve the
overall performance, especially the association accuracy.
Compared to the baseline, HOTA, MOTA, and IDF1 are
increased by 2.3, 0.5, and 3.6 points, respectively.
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Table 6. Impact of our tracking components.

CD L2I CM OAI HOTA MOTA IDF1
✗ ✗ ✗ ✗ 69.2 78.0 82.2
✓ ✗ ✗ ✗ 70.7 78.3 84.6
✓ ✓ ✗ ✗ 70.8 78.3 85.1
✓ ✓ ✓ ✗ 71.1 78.3 85.2
✓ ✓ ✓ ✓ 71.5 78.5 85.8

Table 7. Different interpolation variants as post-processing.

Type Max gap Min length HOTA MOTA IDF1
- - - 71.5 78.5 85.8

LI ✗ ✗ 73.2 81.1 87.2
LI ✓ ✗ 73.3 81.1 87.3
LI ✓ ✓ 73.4 81.4 87.5

GSI ✓ ✓ 73.7 81.7 87.7

Table 8. State-of-the-art methods on MOT17.

Method MOTA IDF1 HOTA FP FN IDSW
RTU++ [33] 79.5 79.1 63.9 29508 84618 1302
StrongSORT [9] 79.6 79.5 64.4 27876 86205 1194
SAT [34] 80.0 79.8 64.4 25125 86505 1356
ByteTrack [42] 80.3 77.3 63.1 25491 83721 2196
QuoVadis [7] 80.3 77.7 63.1 25491 83721 2103
FOR [21] 80.4 77.7 63.6 28674 79452 2298
BoT-SORT [1] 80.5 80.2 65.0 22521 86037 1212
BYTEv2 [27] 80.6 78.9 63.6 35208 73224 1239
C-BIoU [40] 81.1 79.7 64.1 23136 82011 1455
ImprAsso 82.2 82.1 66.4 26727 72666 924

Track interpolation. To further improve the results, we
evaluate two interpolation approaches for fragmented tracks
as post-processing: a simple linear interpolation (LI) and
the Gaussian Smoothed Interpolation (GSI) from [9]. In ad-
dition, two constraints are applied. Gaps with length larger
than 30 frames and tracks which comprise less than 30 de-
tections are not interpolated. The results are listed in Ta-
ble 7. Even a simple LI boosts HOTA by 1.7 points indicat-
ing that our tracker is capable of successfully bridging a lot
of occlusions. The two constraints for maximum gap length
and minimum track length further improve HOTA by 0.1
points each. Finally, GSI yields another plus of 0.3 HOTA.

4.4. Comparison with the State-of-the-Art

We propose different tracking components to improve
the association accuracy in multi-person tracking which is
why we term our tracker ImprAsso (Improved Association).
A comparison of ImprAsso with the state-of-the-art (SOTA)
methods on MOT17 is given in Table 8. Note that we fol-
low recent approaches [1, 5, 42] and apply various thresh-

Table 9. sinit on MOT17 (left) and MOT20 (right) test.

01 03 06 07 08 12 14 04 06 07 08
0.8 0.75 0.75 0.7 0.7 0.8 0.55 0.7 0.4 0.7 0.4

Table 10. State-of-the-art methods on MOT20.

Method MOTA IDF1 HOTA FP FN IDSW
SAT [34] 75.0 76.6 62.6 15549 113136 816
OC-SORT [5] 75.7 76.3 62.4 19067 105894 942
RTU++ [33] 76.5 76.8 62.8 19247 101290 971
FOR [21] 76.8 76.4 61.4 27112 91254 1443
BYTEv2 [27] 77.3 75.6 61.4 22867 93409 1082
ReMOT [39] 77.4 73.1 61.2 28351 86659 1789
ByteTrack [42] 77.8 75.2 61.3 26249 87594 1223
QuoVadis [7] 77.8 75.7 61.5 26249 87594 1187
BoT-SORT [1] 77.8 77.5 63.3 24638 88863 1313
ImprAsso 78.6 78.8 64.6 27064 82715 992

olds for track initialization sinit among the sequences, while
setting strack = sinit − 0.1. For reproducibility, we spec-
ify this parameter in Table 9. On MOT17, ImprAsso sur-
passes previous approaches significantly with a gain of 1.1
MOTA, 2.4 IDF1, and 2.3 HOTA w.r.t. to the second best
entry C-BIoU [40]. Moreover, the least number of IDSW is
obtained indicating a superior association performance.

On MOT20, we adopt the input resolution from [1,5,42],
that is (1600, 896) for sequences 04 and 07 and (1920, 736)
for 06 and 08. We also adopt the initialization thresholds
sinit which are given in Table 9 for reproducibility. Results
of the SOTA methods on the challenging MOT20 dataset
are summarized in Table 10. ImprAsso outperforms all ap-
proaches including the previous best method BoT-SORT [1]
with improvements of 0.8 MOTA, 1.3 IDF1, and 1.3 HOTA.

5. Conclusion

In this work, we propose several tracking modules to im-
prove the association accuracy in multi-person tracking. A
novel combined distance of motion and appearance infor-
mation is introduced that significantly outperforms previous
fusion approaches and various strategies for calculating mo-
tion and appearance distance are explored. Moreover, it is
shown that leveraging inactive tracks in the second match-
ing stage can enhance the performance of different trackers
and that our combined matching approach improves the uti-
lization of low-confident detections compared to the basic
two stage matching. Despite that, a new track initializa-
tion technique is proposed which prevents the start of ghost
tracks from duplicate detections under occlusion. The effec-
tiveness of our components is shown with extensive ablative
experiments and putting all together, our tracker surpasses
the state-of-the-art on the MOT17 and MOT20 benchmarks.
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Leal-Taixé. Quo vadis: Is trajectory forecasting the key to-
wards long-term multi-object tracking? In Adv. Neural In-
form. Process. Syst., 2022. 8

[8] Yunhao Du, Junfeng Wan, Yanyun Zhao, Binyu Zhang, Zhi-
hang Tong, and Junhao Dong. Giaotracker: A comprehen-
sive framework for mcmot with global information and op-
timizing strategies in visdrone 2021. In Int. Conf. Comput.
Vis. Workshp., pages 2809–2819, 2021. 5

[9] Yunhao Du, Zhicheng Zhao, Yang Song, Yanyun Zhao, Fei
Su, Tao Gong, and Hongying Meng. Strongsort: Make deep-
sort great again. IEEE Trans. Multimedia, 2023. 1, 2, 3, 4,
5, 6, 8

[10] Andreas Ess, Bastian Leibe, Konrad Schindler, and Luc Van
Gool. A mobile vision system for robust multi-person track-
ing. In IEEE Conf. Comput. Vis. Pattern Recog., 2008. 5

[11] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian
Sun. Yolox: Exceeding yolo series in 2021. arXiv preprint
arXiv:2107.08430, 2021. 5

[12] Rudolph Emil Kalman. A new approach to linear filtering
and prediction problems. J. Basic Engineering, 82(1):35–45,
1960. 2

[13] Harold William Kuhn. The hungarian method for the as-
signment problem. Naval Research Logistics Quarterly, 2(1-
2):83–97, 1955. 4

[14] Jiaxin Li, Yan Ding, and Hualiang Wei. Simpletrack: Re-
thinking and improving the jde approach for multi-object
tracking. Sensors, 22(15), 2022. 2, 3

[15] Chao Liang, Zhipeng Zhang, Yi Lu, Xue Zhou, Bing Li,
Xiyong Ye, and Jianxiao Zou. Rethinking the competition
between detection and reid in multiobject tracking. IEEE
Trans. Image Process., 31:3182–3196, 2020. 2

[16] Qiankun Liu, Qi Chu, Bin Liu, and Nenghai Yu. Gsm: Graph
similarity model for multi-object tracking. In IJCAI, pages
530–536, 2020. 2

[17] Jonathon Luiten and Arne Hoffhues. Trackeval. https://
github.com/JonathonLuiten/TrackEval, 2020.
6
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HOTA: A higher order metric for evaluating multi-object
tracking. Int. J. Comput. Vis., 129(2):548–578, 2021. 6

[19] Tim Meinhardt, Alexander Kirillov, Laura Leal-Taixé, and
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