
Token Merging for Fast Stable Diffusion

Daniel Bolya Judy Hoffman
Georgia Tech

{dbolya,judy}@gatech.edu

Abstract

The landscape of image generation has been forever
changed by open vocabulary diffusion models. However,
at their core these models use transformers, which makes
generation slow. Better implementations to increase the
throughput of these transformers have emerged, but they
still evaluate the entire model. In this paper, we instead
speed up diffusion models by exploiting natural redundancy
in generated images by merging redundant tokens. Af-
ter making some diffusion-specific improvements to Token
Merging (ToMe), our ToMe for Stable Diffusion can reduce
the number of tokens in an existing Stable Diffusion model
by up to 60% while still producing high quality images with-
out any extra training. In the process, we speed up image
generation by up to 2× and reduce memory consumption
by up to 5.6×. Furthermore, this speed-up stacks with effi-
cient implementations such as xFormers, minimally impact-
ing quality while being up to 5.4× faster for large images.
Code is available at https://github.com/dbolya/tomesd.

1. Introduction
With the rise of powerful diffusion [4, 21] models such

as DALL-E 2 [13], Imagen [18], and Stable Diffusion [15],
generating high quality images has never been easier. How-
ever, running these models can be expensive, especially for
large images. All of these methods function by denoising
images through several evaluations of a transformer [22]
backbone, meaning that computation scales with the square
of the number of tokens (and thus also the square of pixels).

Several existing methods to speed up transformers have
already been successfully applied to open-source diffusion
models such as Stable Diffusion. Flash Attention [2] com-
putes attention efficiently by cleverly accounting for mem-
ory bandwidth. XFormers [8] contains several optimized
implementation of transformer components. And as of Py-
Torch 2.0, these optimizations are natively available [12].

However, none of these approaches reduce the amount
of work necessary—they still evaluate the transformer on
every token. Most images, including those generated by

Figure 1. Token Merging for Stable Diffusion. When applied
properly, ToMe [1] can significantly increase the speed of image
generation without jeopardizing quality. Moreover, its benefits
stack with existing methods such as xFormers [8]. With ToMe and
xFormers together, this 2048 × 2048 image generated in just 28
seconds on a 4090, which is 5.4× faster than the original model.

diffusion models, have a high amount of redundancy. And
thus, performing computation on every token is a waste of
resources. Recent work in token reduction such as token
pruning [7, 11, 14, 23] and token merging [1, 10, 17] have
shown the ability to remove these redundant tokens in trans-
formers to speed up evaluation with a small accuracy drop.

Though most of these methods require re-training the
model (which would be prohibitively expensive for e.g.,
Stable Diffusion), Token Merging (ToMe) [1] stands out in
particular by not requiring any additional training. While
the authors only apply it to ViT [5] for classification, they
claim that it should also work for downstream tasks.

In this paper, we put that to the test by applying ToMe
to Stable Diffusion. Out of the box, a naı̈ve application can
speed up diffusion by up to 2× and reduce memory con-
sumption by 4× (Tab. 1), but the resulting image quality
suffers greatly (Fig. 3). To address this, we introduce new
techniques for token partitioning (Fig. 5) and perform sev-
eral experiments to decide how to apply ToMe (Tab. 3). As a
result, we can keep the speed and improve the memory ben-
efits of ToMe, while producing images extremely close to
the original model (Fig. 6, Tab. 4). Furthermore, this speed-
up stacks with implementations such as xFormers (Fig. 1).

2. Background

In this work, our goal is to speed up an off-the-shelf Sta-
ble Diffusion [15] model without training using ToMe [1].

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

4599



Figure 2. A U-Net Block with ToMe applied. Stable Diffusion
[15] uses a U-Net [16] model with transformer-based blocks [22].
We apply ToMe [1] by merging tokens before each component of
the block and unmerging after to reduce compute costs (Sec. 3).

Stable Diffusion. Diffusion models [4,20,21] generate im-
ages by repeatedly denoising some initial noise over some
number of diffusion steps. Like most modern large dif-
fusion models, Stable Diffusion uses a U-Net [16] with
transformer-based blocks. Thus, it first encodes the current
noised image as a set of tokens, then passes it through a
series of transformer blocks. Each transformer block has
the standard self attention [22] and multi-layer perception
(mlp) modules, with the addition of a cross attention mod-
ule to condition on the prompt (see Fig. 2).

Token Merging. Token Merging (ToMe) [1] reduces the
number of tokens in a transformer gradually by merging r
tokens in each block. To do this efficiently, it partitions the
tokens into a source (src) and destination (dst) set. Then, it
merges the r most similar tokens from src into dst, reducing
the number of tokens by r, making the next block faster.

3. Token Merging for Stable Diffusion
While ToMe as described in Sec. 2 works well for clas-

sification, it’s not entirely straightforward to apply it to a
dense prediction task like diffusion. While classification
only needs a single token to make a prediction, diffusion
needs to know the noise to remove for every token. Thus,
we need to introduce the concept of unmerging.

3.1. Defining Unmerging

While other token reduction methods such as pruning
(e.g., [14]) remove tokens, ToMe is different in that it
merges them. And if we have information about what to-
kens we merged, we have enough information to then un-
merge those same tokens. This is crucial for a dense predic-
tion task, where we really do need every token.

Figure 3. ToMe applied naı̈vely as described in Sec. 3 works to
maintain image coherence, but the content inside the image can
change drastically with high amounts of reduction.

Figure 4. Importance of Merging. If we just prune tokens instead
(and replace them with 0), the resulting images quickly degrade.

In this work, we’ll define unmerging in the simplest pos-
sible way. Given two tokens with c channels x1, x2 ∈ Rc

s.t. x1 ≈ x2, if we merge them into a single token x∗
1,2, e.g.,

x∗
1,2 = (x1 + x2)/2 (1)

we can “unmerge” them back into x′
1 and x′

2 by setting

x′
1 = x∗

1,2 x′
2 = x∗

1,2 (2)

While this loses information, the tokens were already simi-
lar so the error is small. We find this works well in our case,
but other unmerging methods might be worth exploring.

3.2. An Initial Naı̈ve Approach

Merging tokens and then immediately unmerging them
doesn’t help us though. Instead, we’d like to merge tokens,
do some (now reduced) computation, and then unmerge
them afterward so we don’t lose any tokens. Naı̈vely, we
can just apply ToMe before each component of each block
(i.e., self attn, cross attn, mlp), and then unmerge the out-
puts before adding the skip connection (see Fig. 2).

Details. Because we’re not accumulating any token re-
duction (merged tokens are quickly unmerged), we have to
merge a lot more than the original ToMe. Thus instead of
removing a quantity of tokens r, we remove a percentage
(r%) of all tokens. Moreover, computing token similarities
for merging is expensive, so we only do it once at the start
of each block. Finally, we don’t use proportional attention
and use the input to the block x for similarly rather than
attention keys k. More exploration is necessary to find if
these techniques carry over from the classification setting.

4600



Method r% FID ↓ s/im ↓ GB/im ↓
Baseline 0 33.12 3.09 3.41
ToMe (Naı̈ve) 10 33.14 2.60 2.99

20 33.53 2.29 2.17
30 33.60 2.11 1.71
40 34.67 1.81 1.26
50 38.95 1.53 0.89

Table 1. Quantitative evaluation of the results in Fig. 3. While
the approach in Sec. 3 can lead to ∼2× faster image generation
with ∼4× less memory used (here for 512×512 images), it results
in a significantly higher FID score. Thus, we explore further.

4. Further Exploration
Amazingly, the simple approach described in Sec. 3

works fairly well out of the box without any training, even
for large amounts of token reduction (see Fig. 3). This is in
stark contrast to if we pruned tokens instead, which com-
pletely destroys the image (see Fig. 4). However, we’re not
done yet. While the images with ToMe applied look alright,
the content within each image changes drastically (mostly
for the worse). Thus, we make further improvements using
Naı̈ve ToMe with 50% reduction as our starting point.

Experimental Details. To quantify performance, we use
Stable diffusion v1.5 to generate 2,000 512×512 images of
ImageNet-1k [3] classes (2 per class) using 50 PLMS [9]
diffusion steps with a cfg scale [4] of 7.5. We then com-
pute FID [6] scores between those 2,000 samples and 5,000
class-balanced ImageNet-1k val examples using [19]. To
test speed, we simply average the time taken over all 2,000
samples on a single 4090 GPU. Applying ToMe naı̈vely in-
creases FID substantially (see Tab. 1), though evaluation is
up to 2× faster with up to 4× less memory used.

4.1. A New Partitioning Method

By default, ToMe partitions the tokens into src and dst
(see Sec. 2) by alternating between the two. This works for
ViTs without unmerging, but in our case this causes src and
dst to form alternating columns (see Fig. 5a). Since half of
all tokens are in src, if we merge 50% of all tokens, then the
entirety of src gets merged into dst, so we effectively halve
the resolution of the images along the rows.

A simple fix would be to select tokens for dst with some
2d stride. This significantly improves the image both qual-
itatively (Fig. 5b) and quantitatively (Tab. 2a) and gives us
the ability to merge more tokens if we want (i.e., the src
set is larger), but the dst tokens are still always in the same
place. To resolve this, we can introduce randomness.

However, if we just sample dst randomly, the FID jumps
massively (Tab. 2b w/o fix). Crucially, we find that when
using classifier-free guidance [4], the prompted and un-
prompted samples need to allocate dst tokens in the same
way. We resolve this by fixing the randomness across the
batch, which improves results past using a 2d stride (Fig. 5c,

Figure 5. Partitioning src and dst. ToMe [1] merges tokens from
src into dst. (a) By default, ToMe alternates src and dst tokens.
In our case, this causes dst to form regular columns which leads
to bad outputs (poor fish). (b) We can improve generation by sam-
pling dst with a 2d stride (e.g., 2× 2), but this still forms a regular
grid. (c) We can introduce irregularity by sampling randomly, but
this can cause undesirable clumps of dst tokens. (d) Thus, we sam-
ple one dst token randomly in each 2× 2 region.

sy × sx dst% FID ↓
1× 2 50 38.95
2× 1 50 39.28
2× 2 25 36.12
2× 4 12.5 37.09
4× 2 12.5 37.14
4× 4 6.25 38.97

(a) Strided w/ diff strides.

method fix FID ↓
rand 25% ✗ 46.08
rand 25% ✓ 36.00
rand 2× 2 ✓ 35.66

(b) Random w/ diff methods.

Table 2. Partition Experiments. Evaluation of the src and
dst partitioning methods described in Fig. 5. 50% of tokens are
merged in all experiments. Random methods (b) perform the best
provided we fix the randomness across the batch (see Sec. 4.1).

Tab. 2b w/ fix). Combining the two methods by randomly
choosing one dst token in each 2× 2 region performs even
better (Fig. 5d), so we make this our default going forward.

4.2. Design Experiments

In Sec. 3, we apply ToMe to every module, layer, and
diffusion step. Here we search for a better design (Tab. 3).

What should we apply ToMe to? Originally, we applied
ToMe to all modules (self attn, cross attn, mlp). In Tab. 3a,
we test applying ToMe to different combinations of these
modules and find that in terms of speed vs. FID trade-off,
just applying ToMe to self attn is the clear winner. Note
that FID doesn’t consider prompt adherance, which is likely
why merging the cross attn module actually reduces FID.

Where should we apply ToMe? Applying ToMe to ev-
ery block in the network is not ideal, since blocks at deeper
U-Net scales have much fewer tokens. In Tab. 3b, we try re-
stricting ToMe to only blocks with some minimum number
of tokens and find that only the blocks with the most tokens

4601



self cross
attn attn mlp FID ↓ s/im ↓
✓ ✓ ✓ 35.66 1.56
✓ ✗ ✓ 36.10 1.57
✓ ✗ ✗ 33.73 1.64
✗ ✗ ✓ 34.70 2.81

(a) What should we apply ToMe to? By only
applying ToMe to self-attention modules, we can
get most of the speed-up with much better FID.

min
tokens blocks FID ↓ s/im ↓

64 15 (all) 35.66 1.56
256 14 35.71 1.55
1024 9 34.37 1.56
4096 4 33.29 1.63

(b) Where should apply ToMe? If we apply
ToMe to only the layers with the most tokens, we
can get great FID while still being fast.

r% start r% end FID ↓ s/im ↓
70 30 35.89 1.65
60 40 35.53 1.58
50 50 35.66 1.56
40 60 36.09 1.58
30 70 36.45 1.61

(c) When should we apply ToMe? We can get a
small boost by merging more tokens during early
diffusion steps and a fewer during later steps.

Table 3. Design Experiments. Using the random 2 × 2 partitioning method from Tab. 2, we now explore how best to apply ToMe (with
r = 50%). Each experiment is independent, and we highlight our resulting design choice in gray .

Figure 6. Qualitative Results. Our version of ToMe retains the
image content, even at high token reduction. While some slight
detail may be lost (e.g., in the background for the dog and bird),
our method still handles complex scenes well (like the coral reef).

Method r% FID ↓ s/im ↓ GB/im ↓
Baseline 0 33.12 3.09 3.41
ToMe for SD 10 32.86 2.56 2.99

20 32.86 2.29 2.17
30 32.80 2.06 1.71
40 32.87 1.85 1.26
50 33.02 1.65 0.89
60 33.37 1.52 0.60

Table 4. Quantitative Results. Using the improvements from
Sec. 4, our ToMe for Stable Diffusion obtains similar or better
FID compared to the baseline while still being up to 2× faster and
using up to 5.6× less memory with 60% of tokens reduced.

need ToMe applied to get most of the speed-up.

When should we apply ToMe? It might not be right to
reduce the same number of tokens in each diffusion step.
Earlier diffusion steps are coarser and thus might be more
forgiving to errors. In Tab. 3c, we test this by linearly in-
terpolating the percent of tokens reduced and find that in-
deed merging more tokens earlier and fewer tokens later is
slightly better, but not enough to be worth it.

5. Putting It All Together
We combine all the techniques discussed in Sec. 4 into

one method, dubbed “ToMe for Stable Diffusion”. In Fig. 6

Figure 7. Tuning for More Speed-up. The result in Fig. 1 (a) uses
the choices made in Sec. 4, which are tuned for the best quality.
However, we can get even more speed-up if we are okay with some
drop in fidelity (b), but there’s a limit (c) after which most time is
taken by modules outside of our control, resulting in little further
speed-up. (Hint: the bird’s plumage gets less detailed).

we show representative samples of how it performs visually,
and in Tab. 4 we show the same qualitatively. Overall, ToMe
for Stable Diffusion minimally impacts visual quality while
offering up to 2× faster evaluation using 5.6× less memory.

ToMe + xFormers. Since ToMe just reduces the number
of tokens, we can still use off the shelf fast transformer im-
plementations to get even more benefit. In Fig. 1 we test
generating a 2048 × 2048 image with ToMe and xFormers
combined and find massive speed benefits. We can get even
more speed-up if we’re okay with sacrificing more visual
quality (Fig. 7). Note that with smaller images, we found
this speed-up to be less pronounced, likely due to the diffu-
sion model not being the bottleneck. Moreover, the memory
benefits did not stack with xFormers.

6. Conclusion and Future Directions
Overall, we successfully apply ToMe to Stable Diffusion

in a way that generates high quality images while being sig-
nificantly faster. Notably, we do this without training which
is rather remarkable, as any other token reduction method
would require retraining. Still, these results could likely be
improved by exploring 1.) better unmerging strategies or
2.) whether proportional attention or key-based similarity
are useful for diffusion. Furthermore, our success moti-
vates more exploration into using ToMe for dense predic-
tion tasks. We hope this work can serve as both a useful
tool for practitioners as well as a starting point for future
research in token merging.

4602



References
[1] Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao

Zhang, Christoph Feichtenhofer, and Judy Hoffman. Token
merging: Your ViT but faster. In ICLR, 2023. 1, 2, 3

[2] Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. Flashattention: Fast and memory-efficient
exact attention with io-awareness. arXiv:2205.14135
[cs.LG], 2022. 1

[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. 3

[4] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. NeurIPS, 2021. 1, 2, 3

[5] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In ICLR, 2020. 1

[6] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. NeurIPS, 2017. 3

[7] Zhenglun Kong, Peiyan Dong, Xiaolong Ma, Xin Meng, Wei
Niu, Mengshu Sun, Bin Ren, Minghai Qin, Hao Tang, and
Yanzhi Wang. Spvit: Enabling faster vision transformers via
soft token pruning. In ECCV, 2022. 1

[8] Benjamin Lefaudeux, Francisco Massa, Diana Liskovich,
Wenhan Xiong, Vittorio Caggiano, Sean Naren, Min Xu,
Jieru Hu, Marta Tintore, Susan Zhang, Patrick Labatut,
and Daniel Haziza. xformers: A modular and hackable
transformer modelling library. https://github.com/
facebookresearch/xformers, 2022. 1

[9] Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo
numerical methods for diffusion models on manifolds.
arXiv:2202.09778 [cs.CV], 2022. 3

[10] Dmitrii Marin, Jen-Hao Rick Chang, Anurag Ranjan, An-
ish Prabhu, Mohammad Rastegari, and Oncel Tuzel. Token
pooling in vision transformers. arXiv:2110.03860 [cs.CV],
2021. 1

[11] Lingchen Meng, Hengduo Li, Bor-Chun Chen, Shiyi Lan,
Zuxuan Wu, Yu-Gang Jiang, and Ser-Nam Lim. Adavit:
Adaptive vision transformers for efficient image recognition.
In CVPR, 2022. 1

[12] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In
NeurIPS. 2019. 1

[13] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gener-
ation with clip latents. arXiv:2204.06125 [cs.CV], 2022. 1

[14] Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie
Zhou, and Cho-Jui Hsieh. Dynamicvit: Efficient vision

transformers with dynamic token sparsification. NeurIPS,
2021. 1, 2

[15] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, 2022. 1, 2

[16] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In MICCAI, 2015. 2

[17] Michael Ryoo, AJ Piergiovanni, Anurag Arnab, Mostafa
Dehghani, and Anelia Angelova. Tokenlearner: Adaptive
space-time tokenization for videos. In NeurIPS, 2021. 1

[18] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi,
Rapha Gontijo Lopes, et al. Photorealistic text-to-image dif-
fusion models with deep language understanding. NeurIPS,
2022. 1

[19] Maximilian Seitzer. pytorch-fid: FID Score for PyTorch.
https://github.com/mseitzer/pytorch-fid,
August 2020. Version 0.2.1. 3

[20] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In ICML, 2015. 2

[21] Yang Song and Stefano Ermon. Generative modeling by es-
timating gradients of the data distribution. NeurIPS, 2019.
1, 2

[22] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. NeurIPS, 2017. 1, 2

[23] Hongxu Yin, Arash Vahdat, Jose Alvarez, Arun Mallya, Jan
Kautz, and Pavlo Molchanov. A-ViT: Adaptive tokens for
efficient vision transformer. In CVPR, 2022. 1

4603


