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Abstract

The advent of Vision Transformers (ViT) has led to sig-
nificant performance gains across various computer vision
tasks over the last few years, surpassing the de facto stan-
dard CNN architectures. However, most of the prominent
variations of Vision Transformers are resource-intensive ar-
chitectures with huge parameter sizes. They are known to be
data-hungry and overfit quickly on comparatively smaller
datasets. Consequently, this holds back their widespread
usage across low-resource settings, which brings forth the
need to develop resource-efficient vision transformers. To
this end, we introduce a regularization loss that priori-
tizes efficient utilization of model parameters by decorrelat-
ing the heads of a multi-headed attention block in a vision
transformer. This forces the heads to learn distinct features
rather than focus on the same ones. Using this loss provides
a consistent performance improvement over a wide range of
varying scenarios of models and datasets as we show in our
experiments, which proves its superior effectiveness.

1. Introduction

Vision transformers (ViT) [5] have developed to be the
new standard in computer vision tasks ranging from recog-
nition to even serving as encoders for semantic segmenta-
tion, object detection and multiple other downstream tasks.
It has been able to beat benchmarks of complex CNN mod-
els using significantly less training times. Although a lot of
research work has been done in the past few years on the ap-
plications of vision transformers in various tasks, compar-
atively less focus has been given to optimizing the existing
architectures, which are highly resource exhaustive. Doso-
vitskiy et al. [5] introduced the Vision Transformer variants
ViT-B, ViT-H and ViT-L which are comparatively large in
terms of parameter size. The ViT-Base is itself 86M pa-
rameters in size which needs thorough pre-training on large
image corpuses to achieve its best performance. On the con-
trary, while training on a smaller scale dataset, it runs into
problems of overfitting which require strong regularizing to
overcome. This leaves us with the question of whether we
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Figure 1. Performance Comparison between ViT and proposed
ViT-DeCAtt with respect to Model Parameters (in Millions) on
the Oxford Flowers dataset. Decorrelating attention heads leads to
significant boost in model performance and similar accuracy can
be achieved with approximately 2.5 to 3 times lesser parameters.

can improve the model efficiency by taking advantage of
the transformer architecture other than relying on just tradi-
tional regularizers like Dropout, L2 etc. In order to achieve
better utilization of parameters, we need to ensure that each
segment of the model learns something unique or in other
words, is uncorrelated to other segments. Upon inspection,
we find that the multi-head attention framework is some-
thing that may lead to redundancies with different attention
heads learning vastly similar features. Alleviating this is
something we believe can greatly improve our training effi-
ciency and we will be focusing on this in our work.
The main contributions of our work are as follows:

1. We introduce a loss paradigm that minimizes the cross-
correlation among the heads of each layer of vision
transformers. This loss acts as a regularizer that miti-
gates overfitting as well as improves efficiency of the
model as a whole.

2. We demonstrate that introducing this auxiliary loss
helps models achieve superior empirical performance
on standard vision datasets. Furthermore, we show that
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Figure 2. Vision Transformer with proposed DeCorrelated Attention Heads and corresponding decorrelation loss £pec at:. Multi-head
self attention maps are flattened and concatenated in the Decorrelator block (yellow) and the matrix is denoted as A. This matrix A is
then multiplied with its transpose and normalized to obtain the cross-correlation matrix. £pec at+ objective function tries to make the off-
diagonal elements of this matrix close to zero. This causes the attention heads to learn distinct features while minimizing the redundancy

between them.

VIiT trained with proposed loss can achieve similar or
better performance with approximately 2.5 to 3 times
lesser parameters (as illustrated in the Figure 1).

3. Through ablation studies, we study different aspects of
this loss pertaining to the location of its usage, weigh-
tage and its impact on models across different sizes.

2. Related Works

Vision Transformers: ViTs, introduced in [5] as a modi-
fication of traditional transformers [14] for the domain of
computer vision, have proven to be superior over CNN-
based networks. Since then many works have explored var-
ious aspects of this particular architecture, leading to the
introduction of various modified versions including several
lightweight architectures [2,3,8,11,13,15]. In particular, we
take some interest in DeiT [13] in which they introduced a
few lightweight transformer models which serve as an in-
spiration for the models we have used in our case.

Decorrelation Loss: Although correlation as a loss has
not been explored in the Transformer architecture, it has
been used in the past in traditional neural networks in some
scenarios like regularization and encoding style [1,6]. One
of the first works to use decorrelation in neural networks as
aregularizer was [4] where the authors applied it to the fully
connected layers of a Multi Layer Perceptron to improve the
performance of models. It showed early promising signs
of using this technique as a method to prevent overfitting.
Other works followed suit which tried to incorporate similar

ideas in convolutional neural networks. Works such as [7]
explored decorrelation within the convolutional domain, al-
beit in a different manner.

3. Methodology

Our final goal is to reduce the amount of correlated fea-
tures in the multi-headed attention layer. Although this can
be achieved to some varied degree by varying the location
of application, we choose the output from each head as the
items to decorrelate.

Let A be the unrolled matrix of each attention map of
heads with a dimension of B x hx (nd) where B is the batch
size, h is the number of heads, n is the number of patches
and d is the dimension of query, key and value vectors. Then
we obtain our loss through the following equations.

AAT
Cy = AP (1
1 B
Cyl...] = 5 > (Cafonri])? )
=0

From C; we obtain our decorrelation loss (Equation 3)
by summing up the non-diagonal elements. We take only
the non-diagonal elements as we are only concerned with
cross-correlations between heads and auto-correlations are
of no value to us.
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Top-1% Acc.

Avg. Relative Train time per Epoch

Model Heads per Layer Num. Params

CIFAR10 CIFAR100 Flowers CIFAR10 CIFAR100 Flowers
ViT 3 4.5M 80.24 52.08 69.14 1.0 1.0 1.0
ViT-DeCALtt 3 4.5M 81.85 54.61 72.80 1.04 1.03 1.09
ViT 6 12M 82.48 55.36 71.12 1.0 1.0 1.0
ViT-DeCAtt 6 12M 83.16 57.76 73.49 1.06 1.09 1.05

Table 1. Evaluation accuracy in %. ViT is the lightweight model described in experiments section. ViT-DeCAtt is the same model with

our decorrelation loss.

N N
Lpecan =Y Y Coli, j](i # j) 3)
i=0 j=0
Therefore, the following Equation 4 gives us the total
loss (for classification task) that we will try to optimize:

Liotal = Lo + ALDec At 4

where A is the decorrelation weight factor and Lo g is
the Cross-Entropy (CE) loss.

4. Experiments

Datasets: We have evaluated our methods on image
recognition tasks on the CIFAR10, CIFAR100 and Ox-
ford Flowers datasets. CIFAR 10 and 100 comprise of
32x32 images whereas Flowers consists of images which
are 224x224.

Model configuration: or the experiments, we use two
variations of a lightweight vision transformer which are in-
fluenced by the T'iny variant suggested in [13]. The ViTs
in use had a depth of 12, an embedding dimension of 64 per
head and a final MLP dimension of 512. We explore results
on two variations of the model in terms of the number of
heads 3 and 6. This is important in order to view the impact
of the increase of parameters and the implications of over-
fitting. The DeCAtt loss is applied on the first 3 layers of the
ViT in all cases (unless otherwise specified). We have cho-
sen A = 150 by conducting a hyperparameter search. Also,
please note that the ViTs are trained from scratch without
any pre-trained weights. This is to showcase the true effect
of the loss in a training scenario.

For robustness of results, all the experiments were run
with multiple seeds for 100 epochs or till convergence
whichever is higher, on a Nvidia A100 with Adam opti-
mizer [9] and some light augmentations. The results from
the experiments are given in Table 1.

4.1. Performance Analysis

It can be seen from the experimental results that the
Decorrelation Loss leads to 2 — 5% improvement in perfor-

mance. From the results, it can be seen that we obtain simi-
lar kind of performance from a model with 3x less parame-
ters when using the DeCAtt loss. The percentage of perfor-
mance improvement is slightly more for a lighter model. It
means DeCAtt loss will have a slightly greater effect when
a lighter model is trying to learn complex data. This can be
seen as a bias-reducing trait, which is somewhat in contra-
diction to the principles of a regularizer and also goes be-
yond the benefits achieved by [4] using similar techniques.
It can be inferred that involving DeCAtt loss may have a
beneficial effect in terms of reducing both bias and variance
of a ViT model. The extent of both of these effects is some-
thing that we need to explore in greater detail.

Another aspect of involving any auxiliary loss is the
small computation overhead that is added to training. We
have included this in the results to provide a fair indication
of the overall cost. The setup for this is the same as men-
tioned in the experiment section. We can see that we are
taking only around 5-10% extra time which is an accept-
able scenario in most cases.

4.2. Ablation Studies

To understand the different aspects of the DeCAtt loss,
we perform a set of ablation studies involving different tun-
able aspects of model training and analyze their impacts on
the overall model performance.

Number of heads: In a transformer layer, the number of
heads plays an important role in the final model perfor-
mance. We apply Lpe.c s+ on these attention heads in or-
der to force them to learn distinct features and reduce re-
dundancy. We have considered the first 3 layers of the ViT
model for applying the aforementioned decorrelation loss
while varying the number of attention heads in the trans-
former. Figure 3 shows the impact of heads on model per-
formance when trained and subsequently evaluated on the
Flowers dataset. With our loss, it is possible to get sig-
nificantly superior performance as compared to vanilla ViT
with as less as 3 heads. This demonstrates that proposed
decorrelation loss indeed helps in reducing feature redun-
dancy whilst boosting overall performance.

Position of employing DeCAtt: We assessed the impact
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Figure 3. Top-1 % Accuracy (on Oxford Flowers) of ViT and

proposed ViT-DeCAtt with respect to number of heads in a trans-
former layer.
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Figure 4. Top-1 % Accuracy (on Oxford Flowers) of ViT and pro-
posed ViT-DeCAtt with respect to the number of transformer lay-
ers where decorrelation loss has been applied.

of different transformer layers (where decorrelation loss is
applied) by fixing the number of heads to 6, and training and
consequently evaluating the models on the Flowers dataset.
It is to be noted that the transformer taken into considera-
tion has 12 layers. Therefore, we have conducted 4 separate
cases where we have applied decorrelation loss to: (i) 1
layer, (ii) 1% to 37 layers, (iii) 1** to 6" layers, and finally,
(iv) 1% to 9" layers. We observe that when the first 3 lay-
ers are considered model performance increases, however, it
significantly drops with further consideration of more layers
as shown in Figure 4. Thus, we can infer that decorrelation
is most impactful in the initial layers of the model where

Dropout L2Reg DeCAtt Top-1 Acc.
X X X 44.23
v X X 45.32
X v X 53.58
X X v 49.21
v v X 55.36
v X v 50.27
X v v 56.92
v v v 57.76

Table 2. Top-1 % Accuracy values obtained by using different
regularization methods on CIFAR-100.

it can help different heads learn distinct features, whereas
further involvement of layers negatively impacts the model
performance.

Different regularization methods: We conducted a
comparative study of DeCAtt with two other regularizers
Dropout [12] and L2 [10] Regularization to understand and
compare the effectiveness of these in ViT. The results pre-
sented in Table 2 show that L.2 regularization is the most ef-
fective among the 3 followed by DeCAtt. The combination
of DeCAtt with any other form of regularization is always
reflected in a further increase in performance and thus the
best performance is obtained as a combination of all three.
Here, we used 150.0 as A for DeCAtt, 0.2 as dropout and
le — 4 as L2 weight.

Computational efficiency: Application of Lp.c a¢ dur-
ing training leads to a small increase in training time (see
Table 1) because of an extra loss overhead. However, the
number of parameters in the model remains unchanged.
Rather, it can be observed from Table | and Figure | that
similar or better performance is achieved with 2 to 3 times
fewer parameters (e.g., Top-1 % Accuracy of ViT with 6
heads per layer, i.e., 12M parameters, is 71.12, and that of
ViT-DeCAtt with 3 heads per layer, i.e., 4.5M parameters,
is 72.80, for the Flowers dataset).

5. Conclusion and Future Work

In this study, we have provided a baseline of using decor-
relation of attention heads as a way to regularize lightweight
ViT-based networks and make them more efficient. As a
preliminary work, this provides a strong base on which fur-
ther explorations in this direction can be undertaken, espe-
cially related to how this adjusts to bigger models. The
behaviour of bigger models like ViT-Base and ViT-Large
might be different which may require further variations or
tweaks of the DeCAtt loss to make them beneficial to them
on large datasets.
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