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Abstract

The use of deep unfolding networks in compressive sens-
ing (CS) has seen wide success as they provide both sim-
plicity and interpretability. However, since most deep un-
folding networks are iterative, this incurs significant re-
dundancies in the network. In this work, we propose a
novel recursion-based framework to enhance the efficiency
of deep unfolding models. First, recursions are used to ef-
fectively eliminate the redundancies in deep unfolding net-
works. Secondly, we randomize the number of recursions
during training to decrease the overall training time. Fi-
nally, to effectively utilize the power of recursions, we in-
troduce a learnable unit to modulate the features of the
model based on both the total number of iterations and the
current iteration index. To evaluate the proposed frame-
work, we apply it to both ISTA-Net+ and COAST. Exten-
sive testing shows that our proposed framework allows the
network to cut down as much as 75% of its learnable pa-
rameters while mostly maintaining its performance, and at
the same time, it cuts around 21% and 42% from the train-
ing time for ISTA-Net+ and COAST respectively. More-
over, when presented with a limited training dataset, the
recursive models match or even outperform their respec-
tive non-recursive baseline. Codes and pretrained mod-
els are available at https://github.com/Rawwad-
Alhejaili/Recursions-Are-All-You-Need.

1. Introduction

Compressive sensing (CS) is an emerging field that chal-
lenges the conventions of digital data acquisition. The
Nyquist sampling rate (the golden standard in signal acqui-
sition) states that any signal x can be recovered when it is
sampled at double its highest frequency. However, sampling
the signal at this rate can pose some challenges. For exam-
ple, in data centers, the Nyquist rate limits the amount of

data stored on storage drives leading to insufficient utiliza-
tion of the servers. Also, in seismic surveys, sampling the
signal at the Nyquist rate is challenging either due to geo-
logical or economical constraints [15]. As such, while the
Nyquist rate ensures perfect reconstruction of the signal, it
can be unappealing in many cases. However, CS promises
to recover signals below the Nyquist rate [1] [8] [2]. Mathe-
matically, the recovery problem can be formulated as:

y = Φx (1)

where y ∈ RM is the measurements, x ∈ RN is the original
signal, and Φ ∈ RM×N is the sampling matrix.

Compressive sensing aims to reconstruct the signal (or
image) when the samples M ≪ N . This can be guaranteed
with high probability when the signal is sparse enough in
one domain [1] [8] [2]. This is why CS emphasizes sparsity.
Representing the collapsed signal is done by:

y = ΦΨs (2)

where Ψ ∈ RN×N is the sparsifying basis and s is the sig-
nal x in the sparse domain.

Although compressive sensing presents theoretical guar-
antees about the recoverability of the signal [2], it is still
a challenging problem to solve. Finding the sparsest solu-
tion requires iterative calculations which in turn makes CS
computationally expensive to run [24] [6] [23].

However, applying deep learning (DL) based approaches
to compressive sensing proved to be fruitful. Neural net-
works are able to jointly learn the sampling matrix and the
inverse mapping of the measurements y to the original sig-
nal x [21] [19] [29] [3]. Neural network-based CS meth-
ods demonstrated both better performance than handcrafted
techniques and more importantly, at a lower computational
complexity [28] [21] [27].

For deep learning-based CS models, deep unfolding net-
works are an attractive choice. Those models utilize the rich
literature in the CS field by taking existing iterative hand-
crafted CS methods and supercharge them with the use of
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Figure 1. General structure of deep unfolding models.

Figure 2. Intermediate CS reconstruction results of ISTA-Net [28].

neural networks [28] [22] [27]. This is done by mapping
each iteration to its own neural network block. The advan-
tage this provides is both interpretability and simplicity.

Deep unfolding models usually exhibit improved perfor-
mance as the number of recovery blocks increases [28] [27].
However, we argue that this increase in performance could
be attributed to the increased number of iterations rather
than the increase in recovery blocks. Therefore, increas-
ing the number of recovery blocks unnecessarily increases
the number of parameters and redundancies. This makes
the model more prone to overfitting necessitating a larger
and more diverse training dataset [26] and can also limit its
deployment options [4].

In this work, we propose a recursive framework to in-
crease the efficiency of deep unfolding networks in terms
of training time, number of parameters, and training data
efficiency. Specifically, our contribution is three-fold:

• First, we cut down on the redundancies in the deep un-
folding networks by introducing recursions. This al-
lows the model to increase its utilization of each layer’s
capacity before moving on to the next layer or block.

• Secondly, we propose the use of random recursions
during training to decrease the training time and allow
the model to work with varying degrees of recursions.

• Finally, we acknowledge that a naive implementation
of recursions may not be optimally efficient. There-
fore, we leverage a learnable unit to modulate the fea-
tures of the model based on the total number of itera-
tions and the current iteration index.

The proposed framework is applied to both ISTA-Net+
[28] and COAST [27]. The results on COAST show that
the proposed framework decreases the training time by 42%
and the learnable parameters by almost 75% while sus-
taining a minimal impact on its performance. In the case
of ISTA-Net+, we observe similar trends. The recursive
framework decreases the training time by 21% and the
learnable parameters by 66%. However, we find that the re-
cursive ISTA-Net+ model slightly outperforms its baseline
model. Furthermore, when the size of the training data is
limited, the recursive models either match their respective
baselines (which is the case for COAST) or even outper-
form the baseline in the case of ISTA-Net+. Therefore, the
recursive models are more resilient to overfitting thanks to
the inherent reduction of their learning parameters.

2. Literature Review
Previous work in compressive sensing can be categorized

into two categories: handcrafted iterative optimization-
based methods and data-driven deep learning-based meth-
ods. The data-driven methods can also be categorized into
two categories, i.e., deep straightforward networks and deep
unfolding networks.

2.1. Iterative Optimization Based Methods

Generally, inverse problems such as in Eq. (1) are im-
possible to solve as the number of unknowns N is usually
much greater than the number of measurements M . How-
ever, compressive sensing theory states that if the signal x is
sparse in some domain, then it can be recovered with high
probability. Ideally, the recovered signal will have the low-
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Figure 3. General architecture of the recursive framework. Compared to general deep unfolding models such as COAST [27] and ISTA-
Net+ [28], Ri recursions are used in each recovery block i in the recovery subnet.

est l0-norm [8]. Though, l0-norm minimization is a non-
convex optimization problem and is prone to combinatorial
complexity [8]. As such, computing the minimum l0-norm
suffers from a severe computational cost as the signal x in-
creases in size. Others have proposed minimizing the l1-
norm instead [2], which translates the problem into a convex
optimization problem. Such methods include orthogonal
matching pursuit (OMP) [24], least absolute shrinkage and
selector operator (LASSO) [23], and iterative shrinkage-
thresholding algorithm (ISTA) [6]. Other works have pro-
posed minimizing the total variation (TV) instead, which in-
clude methods such as TVAL3 [12] and denoising-based ap-
proximate message passing (D-AMP) [14]. Overall, while
handcrafted methods have made strides in decreasing their
associated computational complexity, they still remain com-
putationally demanding due to their reliance on iterative op-
timizations.

2.2. Deep Straightforward Models

Briefly, deep straightforward networks model the CS
problem purely for neural networks and are not based on
a handcrafted CS method. [16] proposes stacked denois-
ing autoencoder (SDA), which uses multi-layer perceptrons
(MLPs) for both the sampling and reconstruction stages.
ReconNet [11] uses a random Gaussian matrix in the sam-
pling stage and then uses convolutional neural networks
(CNNs) for reconstruction followed by a conventional de-
noiser (BM3D [5]). Shi et al. [21] proposed CSNet. It
jointly learns both the sampling matrix and the inverse map-
ping from the measurements to the original signal. Notably,
it introduced the use of convolutions to learn the sampling
matrix. Furthermore, other works [19] enforce constraints
on the learned sampling matrices (such as limiting them to
binary numbers), so that they can be applied more easily to
hardware solutions. In [19], they show that the learned sam-
pling matrices can improve the reconstruction results even
when applied to handcrafted methods.

Many CS architectures suffer from being limited to a sin-
gle CS ratio (and have to be retrained for each specific ra-
tio). Wuzhen Shi et al. proposes SCSNet [20], which solves

the problem by adding enhancement layers. This allows
the model to tackle multiple CS ratios without the need for
retraining. A more recent approach by Vladislav Kravets
& Adrian Stern [10] solves this by progressively sampling
the image at different scales where each scale builds on the
measurements obtained from the last one. In other words,
they reconstruct the low frequencies first and then progres-
sively reconstruct higher frequencies. As such, the model
can handle different CS ratios by design.

2.3. Deep Unfolding Models

Deep unfolding models are neural networks that are de-
signed with handcrafted iterative CS techniques as their ba-
sis. They map each iteration of the handcrafted technique
to a neural network block which allow them to utilize the
speed and performance of neural networks while preserv-
ing the interpretability of the handcrafted techniques. It also
helps to keep the network design fairly simple.

One such network is ISTA-Net [28]. As the name im-
plies, the network revolves around the iterative shrinkage-
thresholding algorithm (ISTA) [6]. The performance of
ISTA highly depends on the sparsity of the input, so find-
ing the best domain that ensures the highest sparsity is cru-
cial for this algorithm. As such, ISTA-Net maps each it-
eration of ISTA to a corresponding block and utilizes the
representative power of CNNs to find the sparsest possible
transform. By default, the network uses 9 blocks (with an
identical structure) to reconstruct the image. However, the
network requires training for each specific CS ratio mean-
ing a single model cannot handle multiple CS ratios. Also,
at low CS ratios, the network suffers from blocking artifacts
due to its block-based recovery. OPINE-Net [29] modifies
ISTA-Net by letting it learn its optimal sampling matrix.

COAST [27] is another deep unfolding network that is
built on top of ISTA-Net. It solves the main two issues
with ISTA-Net. First, to promote the network to recover
the image from different CS ratios, they introduce random
projection augmentation (RPA), which exposes the network
during training to many different sampling matrices at dif-
ferent CS ratios. Furthermore, they add a controllable unit
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Figure 4. Detailed look into the recovery block of COAST [27] and the RFMU unit. Note that the RFMU unit has two extra parameters in
z compared to the FMU unit in COAST [27], and they are the current recursion index Rcur and the total number of iterations Rtot .

that modulates the features based on the CS ratio. Secondly,
they address the blockification issue of ISTA-Net by intro-
ducing a plug-and-play deblocking module that deblocki-
fies the features before feeding them to the CNN layers. On
top of solving the issues of ISTA-Net, the model also intro-
duces changes to the recovery stage of ISTA-Net for opti-
mal recovery, and instead of using 9 blocks for recovery, the
model now uses 20 blocks (with identical structure).

Regarding recursions specifically, there have been works
that used recursions to decrease the number of learnable
parameters. DPDNN [7] is one such network. It uses an
encoder-decoder network in the recovery block to recon-
struct the image over multiple blocks. However, all blocks
share the same learning parameters, and thus, it can be de-
scribed by Fig. 3 as having a single recovery block but with
R1 = 6. The authors of ISTA-Net [28] have also tested
sharing the learnable parameters across all recovery blocks,
which can be described by Fig. 3 as having a single recov-
ery block and R1 = 9, and they found that the model still
performed competently despite the significant decrease in
the number of parameters.

With that said, the naive implementation of recursions
leaves a lot to be desired. For one, the previous methods
used a fixed number of recursions during training, and thus,
did not enjoy any reduction to the training time. Secondly,
the features of the model were not modulated to account for
recursions. This is a crucial point as different features need
to be emphasized depending on the iteration index and will
enable efficient use out of recursions. Finally, recursions on
those models were applied when the network only had a sin-
gle recovery block, thus, its recovery potential was limited
to the capacity of that single block.

Now, we move on to what would be our major contri-
bution in this work. From Fig. 1, we see that in general,
deep unfolding models reconstruct the image iteratively
over multiple blocks but with identical structures. Fig. 2
shows how such an iterative model can improve the results
in each phase or block, and how in the specific case of ISTA-
Net [28], the model can possibly improve its results with

extra phases. However, this approach is unattractive as it
increases the number of parameters, and as such, runs the
risk of vanishing gradients and overfitting, which is espe-
cially unappealing when the size of the training dataset is
small [26].

To reduce the redundancy in the recovery phases, we pro-
pose the use of recursions. The intuition behind this is in-
stead of passing the reconstructed signal to the next recov-
ery block in each iteration, we will feed it back to the same
block forRi iterations until the point of diminishing returns
(ideally). This should provide us with three major advan-
tages.

• First, we would be able to realize more of the capacity
of each recovery block, allowing for more efficient use
of them, which will lead to a lower number of trainable
parameters.

• Secondly, the training time can be decreased by ran-
domizing the number of recursions per recovery block
in each training iteration.

• Thirdly, due to the decrease in the number of parame-
ters, recursive models are more resilient to overfitting
and thus, can perform better when the training dataset
is small.

Finally, do note that the use of recursions should not be
limited to compressed sensing applications. We believe that
it might be generalizable to most image restoration tasks
such as reconstruction, denoising, and interpolation as long
as both the input and the output are in the same domain.
Deep unfolding models lend themselves especially well for
recursions due to their iterative design, which usually en-
sures that both the input and the output remain in the same
domain.

3. Methodology
COAST [27] will be used to demonstrate how the recur-

sive framework can be applied to a deep unfolding network.
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Figure 5. Recovery block of ISTA-Net+ [28] after the addition of the RFMU unit.

We will discuss the general details of COAST and how the
recursive framework was applied to it. Then, we will dis-
cuss how the framework modulates the features of the net-
work based on recursions. Finally, we discuss how we mod-
ulate the features of the network based on recursions.

3.1. COAST

The COAST model follows the general structure out-
lined in Fig. 1. The image is sampled using random Gaus-
sian matrices with orthogonal rows, and the initialization is
done by:

x̂(0) = ΦTy (3)

Afterward, the initial solution is fed to the recovery net-
work.

The fundamental recovery block of COAST is illustrated
in Fig. 4a. First, the image is fed to a gradient descent mod-
ule (GDM) to preserve the ISTA [6] structure. It is com-
puted by:

ri = x̂(i−1) − ρ(i)ΦT (Φx̂(i−1) − y) (4)

where ρ is the learning rate. Next, the image is fed to a
convolutional layer to project it to the feature space with
C = Nf . Then, a stack of controllable proximal mapping
blocks (CPMB) is used to solve the proximal mapping prob-
lem of ISTA, which is defined as:

proxλψ(r) = argmin
x̂

1

2
∥x̂− r∥22 + λψ(x̂) (5)

where λ is a regularization parameter, and ψ(·) is a trans-
formation function that is now learned by the CPMB block.
Furthermore, to let the model better adapt to the different
CS ratios and noise levels, [27] proposes a feature modu-
lation unit (FMU) that modulates the features of the CPMB
block based on the CS ratio and noise level. Specifically, the
model employs a linear layer that takes those two param-
eters and outputs Nf modulation coefficients where each
one is used to modulate its respective feature in the CPMB
block. Finally, a convolutional layer is used to project the
image from the feature space back to the spatial domain.

3.2. Recursions

Since COAST [27] follows the general structure of deep
unfolding models (shown in Fig. 1), introducing recursions
to it is fairly straightforward. A feedback connection is
added from the output of each recovery phase back to its
input, and Ri denotes the number of iterations per layer
(IPL). The modified network will now have the same struc-
ture seen in Fig. 3.

To further promote the model to learn recursions, we will
introduce random recursions. In each training iteration, we
will randomize the IPL of each layer (with Ri being the
highest number of IPL and 1 being the lowest). This will
allow the model to generalize better to a wide range of re-
cursions instead of being trained for a single set of recur-
sions. Additionally, it will decrease the training time since
on average fewer FLOPS will be computed during training.

3.3. Recursion-based Feature Modulation Unit

To further tailor the model for recursions, we introduce
a recursion-based feature modulation unit (RFMU) During
training, it was observed that although naively adding re-
cursions was sufficient to enhance the performance of the
framework, it was not an optimal approach. Each phase
cannot anticipate the level of quality of its input, and there-
fore, its features will not optimally enhance the results. In-
spired by [27], we extend the feature modulation unit seen
in Fig. 4b by adding recursion statistics to z. Specifically,
the proposed RFMU unit will now modulate the features
of the network based on two extra parameters. First, on
how many iterations have been completed so far (denoted
as Rcur ), and second, the total number of iterations (which
is Rtot =

∑
iRi). For that end, we employ two linear lay-

ers separated by ReLU [17] that take the input vector z with
the extra two parameters and extract Nf modulation coef-
ficients (denoted as σc). Finally, each feature in the output
of the CPMB block will be modulated by its corresponding
modulation coefficient σc. The figure of the RFMU unit is
seen in Fig. 4c.

Originally, ISTA-Net+ [28] does not use a feature modu-
lation unit, however, adding the RFMU to it is fairly simple
and is shown in Fig. 5. The only modification done to the
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Training Model Configuration Layers IPL CS Ratio Avg. ParametersData % 10% 20% 30% 40% 50% Score

100 %
ISTA-Net+ [28] Baseline [28] 9 1 25.18/0.6971 28.11/0.8161 30.21/0.8769 32.12/0.9161 33.94/0.9421 29.91/0.8497 336,978

Recursive 3 3 25.31/0.7010 28.21/0.8177 30.30/0.8786 32.21/0.9169 34.05/0.9428 30.02/0.8514 114,630

COAST [27] Baseline [27] 20 1 26.24/0.7378 28.93/0.8378 30.99/0.8918 32.82/0.9255 34.58/0.9484 30.71/0.8683 1,122,024
Recursive 5 4 26.14/0.7329 28.79/0.8330 30.83/0.8879 32.68/0.9226 34.46/0.9463 30.58/0.8645 281,674

3 %
ISTA-Net+ [28] Baseline [28] 9 1 24.28/0.6614 27.06/0.7823 29.04/0.8498 30.87/0.8960 32.54/0.9264 28.76/0.8232 336,978

Recursive 3 3 24.71/0.6799 27.57/0.8017 29.65/0.8659 31.49/0.9066 33.20/0.9341 29.32/0.8376 114,630

COAST [27] Baseline [27] 20 1 25.88/0.7226 28.55/0.8275 30.63/0.8848 32.44/0.9201 34.14/0.9440 30.33/0.8598 1,122,024
Recursive 5 4 25.87/0.7252 28.57/0.8283 30.61/0.8846 32.41/0.9198 34.13/0.9438 30.32/0.8603 281,674

Table 1. PSNR/SSIM scores of the models on the BSD68 [13] dataset.

Model Configuration Layers IPL
Training Inference

ParametersTime Time
(Hours) (FPS)

ISTA-Net+ [28] Baseline [28] 9 1 3.22 35.62 336,978
Recursive 3 3 2.53 29.29 114,630

COAST [27] Baseline [27] 20 1 18.14 12.27 1,122,024
Recursive 5 4 10.50 12.20 281,674

Table 2. Training time and number of parameters of the models in Tab. 1. Note that the training time for ISTA-Net+ [28] was computed on
a single CS ratio (10%).

network was the addition of the RFMU after the first con-
volutional layer and another RFMU before the last convolu-
tional layer. Other than this and the inclusion of recursions,
the recursive ISTA-Net+ model is identical to its reference
in [28].

4. Experimental Results

For a fair comparison, all models were trained using the
same dataset used in ISTA-Net+ [28] and COAST [27],
which features 88,912 blocks of dimension 33×33 obtained
from 91 images. All models were trained using CS ratios
from 10% up to 50%. The sampling matrix used was the
random Gaussian matrix with orthogonal rows. For COAST
however, we have generated multiple random Gaussian ma-
trices for each CS ratio to faithfully follow their RPA train-
ing strategy [27]. The cost function was the mean-square
error (MSE). The optimizer used was Adam [9] with the
momentum set to 0.9, weight decay set to 0.999, and the
learning rate set to 1 × 10−4. The number of epochs was
400 for COAST, but for ISTA-Net+ [28], it was trained for
200 epochs specifically as this is what was used in the orig-
inal work [28]. All models were implemented using Py-
Torch [18], and they were trained using a single Nvidia RTX
3090 GPU. For validation, we use the Set11 dataset [11]
while for testing, we use the BSD68 dataset [13]. As for
the evaluation metrics, we use the peak signal-to-noise ratio
(PSNR) and structural similarity index (SSIM) [25].

4.1. COAST vs. Recursive COAST

To demonstrate the effectiveness of the recursive frame-
work, we apply it to COAST [27]. The first model will use
the same configuration as in [27] (labeled COAST). That
is, it will have 20 layers without recursions. The second
model will have 5 layers and 4 iterations per layer (labeled
R-COAST).

Tab. 1 shows the PSNR/SSIM scores for the BSD68
dataset. When both models have access to the entire training
dataset, we observe that despite the recursive model only
using 25% the number of parameters of the baseline, it still
achieves competitive results in terms of both the PSNR and
SSIM metrics. However, when we limit the size of the train-
ing dataset to only 3% of its original size, we find that the
gap is mostly eliminated and both models achieve largely
the same performance.

Finally, although the recursive model sees a minimal im-
pact on its performance, from Tab. 2, we see that it takes
41% less time to train and sees almost a 75% reduction in
its learnable parameters with a negligible impact on the in-
ference time. Therefore, we can conclude that the recursive
framework increased the efficiency of the COAST model
with a minimal impact on its performance.

4.2. ISTA-Net+ vs Recursive ISTA-Net+

To investigate the generalizability of the recursive frame-
work, we will compare the ISTA-Net+ [28] model with and
without the recursive framework (labeled RISTA-Net+ and
ISTA-Net+ respectively). We will train two models. One
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Figure 6. The learning curves of ISTA-Net+ [28] with and without
recursions on the validation dataset (Set11 [11]). All models were
trained using a CS ratio of 10% and with access to only 3% of the
training dataset.

(a) COAST [27] with and without the RFMU

(b) ISTA-Net+ [28] with and without the RFMU

Figure 7. The learning curves of COAST [27] and ISTA-Net+ [28]
with the RFMU (labeled R-COAST and RISTA-Net+ respectively)
and without it (labeled COAST and ISTA-Net+ respectively) on
the validation dataset (Set11 [11]) and at a CS ratio of 10%.

will use 9 layers with no recursions (the same configuration
as in [28]), and the other model will use 3 layers and 3 IPL.

The results are shown in Tab. 1.
On the testing dataset, we find that on average, the recur-

sive configuration slightly outperforms the baseline model
while using 66% fewer parameters. However, when the
training dataset is limited to only 3% of its samples, we
observe that the recursive configuration clearly outperforms
the baseline. This is thanks to its inherently small number
of parameters and therefore, it is more resilient to overfit-
ting. This is also confirmed when looking at its learning
curve in Fig. 6. Here, we observe that the recursive con-
figuration is able to generalize better than the non-recursive
model. We also include the results of a model with 3 layers
(like RISTA-Net+) but without recursions, and the results
in Fig. 6 clearly show that the PSNR improvement RISTA-
Net+ sees is not attributed to its smaller size but rather its
recursive design.

Tab. 2 shows the training time and the number of param-
eters of the models. Here, it is observed that the recursive
configuration takes 21% less time during training thanks
to the use of randomized recursions during training while
only sustaining a minimal impact to the inference time. In
general, we can conclude that applying the recursive frame-
work to ISTA-Net+ [28] allows it to decrease its training
time and number of parameters while maintaining the same
performance when the training dataset is large, but when it
is limited, the recursive model outperforms the baseline.

5. Ablation Study

5.1. RFMU Enhances the Efficiency of Recursions

One of the problems in the naive implementation of re-
cursions is that there can be a drastic difference in qual-
ity between each iteration (especially in the first iterations).
More importantly, the model cannot anticipate the level of
quality of the input as it does not have access to the iteration
index. Thus, it cannot modulate its features accordingly. In
other words, the first iteration should have different weights
than the last iteration, or at least some weights should be
emphasized over the others. We proposed that modulating
the features of the model based on recursion statistics im-
proves its results. To investigate this, we compare the use
of the RFMU in both COAST [27] and ISTA-Net+ [28].
The results are shown in Fig. 7.

Fig. 7a shows the results of COAST. Both models have
5 layers and 4 IPL, but one utilizes the RFMU (labeled R-
COAST) while the other model does not (labeled COAST).
Here, it is shown that the R-COAST model performs bet-
ter as it achieved a higher PSNR score of around 28.50 dB
while the COAST model without the RFMU scored 28.38
dB. From this, it can be concluded that the RFMU does in-
deed improve the performance of the model.

The RFMU results of ISTA-Net+ are shown in 7b. We
trained both models to have 3 layers and 3 IPL, but again,
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(a) Learning curves of ISTA-Net+ [28]. (b) Learning curves of COAST [27]. (c) Learning curves of COAST [27] after pass-
ing through a median filter (to enhance visual-
ization).

Figure 8. The learning curves of ISTA-Net+ [28] and COAST [27] using different IPL values.

one model foregoes the use of the RFMU (labeled ISTA-
Net+) while the other model does (labeled RISTA-Net+).
From Fig. 7b, we observe that RISTA-Net+ can outperform
ISTA-Net+ thanks to its use of the RFMU.

Given the results in Fig. 7, we can conclude that the ad-
dition of the RFMU allows the model to more efficiently
utilize the recursive connection to achieve better results.

5.2. Increasing the Number of Recursions

In the main results section, the maximum number of it-
erations per layer we performed was 4. The IPL was specif-
ically chosen so that the total number of iterations for both
the recursive model and the baseline remains the same. This
raises the question: Can we see improved performance by
increasing the IPL? And at what point would we experience
diminishing returns?

To investigate this, we trained both RISTA-Net+ and R-
COAST using three different IPLs. For RISTA-Net+, all
configurations used 3 layers and the chosen IPLs were 3,
6, and 9. For R-COAST, we settled on using 5 layers and
the IPLs were 4, 6, and 9. The resulting learning curves
in the validation dataset for both models are seen in Fig. 8
respectively.

From the results in Fig. 8, it is observed that both models
see an increase in performance when the IPL is increased to
6. However, increasing the IPL to 9 sees a minimal increase
in the performance, and thus, the tests indicate that 6 itera-
tions per layer is the highest IPL possible before experienc-
ing diminishing returns. Interestingly, when the R-COAST
model uses 6 IPL, it actually closes the gap between it and
the baseline model as it achieves roughly the same perfor-
mance.

6. Conclusion

In this work, we have discussed how most deep unfold-
ing networks suffer from redundancies due to their iterative
design. We argued that this can be mostly eliminated by
using recursions. To demonstrate this, we applied our pro-
posed framework to both COAST [27] and ISTA-Net+ [28].
In general, our findings confirm that the iterative design of
such networks suffers from redundancies and that the use
of the recursive framework successfully eliminates a lot of
those redundancies. It can also decrease the training time
by using randomized IPL during training. We believe that
the most significant part of the recursive framework is its
simplicity as this could allow it to be generalized to other
networks since the core concept of the framework revolves
around recursions, which are fairly simple to implement to
other iterative networks. We believe that it is possible to
extract even more utilization out of recursions as we have
shown how implementing a simple block such as the RFMU
can improve the efficiency of the framework. For future
work, we would like to perform a more involved recur-
sive framework and implement the recursions on the fea-
ture space instead of the spatial domain, as the increase of
features could allow for more efficient use of recursions.
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