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Abstract

Many convolutional neural networks (CNNs) rely on
progressive downsampling of their feature maps to increase
the network’s receptive field and decrease computational
cost. However, this comes at the price of losing granularity
in the feature maps, limiting the ability to correctly under-
stand images or recover fine detail in dense prediction tasks.
To address this, common practice is to replace the last few
downsampling operations in a CNN with dilated convolu-
tions, allowing to retain the feature map resolution without
reducing the receptive field, albeit increasing the computa-
tional cost. This allows to trade off predictive performance
against cost, depending on the output feature resolution. By
either regularly downsampling or not downsampling the en-
tire feature map, existing work implicitly treats all regions
of the input image and subsequent feature maps as equally
important, which generally does not hold. We propose an
adaptive downsampling scheme that generalizes the above
idea by allowing to process informative regions at a higher
resolution than less informative ones. In a variety of experi-
ments, we demonstrate the versatility of our adaptive down-
sampling strategy and empirically show that it improves the
cost-accuracy trade-off of various established CNNs.

1. Introduction
When humans are exposed to a complex task, they fo-

cus on relevant aspects to make optimal use of the brain’s
limited capacities [2]. For instance, when categorizing the
bird’s species in Fig. 1, our brain allocates significantly
more computational resources for the bird than for the back-
ground. While naturally occurring in humans, this adap-
tive allocation of resources is not utilized in most of today’s
deep learning architectures. In this work, we propose an
adaptive downsampling scheme for Convolutional Neural
Networks (CNNs) [23] that mimics above adaptive alloca-
tion of resources by simultaneously processing different re-

Code available at https://github.com/visinf/cad/.
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Figure 1. Illustration of our content-adaptive method compared to
regular downsampling. (a) In regular downsampling, every sec-
ond pixel is sampled (repeated twice here). Note how the result
is almost incognizable and important detail like the beak, claws,
and tail of the bird is lost. (b) In our adaptive downsampling, a
precomputed downsampling mask defines the number of down-
sampling operations applied to each pixel. The resulting represen-
tation (zoom in to avoid aliasing) contains information of locally
varying resolution. This allows to semi-continuously adjust the
representation size to keep more detail where it matters.

gions of an image or feature map at different resolutions.
Many CNNs used as backbones in computer vision rely

on a progressive application of pooling or strided convo-
lution [17, 22, 37] to increase the network’s receptive field
and decrease computational cost [46]. However, this pro-
gressive, regular downsampling comes at the price of losing
fine detail in the feature maps, limiting the network’s abil-
ity to correctly understand images [46] or recover fine detail
in dense prediction tasks [4], such as at object boundaries.
To approach this problem, Yu et al. [46] replace the last
few downsampling operations in a CNN with dilated con-
volutions [45]. Although increasing the computational cost,
this allows to keep the resolution of feature maps without
reducing the network’s receptive field. However, by regu-
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larly downsampling, respectively not downsampling [46],
entire feature maps, most existing CNNs implicitly assume
that all regions of the input image and subsequent fea-
ture maps are equally important, which generally does not
hold [21, 29, 31] as, e.g., also shown by locally salient attri-
bution maps [18, 36, 39].

In contrast, our locally adaptive downsampling scheme
makes a more realistic assumption and can be considered
as a generalization of both regular downsampling in CNNs
and dilated convolutions [46]. By processing task-relevant
regions at a higher resolution than unimportant ones, we
can maintain the fine granularity of important regions while
efficiently processing unimportant regions at a lower reso-
lution, ultimately leading to an improved trade-off between
the accuracy and computational expense of various popular
CNNs. Contrary to existing adaptive downsampling meth-
ods [21, 29] that adaptively downsample the input image
before passing it through a CNN, our approach allows for
adaptive downsampling of feature maps within a CNN.

Specifically, we make the following contributions: (1)
We present a novel adaptive downsampling scheme for
CNNs, allowing to process different feature map regions at
different resolutions. (2) As different amounts of compu-
tational resources are being allocated for different regions,
our method can be considered as a novel realization of “fo-
cus” in CNNs. This is fundamentally different from exist-
ing attention mechanisms, e.g., in transformers [8], where
attention is implemented via adaptive weighting of input
features. As a consequence, an uninformative black im-
age and an informative natural image would still require
the same inference time in a transformer, while the black
image would be processed faster in our proposed adaptive
downsampling. (3) We provide an accompanying modified
instantiation of submanifold sparse convolution [14] that al-
lows to efficiently perform standard convolution on multi-
resolution grids that occur in our adaptive downsampling.
(4) Thanks to carefully designing the proposed method to
satisfy certain guarantees, it can be used in a plug-and-play
fashion within existing backbones even without retraining,
making it exceptionally versatile and practical. (5) We fur-
ther empirically show with two computer vision tasks that
our method is an effective and application-agnostic tool to
improve the cost-accuracy trade-off of different established
CNNs that build on regular downsampling.

2. Related Work
Adaptive (down)sampling. The goal of adaptive sam-
pling approaches is to sample an image or feature map spa-
tially to obtain optimal performance or properties of a CNN.
An early instance are Spatial Transformer Networks [19],
which aim to increase invariance to different geometric
transformations by learning to spatially transform feature
maps. Deformable convolutions [7] use two-dimensional

offsets to the regular sampling locations of standard con-
volutions to allow for more flexible handling of geomet-
ric variations and different receptive field sizes within one
layer. CF-ViT [5] entails a multi-stage approach where in
each stage the input patch resolution of the most important
patches is increased to refine the result of a vision trans-
former. Talebi and Milanfar [41] show that resizing images
with learned resizers, instead of linear ones, can improve
the accuracy of recognition models. Recasens et al. [31]
use an auxiliary saliency network to estimate the most im-
portant image regions that are then used for non-uniformly
downsampling the input image, leading to an amplification
of salient regions. Marin et al. [29] train an auxiliary net-
work to predict a non-uniform sampling grid that is denser
near semantic boundaries and use it to non-uniformly down-
sample input images to retain fine detail for segmentation
tasks. Jin et al. [21] propose a similar idea as [29], par-
ticularly for ultra-high-resolution images, additionally in-
cluding the segmentation accuracy in the training objective
of the sampling grid estimator. Our proposed approach is
fundamentally different from the above methods that adap-
tively downsample the image before passing it through a
CNN [21, 29, 31], instead of within the CNN. As a result,
they severely sacrifice accuracy, making them primarily ap-
propriate for very high-resolution images.

Detail-preserving pooling. While above adaptive down-
sampling methods are concerned with the question of how
many features to sample per region, detail-preserving pool-
ing is concerned with the question of which features or fea-
ture combinations to sample to better retain important de-
tail. Mixed Pooling [44] randomly selects max or average
pooling. Lee et al. [24] learn a weighted combination of
max and average pooling that is dependent on the pooling
region. In Lp pooling [15], orders pj are learned to inter-
polate between different pooling operators with pj = 1 cor-
responding to average pooling and pj = ∞ to max pool-
ing. Detail-preserving pooling [35] is a learnable adaptive
pooling method that magnifies important detail, making use
of inverse bilateral filters. Local importance-based pool-
ing [11] preserves discriminative detail by training an aux-
iliary network to predict adaptive importance maps that are
used to aggregate features for downsampling. SoftPool [38]
minimizes information loss using a softmax-weighted sum
of feature activations. Note that adaptive downsampling
methods [21, 31], including our approach, also incorporate
regular pooling layers, and thus, advanced pooling opera-
tions such as the above can be used complementarily.

Layer aggregation and architecture. Besides the above,
one can also use early high-resolution feature maps of
CNNs and more complex network architectures to improve
the granularity of feature maps or the output. Hyper-
columns [16] build a feature vector for any pixel by concate-
nating activations from all feature maps above that pixel.
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Fully convolutional networks [26] refine semantic segmen-
tations by combining earlier layers of higher resolution with
later layers of lower resolution. The U-Net [34] architecture
extends the previous idea by introducing skip connections
between all layers of corresponding resolutions. Pinheiro
et al. [30] propose to gradually refine the output segmenta-
tion by adding information from earlier layers in a top-down
fashion. Feature pyramid networks [25] produce feature
pyramids by combining high-level and low-level features
of a CNN. Instead of simple one-step skip-connections, Yu
et al. [47] incorporate more depth and sharing in their layer
aggregation. HRNet [43] goes even further and processes
high-resolution and low-resolution streams in parallel while
repeatedly exchanging information between the streams.
Yu et al. [46] improve the granularity of feature maps by
substituting downsampling operations with dilated convo-
lutions [45], allowing to retain the feature map resolution
while keeping the original receptive field of the CNN. Gen-
erally, high-level feature maps yield semantically stronger
features [17,25], and thus, using auxiliary information from
low-level layers might not be optimal. Further, combining
layers of different resolutions or keeping higher resolutions
can potentially introduce new parameters, increase compu-
tational cost, and/or raise memory usage.
Sparse convolution. While sparse convolution is not di-
rectly related to adaptive downsampling, it plays an essen-
tial role in our method. Initial works on sparse convo-
lution [10, 12, 13, 33] improve the computational cost of
standard convolution by processing only active elements
in sparse inputs, such as point clouds [10], handwritten
digits [12], or 3D grids [33]. Submanifold sparse con-
volution [14] avoids a growing number of active elements
caused by standard convolutions that dilate the sparse data
with each layer. Contrary to sparse convolution, which
is only used to completely ignore inactive elements, we
adapt sparse convolution to work with our proposed multi-
resolution feature maps.

3. Content-adaptive Downsampling in CNNs
In this work, we postulate that not all feature map regions

of a CNN are equally important and that, therefore, different
regions should be processed at different resolutions. By pro-
cessing only a subset of the most important feature map re-
gions at higher resolution while downsampling less impor-
tant ones, we can combine the smaller representation size
of regular downsampling with the higher feature map gran-
ularity of dilated convolutions [46]. As a consequence, we
can gain relatively large improvements in predictive perfor-
mance while only moderately increasing the computational
cost compared to regular downsampling.

The high-level idea behind our approach is illustrated in
Fig. 1(b). Contrary to regular downsampling (Fig. 1(a)),
where the image or feature map is downsampled uniformly

by sampling every second pixel, we utilize an adaptive
downsampling scheme (Fig. 1(b)) that retains higher resolu-
tion in areas with fine detail while downsampling less infor-
mative ones. In the following, we will outline the details of
our method with a focus on two-dimensional feature maps
with channels, e.g., in CNNs for vision tasks. However, the
extension to other dimensionalities, such as 1D signals and
3D temporal or volumetric data, works analogously.

Regular downsampling. Let f ∈ RH×W×C be a fea-
ture map (or image) of height H , width W , and depth
C. We denote regular downsampling by a factor of d ∈
N>1 as the process of reducing the spatial dimension of
f by outputting one element e ∈ RC from each non-
overlapping d× d patch, such that the resulting feature map
fd is of shape H

d × W
d × C. Generally, regular down-

sampling ψ : RH×W×C 7→ RH/d×W/d×C in CNNs is re-
alized by applying a patch-wise downsampling function
ψ′ : Rd×d×C 7→ RC to all HW/d2 non-overlapping d × d
patches f ′i,j in f :

fd = ψ (f) =
(
ψ′(f ′1,1), . . . , ψ

′(f ′H/d,W/d)
)
. (1)

The above definition of regular downsampling generalizes
to many commonly used downsampling methods used in
CNNs. For example, ψ′ can take the form of various pool-
ing operations, e.g., [15, 35, 44], or it can select an element
based on its spatial location to implement uniform down-
sampling, i.e., sampling every d-th element. When follow-
ing a convolution of stride 1, this corresponds conceptually
to a strided convolution with a stride of d.

Adaptive downsampling. In this work, we generalize
the above regular downsampling scheme by allowing some
patches f ′i,j to not be downsampled, and therefore, retain-
ing their original resolution of d × d. This is accom-
plished by providing an additional downsampling mask
m ∈ {0, 1}H/d×W/d as input, specifying which patches
f ′i,j should be downsampled (mi,j = 1) and which not
(mi,j = 0). For now, we assume that this downsampling
mask is given, and go later into more detail about how to
compute it in a content-adaptive way. Formally, our novel
adaptive downsampling ψa is defined as

ψa (f,m) = (ψ′
a

(
f ′1,1), . . . , ψ

′
a(f

′
H/d,W/d)

)
,

with ψ′
a(f

′
i,j) =

{
f ′i,j if mi,j = 0

ψ′(f ′i,j) if mi,j = 1 ,

(2)

denoting a patch-wise adaptive downsampling as indicated
by the downsampling mask m.

Multi-resolution grid convolution. As the resulting fea-
ture map ψa (f,m) consists of multiple resolutions, we lose
the regular grid structure of our data necessary to work with
standard convolutional layers. To address this, we project
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Figure 2. Illustration of different methods to handle feature map resolution in CNNs. ⋆ denotes the two-dimensional cross-correlation
operator (w/ zero padding). (a) Dilated convolution increases the receptive field (equally to downsampling) while retaining the feature
resolution [46]. (b) Standard strided convolution in CNNs (with stride=2) corresponds to uniformly downsampling the feature map by
sampling every second element. This is typically followed by a standard convolution. (c) In our adaptive scheme, the downsampling mask is
used to downsample a subset of the feature map and low-resolution entries are projected into the high-resolution grid; shaded cells (hatched)
denote inactive elements. Afterward, sparse convolution is applied to the active elements (black font) of the multi-resolution feature map
to produce an output with the same, multiple resolutions as the input. Note how the (loop) invariant of all algorithms (Guarantee 2) ensures
that the elements highlighted in blue, both before and after convolution, are the same across the different methods.

the lower-resolution features onto their corresponding loca-
tion in the high-resolution grid, as illustrated in Fig. 2(c).
Naturally, high-resolution patches f ′i,j that are filled with a
lower-resolution element will have empty cells (Fig. 2(c) –
shaded cells) and, thus, are sparse. We exploit the resulting
sparsity by processing our feature representations in sub-
sequent layers using sparse convolution [10, 13, 33]. This
allows to only consider active elements, and hence, uses
less computation in regions of lower effective resolution.
To avoid submanifold dilation [14], i.e., that inactive ele-
ments become active after convolution, we suggest a modi-
fied instance of submanifold sparse convolution [14] (SSC).
SSC ensures that input and output contain the same set of
active elements and thus enables us to keep the resolution
of each respective feature map or image region unchanged.
To retain the same receptive field as the convolutional layer
would have with regular downsampling, we increase the di-
lation factor to d. A remaining challenge is that at specific
feature map locations (see, e.g., Fig. 2(c) – cell with 6) non-
central elements of the convolutional kernel could fall onto
inactive elements, causing the result to be corrupted. To
avoid this, we modify SSC to assume that all inactive el-
ements take the value of the corresponding active element
within their patch (shown in Fig. 2(c) as shaded cells).

Extension to CNNs. Similarly to Yu et al. [46], our pro-
posed adaptive downsampling is incorporated into a stan-
dard CNN with regular downsampling, i.e., pooling or
strided convolution, by substituting the last n downsam-
pling operations with adaptive downsampling. Further,
we substitute all convolutional layers that follow the i ∈
{1, . . . , n} adaptive downsampling operations with our pro-

posed sparse convolution with a dilation factor of di to keep
the same receptive field as the original network. To perform
multiple adaptive downsampling operations in succession,
we only consider the elements belonging to the currently
lowest available resolution in our multi-resolution feature
map and convert them into a dense representation. We then
perform adaptive downsampling on these elements accord-
ing to Eq. (2). As before, the resulting features are projected
to their corresponding location in the multi-resolution fea-
ture map. Consequently, patches already containing higher-
resolution elements are excluded from the downsampling
process. This implies that areas, where resolution is re-
tained, cannot be downsampled at a later downsampling
step, and thus, for d = 2, one obtains a quadtree-like reso-
lution pattern as seen in Fig. 1(b). A more detailed explana-
tion of this process can be found in the supplementary.

Guarantees. The resulting CNN can further be seen as a
generalization of both regular CNNs with downsampling as
well as of the dilated convolution of Yu et al. [46]. When
setting all elements of the downsampling mask to one, we
obtain a standard CNN with regular downsampling. When
setting all elements of the downsampling mask to zero, we
obtain exactly dilated convolution [46] for higher-resolution
feature maps. By simultaneously processing different fea-
ture map regions at different resolutions, controlled by the
downsampling mask, we establish a combination of the
above methods that allows us to “interpolate” between dif-
ferent output strides in a locally adaptive fashion. An im-
portant desideratum behind our approach is that – like di-
lated convolution [46] – additional training of the backbone
is not mandatory. Therefore, it is exceptionally easy to use

4547



Table 1. Oracle experiment for semantic segmentation. For each model and output stride (OS), we report the mean IoU (mIoU) on the
Cityscapes [6] evaluation split, the theoretical (average) number of multiply-adds (#MA), and the min./max. inference times in seconds.
Our adaptive downsampling (OS=8→32) improves the cost-accuracy trade-off of all models, indicated by the on par mIoU scores and the
significantly reduced #MA and inference times, compared to OS=8.

Different backbones with DeepLabv3 [3]

ResNet-50 [17] ResNet-101 [17] ResNet-152 [17]

OS 16 8 8→32 16 8 8→32 16 8 8→32

mIoU 0.7496 0.7655 0.7658 0.7591 0.7775 0.7748 0.7683 0.7852 0.7848
#MA 2.6e11 8.0e11 3.8e11 4.2e11 1.4e12 6.7e11 5.7e11 1.9e12 1.0e12
Time 0.05 0.11 0.05/0.08 0.07 0.22 0.08/0.15 0.1 0.31 0.11/0.25

ResNet-101 [17] with different segmentation heads ResNet-101 [17] with DeepLabv3 [3] and different extensions

FCN [26] DeepLabv3+ [4] SoftPool [38] Deformable Convolution [7]

OS 16 8 8→32 16 8 8→32 16 8 8→32 16 8 8→32

mIoU 0.7154 0.7292 0.7322 0.7745 0.781 0.7805 0.7652 0.7823 0.7819 0.7564 0.7801 0.7797
#MA 4.2e11 1.4e12 6.7e11 4.2e11 1.4e12 6.7e11 4.2e11 1.4e12 7.4e11 8.0e11 1.4e12 1.0e12
Time 0.07 0.22 0.08/0.15 0.07 0.22 0.08/0.15 0.07 0.22 0.08/0.17 0.1 0.21 0.11/0.17

in a plug-and-play fashion. This is possible due to the fol-
lowing two guarantees, which result from our design and
hold when substituting regular downsampling, i.e., strided
convolution or pooling, with our adaptive downsampling:

Guarantee 1: Due to projecting all elements into the
highest-resolution grid and adjusting the dilation fac-
tors of subsequent sparse convolutions, we can guar-
antee that the receptive fields of the CNN and each
intermediate layer remain unchanged compared to the
corresponding CNN with regular downsampling.

Guarantee 2: All output features of a standard CNN
with strided convolution equal the output features
at the corresponding high-resolution locations of the
same CNN with adaptive downsampling (see Fig. 2(c)
– blue cells).

This means that a CNN with adaptive downsampling is
not modifying feature map values of a standard CNN with
strided convolution, but instead only adds information at
pixel locations where there was none before, and therefore,
refines the feature map. Note that while Guarantee 2 for-
mally only holds for strided convolutions and not for pool-
ing, we show in Sec. 4.3 that applying our adaptive down-
sampling in a CNN with pooling is still feasible in practice
without necessarily requiring retraining.
Content-adaptive downsampling masks. A remaining
question is how to obtain the downsampling mask to indi-
cate what regions to process at which resolution in a locally
content-adaptive way. In Sec. 4, we show that traditional
algorithms, like high-frequency detection or keypoint esti-
mates, can serve as an effective basis to identify important
image regions, and thus, to estimate downsampling masks.

Additionally, we demonstrate how to learn an appropri-
ate downsampling mask from data. Specifically, we utilize

a shallow CNN that takes as input the feature map of the
main model before the adaptive downsampling step, and
outputs the downsampling mask. In order to train it end-
to-end with the main model, we make the discrete mask
estimation differentiable with Gumbel-Softmax [20]. As
training our adaptive downsampling end-to-end can result
in a downsampling mask of only zeros, i.e., full resolution,
we control the amount of invested resources with an addi-
tional hyperparameter γ ∈ [0, 1] that defines the desired
proportion of active mask elements. Its squared difference
to the actual proportion m̂ ∈ [0, 1] of active elements in our
downsampling mask is included in the final loss function

L = αL1 + β(γ − m̂)2, (3)

with α and β being weighting factors, and L1 denoting the
loss of the main task, e.g., the segmentation loss.

Limitations. Our approach allows to interpolate between
different feature map resolutions, which can drastically
improve the cost-accuracy trade-off as shown in Sec. 4.
However, some limitations arise that could hinder its ef-
fective usage in some applications. First, our method’s
benefit depends on the given downsampling mask. If the
mask does not capture important regions, retaining higher-
resolution regions will not help. Second, there may be
backbones, especially those with advanced layer aggre-
gation schemes [43, 47], or datasets without fine details
where higher-resolution feature maps and, therefore, also
our method generally do not yield advantages. However,
our analysis and related work [9, 46] show that the highly
impactful and widely used CNN backbones, VGG [37] and
ResNet [17], benefit from higher-resolution feature repre-
sentations in various applications.
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4. Experiments
To demonstrate the practicality of our proposed adaptive

downsampling scheme, we conduct various experiments on
two different computer vision tasks confirming the follow-
ing points: (1) As a generalization of [46] and standard
CNNs, our method allows to interpolate between differ-
ent output strides, enabling a more granular control of how
many resources should be allocated for the task and input
image at hand. (2) By selecting task-relevant regions for a
specific input, our method can drastically improve the cost-
accuracy trade-off of standard CNNs. (3) The guarantees
satisfied by our method allow to incorporate it in a plug-
and-play fashion into pre-trained networks at test time. (4)
Our method is not limited to a single application and finding
appropriate downsampling masks is feasible in practice. (5)
Our approach generalizes to different backbones, segmen-
tation heads, and extensions.

We start our evaluation with an oracle experiment,
demonstrating the potential of our method given a high-
quality downsampling mask. Afterward, we present two
case studies that show how our method can be used in prac-
tice, demonstrating the advantages summarized above.

Experimental setup (segmentation). Experiments for se-
mantic segmentation (Secs. 4.1 and 4.2) have been con-
ducted on the Cityscapes dataset [6]. We report the mean
intersection over union (mIoU) on the validation set.

Experimental setup (keypoint description). For the key-
point description experiment (Sec. 4.3), we use the estab-
lished D2-Net descriptor [9], which takes an image as in-
put and outputs a dense feature map that can be used to
locate and describe keypoints. Since D2-Net keypoint lo-
calization tends to be imprecise [42], we follow Uzpak et
al. [42] and instead use SIFT [27] to first detect the 512
most salient keypoints and employ D2-Net only to describe
them. Following common practice [28, 32], we report the
mean matching accuracy, i.e., the ratio between correct and
possible matches, at a three-pixel threshold (MMA@3) on
the HPatches dataset [1].

Experimental setup (general). As the focus of this work
is the cost-accuracy trade-off of the examined methods,
for all experiments we report the respective task-specific
metrics, i.e., mIoU and MMA@3, over the required the-
oretical (average) number of multiply-adds as a proxy of
computational cost. As baselines, we consider the orig-
inal models with varying output strides obtained by us-
ing regular downsampling [17, 37] with the standard factor
d = 2, respectively not downsampling and using dilated
convolutions [46]. To draw a more conclusive picture, we
also report the required inference time in seconds. How-
ever, the inference time depends on the used implementa-
tion and hardware – here an Nvidia RTX A6000 GPU. For
a fair comparison we use the same implementation for our
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Figure 3. Example downsampling masks. A Cityscapes [6] image
and the corresponding estimated downsampling masks using our
oracle setup, edge detection, and a shallow learned network. Note
how low-frequency regions, e.g., the sky and road, belong to the
same class, and thus, can be processed at low resolution (bright)
to decrease the computational cost.

method and the baselines; please refer to the supplementary
for different implementations.

4.1. Oracle experiment: Feature resolution in se-
mantic segmentation

In our first experiment, we examine the role of feature
map resolution in semantic segmentation and whether pro-
cessing more informative regions at a higher resolution of-
fers advantages and is generally possible. To this end, we
first conduct an oracle experiment in which we assume a
high-quality downsampling mask to be given. As baselines
we use a segmentation model with regular downsampling
and two different output strides (OS) of 16 (lower feature
resolution) and 8 (higher feature resolution). For our pro-
posed adaptive downsampling with output stride 8 to 32
(OS=8→32), we define the downsampling mask as the pix-
els that are misclassified by a regular model with OS=32 but
correctly classified by a model with OS=8, followed by a di-
lation with a square kernel size of K × K (see Fig. 3 and
supplementary). This gives us exactly the image regions
that benefit from higher resolutions, and thus, can be con-
sidered our oracle downsampling mask. To demonstrate the
generalizability of our approach, we investigate a variety of
different backbones, segmentation heads, and extensions.

Results for our adaptive downsampling and baselines
can be seen in Tab. 1. Confirming our assumption and
prior work [4, 46], a smaller output stride, respectively
higher resolution, increases both the mIoU and compu-
tational cost of all the examined baseline models (OS=8
vs. OS=16). Moreover, using our adaptive downsampling
leads to an mIoU that is on par with the respective regu-
lar model with OS=8 while for some images requiring less
than 50% of the time and computational cost (e.g., ResNet-
101+DeepLabv3). This clearly confirms our hypothesis that
only a fraction of the feature map must be processed at a
higher resolution to obtain strong predictive performance.
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Figure 4. Semantic segmentation results. mIoU on the
Cityscapes [6] evaluation set over the number of multiply-adds
for a ResNet-101 [17] backbone with a DeepLabv3 [3] segmenta-
tion head, using regular downsampling [46] and our novel adaptive
downsampling scheme with a learned mask, respectively an edge
detection mask, with varying hyperparameters. Min. and max. in-
ference times for each setup are annotated. To reduce variance, we
report the maximum mIoU over three runs. X-confidence intervals
show 2 times the standard deviation of the required multiply-adds.

Further, it shows that our proposed method is applicable to
various different ResNet backbones (VGG [37] is shown in
Sec. 4.3) and segmentation heads. Also, our approach is a
novel and orthogonal research direction, which can be used
together with existing extensions like deformable convolu-
tion [7] and advanced pooling strategies [38].

4.2. Case study 1: Semantic segmentation

In our first case study, we again consider semantic seg-
mentation with ResNet101+DeepLabv3 models but now
with realistically estimated downsampling masks. We pro-
pose two strategies to estimate useful downsampling masks:
Edge mask. From analyzing the problem at hand, we
know that segmentation boundaries are likely to align with
edges. For this reason, we perform edge detection on the
input image to create a downsampling mask. Specifically,
we apply a Sobel filter to the original grayscale images and
dilate the thresholded result with a square kernel of size
11 × 11. Computational cost for detecting the edges is ne-
glectable (3× 10−3% of the total multiply-adds).
Learned mask. As described in Sec. 3, we use a shal-
low CNN to estimate downsampling masks from an inter-
mediate layer of the feature extractor. The mask estimator
is trained end-to-end with the segmentation model (see sup-
plementary). The computational cost for the mask estimator
is included in the reported multiply-adds and times.

The resulting downsampling masks for a single example
image can be seen in Fig. 3. Dark areas denote keeping
the higher resolution of an output stride of 8 while bright
areas correspond to an output stride of 16 (OS=8→16). In
Fig. 4, we report results for our adaptive downsampling with
the two proposed strategies. We again observe that by “fo-
cusing” on more relevant image regions, e.g., edges, we
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Figure 5. Qualitative semantic segmentation results. Esti-
mated segmentation maps using regular downsampling with OS=8
and adaptive downsampling with an output stride of 8 to 16
(OS=8→16) and our edge downsampling (DS) mask.

can improve the cost-accuracy trade-off of an established
model. Further, by adjusting the hyperparameters of the
mask estimators, we can granularly control the amount of
invested resources. Remarkably, adaptive downsampling
with a learned mask achieves on par mIoU as regular down-
sampling with an output stride of 8 (0.775 vs. 0.776) while
reducing the required computational cost by approximately
35%. Looking at the annotated minimum and maximum
times, we can observe time improvements of up to 40%.
However, we observe that for images with a lot of “inter-
esting” content, the worst-case inference time is similar to
regular downsampling with OS=8. This case study also
demonstrates how naively and easily we can estimate down-
sampling masks that together with our adaptive downsam-
pling still yield advantages for the task at hand. A visual
example of the estimated segmentations is shown in Fig. 5.

Contrary to our work, existing methods that adaptively
downsample the input before passing it into a CNN [21,29]
lose important image information, resulting in lower mIoU
scores of 0.5 or 0.65 on Cityscapes [6]. Hence, they are
mainly beneficial for processing ultra-high resolution im-
ages and are not considered as competitive baselines here.

4.3. Case study 2: Keypoint description

In our second realistic case study, we consider the prob-
lem of keypoint description. To this end, we investigate the
established SIFT detector [27] and D2-Net descriptor [9]
as described in the experimental setup. D2-Net utilizes a
VGG16 [37] backbone that progressively applies max pool-
ing to reduce the resolution of the feature map, and thus,
computational load. To demonstrate the simplicity and ver-
satility of our method, we use the original model weights
provided by the authors [9] and do not perform additional
training for any of the following setups. Again confirming
prior work [9], in Fig. 6 we see that a higher feature map
resolution (i.e., lower OS) increases both the MMA@3 and
the computational cost of the baseline model.

Next, we substitute the last 3, 2, or 1 max pooling op-
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Figure 6. Keypoint description results. MMA@3 over the required
number of multiply-adds for a SIFT [27] detector with a pre-
trained D2-Net [9] descriptor using regular downsampling [46]
with different output strides (OS), and our novel adaptive down-
sampling scheme using different masks. Given a reasonable down-
sampling mask, our adaptive downsampling can achieve on par
MMA@3 while significantly reducing the computational cost. Ac-
tual inference times for a randomly chosen image are annotated.

erations with our adaptive downsampling with max pooling
(OS={1, 2, 4}→8). As only image regions around the key-
points are important for our task at hand, we estimate the
downsampling masks by dilating keypoints obtained from
SIFT with filters of increasing sizes for each of the up to
three downsampling levels (see Fig. 7). We demonstrate a
fine-grained control of computational cost by varying the
dilation sizes for the downsampling levels. Larger dilation
sizes will lead to larger areas being processed at higher res-
olution, and thus, increase cost as well as MMA@3. The
results in Fig. 6 clearly show that, compared to the fixed
output strides of the baseline model, our adaptive down-
sampling yields a significant reduction of the computational
cost while achieving the same MMA@3, e.g., we achieve
an ∼70% reduction of the computational cost to reach an
MMA@3 that is on par with a regular output stride of 1.

Inadequate masks. To evaluate how our method performs
with “bad” downsampling masks, in Fig. 6 we addition-
ally report the MMA@3 for adaptive downsampling with
an output stride of 4 to 8 using random and unreasonable
masks, i.e., the inverse of reasonable masks. Confirming
our stated limitations, we see that inadequate downsampling
masks do not capture important image regions, and thus,
we process unimportant regions at high resolution, lead-
ing to an increased computational cost compared to regu-
lar downsampling with OS=8 without yielding significant
improvements in predictive performance. Note, however,
that thanks to our guarantees in Sec. 3, poor downsampling
masks still yield comparable predictive performance as reg-
ular downsampling with OS=8, showing that these masks
do not negatively affect predictive performance and that the
model still behaves in an expected way.

Downsampling masks

Keypoint matches

Figure 7. Qualitative results of keypoints matched with our adap-
tive downsampling scheme and the corresponding downsampling
masks. Note how only a fraction of the image is important, and
thus, processed at high resolution (dark) to increase the accuracy
while saving resources in bright areas of the downsampling mask.

5. Conclusion and Discussion
In this work, we propose – to the best of our knowledge –

the first downsampling scheme that changes the operating
resolution within CNNs in a locally adaptive fashion. We
do so by generalizing standard CNNs [17, 22, 37] and Yu
et al.’s [46] dilated convolutional networks, allowing us
to process feature maps with spatially-varying resolutions.
By selecting an appropriate content-adaptive downsampling
mask, indicating locally the most important regions that are
to be processed at a higher resolution, we can enable CNNs
to “focus” more strongly on task-relevant regions. Besides
substantially improving the cost-accuracy trade-off in two
computer vision tasks, our novel adaptive downsampling
enables a more continuous control of the invested computa-
tional resources, giving practitioners another degree of free-
dom to best adapt their model to the available resources.
Thanks to carefully designing the proposed method, it satis-
fies two important guarantees, allowing adaptive downsam-
pling even to be used at test time in a plug-and-play fashion
within standard CNNs pre-trained with regular downsam-
pling. As our approach improves the cost-accuracy trade-
off of various established models, it contributes to saving
valuable scarce resources and to the important research di-
rection of more (energy) efficient deep learning [40].
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