
MIMMO: Multi-Input Massive Multi-Output Neural Network

Martin Ferianc, Miguel Rodrigues
University College London

{martin.ferianc.19, m.rodrigues}@ucl.ac.uk

Abstract

Neural networks (NNs) have achieved superhuman ac-
curacy in multiple tasks, but NNs predictions’ certainty is
often debatable, especially if confronted with out of train-
ing distribution data. Averaging predictions of an ensem-
ble of NNs can recalibrate the certainty of the predictions,
but an ensemble is computationally expensive to deploy in
practice. Recently, a new hardware-efficient multi-input
multi-output (MIMO) NN was proposed to fit an ensem-
ble of independent NNs into a single NN. In this work, we
propose the addition of early-exits to the MIMO architec-
ture with inferred depth-wise weightings to produce mul-
tiple predictions for the same input, giving a more diverse
ensemble. We denote this combination as MIMMO: a multi-
input, massive multi-output NN and we show that it can
achieve better accuracy and calibration compared to the
MIMO NN, simultaneously fit more NNs and be similarly
hardware efficient as MIMO or the early-exit ensemble.

1. Introduction
Neural networks (NNs) are powerful models that can

outperform other heuristic-based methods in many do-
mains, such as computer vision [4] or language process-
ing [28]. However, NNs must also provide reliable esti-
mates of their confidence in their predictions [10, 21]. This
is essential, especially in safety-critical applications such
as autonomous driving [2]. One way to obtain a calibrated
predictor is to use an ensemble of NNs that are trained in-
dependently and average their outputs [16]. Ensembling
M NNs produces a calibrated model that closely reflects
its confidence in predictions in its accuracy [21]. However,
ensembling is not feasible for tasks requiring efficient com-
putation, such as autonomous driving. This is because en-
sembling needs to run and train M NNs.

Recently, multi-input multi-output (MIMO) NN [11] has
been proposed to compress an ensemble of M independent
NNs into a single net. This method relies on processing
M inputs and outputs that are admitted and extracted by
the network simultaneously, but its accuracy or calibration

Figure 1. The network processes M inputs x = {xm}Mm=1

in parallel through their concatenation e.g., in the channel di-
mension for images. Given a network that can be split into D
Blocks {f i(·)}Di=1, we add D − 1 branches at the output of ev-
ery hidden layer, except the last. The selected hidden block’s
features are first processed through a Connector {Ci(·)}D−1

i=1 and
then fed right into the Output to obtain predictions {ŷi

m}D,M
i=1,m=1.

The predictions are weighed through learnt variational distribution
{q̂im}D,M

i=1,m=1.

qualities decline when M > 1. Nonetheless, a MIMO ar-
chitecture is superior in hardware efficiency in comparison
to an ensemble of M structurally-independent NNs [16].

In this paper, we aim to tackle MIMO’s algorithmic per-
formance decline when M > 1, by investigating a combina-
tion of MIMO [11] with an early-exit ensemble, created by
adding additional outputs at different depths [1,22]. The re-
sultant MIMMO: a multi-input, massive multi-output NN is
visualized in Fig. 1. The model processes M inputs in paral-
lel and produces M×D outputs. The early hidden represen-
tations are processed through resource-conservative Con-
nectors and then fed right into the Output. The weight-
ing of output for each depth and member is learnt through
Bayesian inference [1] via a variational distribution q(θ) ∈
RM×D where θ are the learnable parameters, independent
for each member in M . By learning the weighting of the
output per-member and per-depth, we wish to maximise the
MIMO’s ensemble capacity to fit more NNs in parallel.

In the early stage of this work, we conduct ablations.
We also benchmark the algorithmic performance and hard-
ware efficiency on residual convolutional NNs (CNNs) in
classification on CIFAR-100. Our results indicate that the
proposed method achieves improved accuracy and negative
log-likelihood with reasonable hardware overhead.
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the final published version of the proceedings is available on IEEE Xplore.

4564



2. Related Work
NNs can achieve high accuracy on various tasks, but they

often suffer from overconfidence. An overconfident NN
makes false predictions with high certainty, which is dan-
gerous in safety-critical applications such as autonomous
driving [9]. Despite different sophisticated attempts [3, 8,
9, 19, 21], ensembles maintain the state-of-the-art in confi-
dence calibration, without requiring any particular assump-
tions about the data or the task [16]. Nevertheless, ensem-
bles pose restrictions both during training and deployment
due to requiring to train and run M NNs in parallel.

Recently, a novel method [11] has been proposed to com-
press multiple independent NNs into a single one. This
method is based on a simple yet elegant idea: train a net-
work with multiple inputs and outputs (MIMO) instead of
training multiple NNs as in [16]. MIMO can be seen as
a collection of single networks that leverage the overpa-
rameterisation of the NN [18] to fit multiple networks in
the same architecture [11]. The MIMO NN was able to
achieve supreme or on-pair confidence calibration and accu-
racy over other related efficient ensemble approaches such
as Rank-1 Bayesian NNs, BatchEnsemble, and Hyper Batch
Ensembles [6, 30, 31]. Nevertheless, MIMO suffers from a
algorithmic performance decay as M > 1.

The work in [24] suggests a related MIMO architec-
ture, that trains a main network that takes multiple inputs
and produces a feature representation through regularising
the net with the information bottleneck [27]. However, the
applicability of [24] to M > 2 is unclear along with its con-
fidence calibration. The authors of [20] have demonstrated
the advantages of per-member non-linear encoding and de-
coding the inputs and outputs of a MIMO network. Nev-
ertheless, their method was aimed primarily towards vision
transformers [5] and they were not able to provide substan-
tial gains on CNNs without significant hardware overhead.
In [23, 25, 26], the authors have proposed a data augmen-
tation method, however, its performance diminished when
M > 2 and the method is strictly limited to vision inputs or
transformers. [17] uses group convolutions to separate indi-
vidual ensemble members during training and evaluation.

Additionally, [1,22] introduce a single input multi-output
method which adds early-exits at different depths of the net-
work. In practice, this means that additional output heads
are added and connected to the hidden representations of
the network at different depths. The method of [1] is formu-
lated as a whole as a Bayesian NN in which the distribution
over depth and branches’ outputs is inferred.

To the best of our knowledge, [29] is the closest work
to ours that adds auxiliary heads at different depths of the
MIMO network in continual learning to avoid forgetting [7].
Our work departs from [29] in three ways: (i) each head is
supervised by a different order of labels for the same task,
whereas in our work the labels are not reshuffled and there is

only a single task; (ii) the authors use different output layers
for different stages of the net, which results in hidden early-
exit representations that are not used in the final output and
in parameter increase due to additional classifier heads; (iii)
in our work, we learn the weighting of the early-exit for
each depth and member.

In contrast to the aforementioned methods, our approach
adds auxiliary exits at different depths D of the MIMO,
without additional parameter-demanding output layers. The
hidden representations are processed through a single out-
put layer and each depth-wise output is weighted through a
variational distribution learnt for each member in M giving
in total M ×D outputs instead of M for M inputs.

3. Method
3.1. Multi Input Multi Output Ensemble

Let D = {xn, yn}Nn=1 be the training set of N input-
output pairs. MIMO [11] is a NN configuration that is
trained by taking M different inputs x = {xm}Mm=1 and
targets y = {ym}Mm=1, uniformly and iid sampled from D,
and returns M outputs ŷ = {ŷm}Mm=1. Bold notation is
used for multi-input and output symbols. For example, in
a computer vision classification task, the input is formed
by concatenating the M inputs along the images channels’
where if the channel size is 3 and M = 3 the input convo-
lution has 9 input channels instead of 3. The output of the
network is then M × Y e.g. 30 for MNIST classification
with Y = 10,M = 3. MIMO can be extracted from Fig. 1
by omitting the dashed arrows and their associated blocks
and setting D = 1. During training, the network is trained
using different reshuffled sets of M examples formed by the
training set. During the evaluation, the model is fed with M
repeated inputs e.g. xi ∼ D, x = {xi}Mm=1 and the outputs
are averaged across the M repetitions as ŷ = 1

M

∑M
m=1 ŷm.

3.2. Single Input Early Exit Ensemble

Given a network f(·), it can be split between D different
hidden layers or blocks {f i(·)}Di=1; f(·) = f1(·) ◦ f2(·) ◦
· · · ◦ fD(·) ◦ h(·), where h(·) is the output layer. An input
x is fed to the network and it is sequentially processed by
each block f i(·), where the output of the ith layer is fed to
the next layer f i+1(·) until the Dth layer which is fed to the
output layer h(·) to produce a single output ŷ. A prime ex-
ample of this notion is the ResNet [12] architecture, where
the network consists of sets of residual blocks f i(·). The
work in [1] proposed an early exit ensemble by adding train-
able connector layers {Ci(·)}D−1

i=1 for {f i(·)}D−1
i=1 but using

the same output layer h(·) for all Ci(·). In particular, if we
assume a learnable categorical distribution over the contri-
bution of different depths q(d|θ), [1] have shown that the
depth distribution is learnable through stochastic variational
inference [13] and naturally regularised, given a categorical
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prior p(d|θ). [1] can be recovered from Fig. 1 by setting
M = 1. During the evaluation, the model is fed with some
input x and the outputs are weighted with the learnt varia-
tional posterior over the network depth across the D repe-
titions as ŷ =

∑D
i=1 ŷ

iθi. Implementation-wise, the θ are
obtained as a softmax over its logits.

3.3. Multi Input Massive Multi Output Ensemble

In this work, we argue that, akin to [1], the depth of the
resultant pathway for an ensemble member should be learn-
able. However, and in contrast, we scale it to M simultane-
ously learnable ensemble members producing in the end D
outputs for each member in M instead of 1. Our goal is to
obtain a more diverse ensemble of NNs as well as provide
an additional supervision and a regularisation signal during
training [11]. Our MIMMO is visualized in Fig. 1.

We assume a network f(·) that is split between D
different hidden layers or blocks {f i(·)}Di=1; connectors
{Ci(·)}D−1

i=1 and an output layer h(·); f(·) = f1(·) ◦
f2(·) ◦ · · · ◦ fD(·) ◦ h(·). Instead of processing a sin-
gle input, we assume that the network is fed with M dif-
ferent inputs x = {xm}Mm=1. Hence the output h(fD(·))
by default produces M outputs ŷD = {ŷDm}Mm=1, since
the last hidden layer is connected to the output by de-
fault. Additionally, we assume that the hidden features
{f i(·)}D−1

i=1 are also fed to the output layer h(·), through
the connectors {Ci(·)}D−1

i=1 , producing M × D outputs
ŷ = {ŷim}D,M

i=1,m=1 = concat({(h(Ci(f i(·))))}D−1
i=1 , ŷD).

To learn the depth weighting of the outputs we assume
a categorical prior p(dm|{γi

m}Di=1) = Cat(dm|{γi
m}Di=1)

independently for each ensemble member m. Simi-
larly, we assume a variational posterior q(dm|{θim}Di=1) =
Cat(dm|{θim}Di=1), where θ is a vector of learnable weights
for each ensemble member m. Assuming independence be-
tween the ensemble members and sampling of the input, the
evidence lower bound (ELBO) can be written as:

L(D|w, θ) ≥
M∑

m=1

N

B

B∑
b=1

D∑
i=1

log p(yib,m|xb,m,w, dim)θim

− α

M∑
m=1

D∑
i=1

θim log
θim
γi
m

(1)

where w are the network parameters, N is the size of the
training set, B is the batch size, yib,m is the target for the
mth input in the bth batch at depth i, xb,m is the correspond-
ing input, α is a hyperparameter that controls the strength of
the regularising KL divergence term, and γi

m are fixed hy-
perparameters that define the prior distribution. As shown
in Fig. 2, we noticed that it is necessary to add the α hy-
perparameter to the ELBO, otherwise, the distribution of-
ten quickly collapses to a single mode, i.e. q(dDm|θm) = 1
for all m. Additionally, we introduce E = 5 warm-starting
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Figure 2. Evolution of probability distributions q(dm|θm) dur-
ing training for top left α = 1.0,m = 1, top right α =
100000.0,m = 1, bottom left α = 1.0,m = 7, bottom right
α = 100000.0,m = 7 for M = 8 and D = 4.
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Figure 3. Input and output layer feature overlap during training for
left α = 1.0, and right α = 100000.0 for M = 8 and D = 4.

epochs where the θ are not optimised which enables the net-
work to learn some useful features before committing to a
specific depth. We elaborate on Eq. (1) in the Appendix A.

The objective in Eq. (1) can be interpreted as maximizing
the expected log-likelihood of each ensemble member un-
der its own variational posterior over depth while minimiz-
ing the KL divergence between the variational posterior and
the prior. This encourages each ensemble member to learn
a different depth distribution that best fits the net’s limited
capacity. During evaluation, we use a deterministic approxi-
mation of Eq. (1) by computing ŷ = 1

M

∑M
m=1

∑D
i=1 ŷ

i
mθim

while feeding the network with the same input x for all M
ensemble members. In the case of a CNN, we adopt the
reshaping connector layer C(·) with stride 1 from [1], nev-
ertheless, in the case of a fully linear network, we could use
a simple linear layer.

4. Experiments
We conducted experiments on CIFAR100 with respect

to a WideResNet [32] architecture. We used an Adam opti-
mizer, no weight regularization, cosine learning rate sched-
ule, no data augmentation except normalization and a batch
size of 64, with the number of batch repetitions 2, and input
repetition probability of 0.25 [11]. For more details on the
experimental setup, see Appendix B. We set the prior dis-
tribution to be uniform, i.e. γ = 1/D for all d and m. All
experiments were repeated 3 times with different random
seeds. For detailed results, look at Appendix C & D.
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Figure 4. Performance comparison on CIFAR-100 with varying M . The horizontal axis shows the number of ensemble members M
and the vertical axis shows the accuracy, negative log-likelihood, Brier score, and expected calibration error [10]. The top row shows the
results on the test dataset, the bottom row shows the results on the test dataset with augmentations. The base is a pointwise single network,
Ensemble [16], MC Dropout [8], DUN [1], EE [22], MIMO [11], DataMux [20], MIMMO γ does not optimize θ and MIMMO.

4.1. Measuring the Effect of α

In Fig. 2, we investigate the influence of α on the prob-
ability distributions q. Specifically, we vary alpha in α =
{1, 100000} and m = {1, 7}, while fixing M = 8 and
D = 4. Moreover, we plot the input and output layer fea-
ture overlap during training for α = {1, 100000} in Fig. 3
for M = 8 and D = 4. We chose the α values relative to
the size of the training dataset which was set to N = 45000
samples. Higher α values mean stronger regularization, tar-
geting a distribution more similar to the prior.

As motivated earlier, given different members, it can be
seen that their favored depth probabilities in a single net-
work are different as seen in Fig. 2. Unexpectedly, the mem-
bers prefer the deeper layers more than the shallower ones,
most notably if the regularization strength is small, α = 1.
Moreover, as seen in Fig. 3, the input and output layer fea-
ture overlap does change with α, meaning that it does have
an impact on sharing features across the M members as α
increases. Empirically, α mainly impacts the depth distri-
butions, while the width and the depth of the net have a
marginal effect with α = 1. For the main comparison, we
set αM=2 = 100000, αM=4 = 10000, αM=8 = 100000.

4.2. Comparison

In Fig. 4 we compared our framework with the state-of-
the-art methods and varied M on CIFAR-100. In the top
row we show the results on the test dataset, while in the bot-
tom row, we show the mean results on the test dataset with
a range of 5 data augmentations across 5 levels of inten-

sity. We used data augmentations to simulate out of distri-
bution data to test calibration and robustness. We compared
the algorithmic performance, plotted on the y-axis, with re-
spect to accuracy, negative log-likelihood, Brier score, and
expected calibration error [10]. For each metric, lower is
better, except accuracy. On the x-axis, we varied the num-
ber of ensemble members M , the dashed lines represent ap-
proaches where M is naturally fixed. MIMMO is able to
achieve improved algorithmic performance, namely higher
accuracy or lower negative log-likelihood and Brier score
across M on the test dataset. Interestingly, in the case of
M = 2, 4 the method is able to achieve better accuracy and
lower negative log-likelihood than the naive ensemble, as
seen in Fig. 4, rows 1 and 2, columns 1 and 2. We also show
results where θ parameters are not optimized as MIMMO γ
and it can be seen that even without optimization, it is ben-
eficial to consider early-exits in the network as there are
certain gains in the performance. In case M = 2, the op-
timized version is slightly worse than the unoptimized ver-
sion, which demands further investigation in the direction
of regularization which prevents overfitting on the training
data.

In terms of the hardware cost if M = 2, 4, 8
MIMMO has 172.82, 174.11, 176.70 million FLOPs and
2.04, 2.11, 2.35 million parameters, respectively. If com-
pared to a naive ensemble with M = 2, 4, 8, MIMMO is
1.27, 2.52, 4.9 and 1.67, 3.27, 5.9 more hardware efficient
in terms of FLOPs and parameters, respectively. In compar-
ison to the original MIMO, the FLOP and parameter counts
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of MIMMO are in general ∼ 1.55 and ∼ 1.11 times higher,
respectively. We leave the benchmarking in terms of real-
world hardware cost such as latency and memory consump-
tion for future work. For detailed results and exact FLOPs
and parameter counts refer to Appendix D.

An important aspect of supporting MIMMO on real-
world hardware is the capability of the designated platform
to route the intermediate hidden representations from the
early-exits to the final output, rather than processing each
layer sequentially. Note that, the hidden representations
from the early-exits do not need to be cached but rather need
to be routed to the final layer and only the predictions from
the final layer per depth and member need to be cached,
adding a small overhead to the memory consumption. Op-
timising the hardware execution of MIMMO with respect
to the number of early-exits and the number of members is
an interesting direction for future work. Alternatively, the
hardware cost of MIMMO could be reduced by considering
a limited set of early-exits which would be smaller than D,
which is achievable by modifying the prior distribution.

5. Conclusion

There are limitations and open questions that need to be
addressed in future work. First, we used CNNs as our base
architecture for MIMMO. However, given the recent ad-
vances in vision transformers [5], it would be worthwhile to
investigate how MIMMO can be applied to different types
of NNs. Second, we focused on image classification task on
a single dataset, but there are other tasks that could benefit
from MIMMO such as segmentation [14] and object detec-
tion [15]. Third, we benchmarked MIMMO with respect
to FLOPs and parameters, but it would be interesting to in-
vestigate the real-world hardware cost such as latency and
intermediate memory consumption.

In summary, we conceptualised, developed and investi-
gated a method for learning adaptive depth ensembles of
MIMO NNs using variational inference. We showed its po-
tential to improve algorithmic performance and hardware
efficiency compared to the MIMO and a naive ensemble.
In the future, we plan to investigate the applicability of
MIMMO to other tasks and NNs, as well as benchmarking
and optimizing real-world hardware cost.
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