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Abstract

Semi-Supervised Domain Adaptation (SSDA) aims to de-
velop domain invariant models from scarcely labeled tar-
get domain in addition to the fully labeled source domain.
Current SSDA works are often applied in conjunction with
ResNet34 backbone, which makes them overlook the advan-
tages of utilizing other backbones. Hence, in this paper, we
investigate the impact of employing different modern back-
bones in SSDA and propose a novel solution named Modern
Backbones Assisted Co-training for Rapid and Robust
Semi-Supervised Domain Adaptation (MARRS), that uses
discriminative features of two modern backbones for train-
ing linear classifiers using the well established co-training
framework. To induce diversity among classifiers for effec-
tive co-training, we propose a novel module that produces
diversity at three levels, namely image, backbone, and fea-
ture distribution levels. Experiments reveal that MARRS not
only achieves state-of-the-art performance across all popu-
lar SSDA datasets, but also drastically cuts the computation
time compared to other SSDA approaches, making MARRS
a rapid and robust solution for SSDA. We also provide ex-
tensive ablation experiments to verify our framework’s vi-
tality and primary design choices.

1. Introduction

Semi-Supervised Domain Adaptation (SSDA) is the spe-
cial case of unsupervised domain adaptation (UDA) [9, 23,
44] where only a few labeled samples from the target do-
main are available. SSDA is the more practical problem
because it requires minimal labeling effort and still offers
a promising boost in performance in comparison with un-
supervised domain adaptation (UDA). Current SSDA tech-
niques [16–18, 33, 38, 46, 47] proposed various methodolo-
gies and loss functions to reduce inter-domain and intra-
domain gap, by using conventional ResNet34 [12] back-
bone. But, ResNet34 as a backbone has primarily two
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Figure 1. Outline of the proposed diversity module. (a) ID:
By applying weak augmentation (ψ) on only one of the backbones
initial data. (b) BD: By employing different family backbones,
i.e. one from CNN family and another from Vision Transformers
family. (c) FD: By using CORAL on output features of only one of
the backbones. Our work applies ψ at backbone-1 and CORAL at
backbone-2. However, other three designs based on the proposed
diversity module can be obtained by applying (i) ψ at backbone-2
and CORAL at backbone-1; (ii) both ψ and CORAL at backbone-
1; (iii) both ψ and CORAL at backbone-2. Notably, these designs
are also effective for inducing diversity (cf. Table 3).

drawbacks. First, from the computation aspect, due to the
less discriminative ResNet34 features, current SSDA works
have to use complex learning techniques along with in-
tricate loss functions during training, which help them to
boost accuracy to a certain level but makes them compu-
tationally expensive (cf. Fig. 6). Second, from the accu-
racy aspect, we discovered that a simple combination of
modern backbone ConvNeXt-XL [22] with a basic semi-
supervised learning technique ENT [11] achieves a mean
accuracy of 75.8% on DomainNet [30], 1-shot task, bet-
ter than best mean accuracy reported using ResNet34 back-
bone. These drawbacks demonstrate that the tradition of
using ResNet34 backbone in SSDA is outdated as well as
inefficient, and motivates us to explore the use of modern
backbones in SSDA. However, our study (cf. Table 4) re-
veals that directly utilizing modern backbones or an ensem-
ble of them in SSDA will not fully exploit their strengths
and results into relatively smaller gains. This raises the
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question: is it possible to attain more significant gains in
SSDA without using any complex adaptation techniques,
by carefully leveraging high-quality generalizable and dis-
criminative features from modern backbones?. The answer
is yes, our framework MARRS not only achieves state-of-
the-art performance, but also in a relatively shorter amount
of time which exhibits the practical advantage of our work
in situations where both accuracy and computation cost are
important concerns (e.g. edge computing [36]). MARRS
consists of the following stages:

(i) Feature extraction: At this stage, we propose a novel
diversity module which is shown in Fig. 1 for obtaining di-
verse views of data. It introduces diversity at image, back-
bone and feature distribution levels which makes resultant
classifiers diverse in three different dimensions. Impor-
tantly, at feature distribution level, we propose the novel
idea of employing CORAL [40] to induce diversity. Using
the proposed diversity module, we extract and store the fea-
tures of the initial data by taking ConvNeXt-XL [22] and
Swin-L [21] as two modern backbones. These features ex-
tracted once and remains unaltered throughout the training,
which makes our method computationally efficient.

(ii) Classifier training: After obtaining diverse features
of the data from the first stage, we train two linear clas-
sifiers. To combine their strengths, we use co-training [2].
The main idea of co-training is to train classifiers using their
labeled data and then use them to create pseudo-labels for
each other on unlabeled data. To learn more compact repre-
sentations, we also use consistency regularization [1,39,45]
which is a powerful solution in semi-supervised learning.

By combining the above two stages, we obtain our novel
SSDA framework, MARRS. Further, to make our frame-
work suitable for deploying in resource constrained situa-
tions, we use knowledge distillation [14,25,26,49] to trans-
fer the knowledge from our MARRS-trained classifiers to a
smaller model like MobileNetV2 [35].

Following are the main contributions of our work: (1)
We develop a novel SSDA solution, MARRS, which utilizes
strong transferable feature representation of modern back-
bones by training two linear classifiers via co-training. (2)
A novel diversity module is proposed to make the classifiers
diverse at three levels during co-training. Extensive experi-
ments backed with ablation studies show the vitality of our
diversity module. (3) MARRS is the first to explore the
effective use of modern backbones in SSDA and achieves
state-of-the-art results across all popular SSDA datasets in
relatively less time. Hence, it successfully addresses both
drawbacks (i.e. low accuracy and high computation time)
of training with ResNet34 backbone. (4) we also train a
smaller model MobileNetV2 containing only 3.4M param-
eters, which makes deployment of SSDA algorithms feasi-
ble even in mobile and AR/VR devices. Experiments reveal
that the MobileNetV2 results are also superior to the results

of all previous SSDA methods.

2. Related Work
Semi-Supervised Domain Adaptation (SSDA). Unlike

UDA [9,10,24], SSDA reduces the discrepancy between the
source and target distributions by using few labeled samples
from the target domain. MME [33] proposed to solve the
SSDA problem by using adversarial minimax loss. Further,
APE [16] introduces the intra-domain discrepancy problem
in SSDA and solves it using three techniques attraction, per-
turbation, and exploration. CLDA [38] uses class-wise and
instance-wise contrastive losses to reduce inter-domain and
intra-domain gap respectively. Recently, MCL [46] propose
to use inter-domain and intra-domain consistency learning
for solving SSDA. But, all these methods share a common
practice of using conventional ResNet34 [12] backbone,
which limits their applicability in complex domain adapta-
tion settings. However, the utilization of modern backbones
in SSDA is still unexplored. Notably, one parallel work
PACE [20] is recently reported on arXiv. But, it uses an en-
semble of 28 modern backbones, which makes it unsuitable
for memory-constrained situations. In contrast, our work
investigates the effective usage of backbones and leverages
only two modern backbones to get superior results across
all datasets in a significantly shorter period of time.

Co-training. Disagreement-based learning [50] is a very
important technique in semi-supervised learning, and co-
training [2, 4, 5] is one of the representative of it. In co-
training, each model is trained on confident predictions of
the other model. Diversity among members is a vital re-
quirement in any disagreement-based learning technique.
Hence, some prior works [29,31] use adversarial techniques
to generate diverse views, but it makes their learning com-
plex and unstable, which often results in the generation of
absurd views. Some works [34, 48] propose to use clas-
sifiers with different initialization but using them with the
same backbone results in less assurance of learning different
and complementary information. For image classification,
[8] shows the advantages of using image level and feature
level augmentations together. Yet, to the best of our knowl-
edge, no work on disagreement based learning has taken
advantage of this crucial finding. We address all these men-
tioned shortcomings by proposing a stable and learning-free
module that efficiently introduces diversity among classi-
fiers at image, backbone and feature distribution levels.

3. Methodology
In SSDA, we have access to label rich source dataset

Ds =
{(
xis, y

i
s

)}ns

i=1
sampled from a distribution PS(X,Y )

and labeled target dataset with less number of annotated
samples Dtl =

{(
xitl, y

i
tl

)}ntl

i=1
, along with a relatively

large number of unlabeled samples Dtu =
{
xitu

}ntu

i=1
from
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Figure 2. Overview of Feature extraction. (1) For Swin-L (Right): entire initial data (i.e. source data, target labeled data and target
unlabeled data) along with strong augmented version of target unlabeled data are passed to get output features. Output features of source,
target labeled, and target unlabeled data are then passed through CORAL module to get the final features. (2) For ConvNeXt-XL (Left):
weak augmented version of initial data along with strong augmented version of target unlabeled data are passed to get output features.

a distribution PT (X,Y ), such that PS(X,Y ) ̸= PT (X,Y ).
ns, ntl and ntu represent number of instances in Ds,Dtl

and Dtu respectively. Each data point xis
(
xitl

)
from

Ds(Dtl) is associated with a label yis
(
yitl

)
belonging to one

of the K different classes of the dataset. Our goal is to train
an SSDA model using Ds,Dtl and Dtu and evaluate it on
Dtu using its labels which are available at test time.

3.1. Stage I: Feature extraction

Our work, MARRS uses co-training during the second
stage (cf. Sec. 3.2). Since co-training benefits from diverse
data views, we propose a novel module that consists of 3
different modules to introduce diversity at three levels:

(i) Backbone level diversity module (BD): Vision
Transformers (ViT) based networks offer several advan-
tages, such as multi-head self-attention and larger scalabil-
ity. Similarly, CNN-based designs also have their own set of
benefits, including various in-built inductive biases, higher
throughput, and ease of implementation. So, to combine the
diverse yet complementary advantages of CNN and ViT for
stronger consensus, we propose to use ConvNeXt-XL [22]
denoted as Gc from CNN family and Swin-L [21] denoted
as Gs from ViT family as two fixed modern backbones in
our framework. However, analysis of MARRS with other
modern backbones can also be found in the supplementary.

(ii) Image level diversity module (ID): Since weak aug-
mentation (ψ) [37] produces realistic yet diverse variations
of images, we use ψ to bring diversity at the image level.
But, applying ψ to both Gc and Gs data will not result in
diversity. As a result, we propose to use ψ for only one of
the backbones data, Gc in this case. We choose perspective
preserving padding as ψ in our framework.

(iii) Feature distribution level diversity module (FD):
We introduce a new idea of using CORAL [40] to induce

diversity among models at the feature distribution level.
CORAL is a simple linear algebraic-based technique tra-
ditionally used for aligning source and target data feature
distributions. During alignment, it changes features of the
data points. Hence, we can also interpret it as a feature
level data augmentation technique and then use it to induce
diversity at the feature distribution level by applying it to
the features of only one of the backbones, Gs in this case.

In addition, we apply strong augmentation [6] to tar-
get unlabeled data in both backbones. A detailed fea-
ture extraction outline is shown in Fig. 2. It integrates
all 3 proposed modules to extract final features. Let,
fs(gs), ftl(gtl), ftu(gtu) and ftu′(gtu′) represent features
of source data, target labeled data, target unlabeled data
and strongly augmented version of target unlabeled data ex-
tracted from Gc (Gs). After feature extraction, two groups of
feature sets are produced, which are then used for learning
two linear classifiers during the second stage. Feature sets
obtained using Gc areDc

s = (fs, ys),Dc
tl = (ftl, ytl),Dc

tu =
ftu and Dc

tu′ = ftu′ and that using Gs are Ds
s = (gs, ys),

Ds
tl = (gtl, ytl), Ds

tu = gtu and Ds
tu′ = gtu′ . In all cases,

subscripts denote the type of feature and superscripts denote
the feature extractor, e.g. Dc

s denotes source feature set ob-
tained from Gc. Dc

s,Dc
tl,Ds

s andDs
tl denotes labeled feature

sets containing features along with their available labels.

3.2. Stage II: Classifier training

Co-training [2] is a well-established semi-supervised
learning (SSL) framework. Given diverse views of data, in
co-training, each model is trained using the most confident
predictions of its counterpart, which implicitly integrates
the strengths of models and results into more accurate mod-
els. In our work, two models are: (i) linear classifier Fc:
single unbiased fully connected layer followed by the Soft-
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max function, with weight wc trained using Dc
s,Dc

tl,Dc
tu

andDc
tu′ ; (ii) linear classifier Fs: single unbiased fully con-

nected layer followed by the Softmax function, with weight
ws trained usingDs

s,Ds
tl,Ds

tu andDs
tu′ . Initially, classifiers

Fc and Fs are trained on their individual labeled feature
sets. After initial training, at each iteration, we pass target
unlabeled feature sets Dc

tu and Ds
tu to classifiers Fc and Fs

to obtain pseudo-label sets U c and Us respectively, which
can be formulated as:

U c =
{(
yips,c = argmax

k
p
(
k | f itu;wc

) )
;

if max
k

p
(
k | f itu;wc

)
> τ

}
i = 1, . . . , ntu

Us =
{(
yips,s = argmax

k
p
(
k | gi

tu;ws

) )
;

if max
k

p
(
k | gi

tu;ws

)
> τ

}
i = 1, . . . , ntu

(1)

where, f itu and gi
tu are i-th feature drawn from Dc

tu and
Ds

tu, yips,c and yips,s are pseudo-labels of i-th features ob-
tained using Fc and Fs respectively, τ is the confidence
threshold and p is the prediction of the classifier. By us-
ing the main principle of co-training to teach one model
on confident predictions of another model, we constructed
two labeled feature sets for co-training as: (i) Dc

co ={
f itu, y

i
ps,s

}ntu′

i=1
denoting co-training feature set for Fc with

labels from Us and corresponding features from Dc
tu; (ii)

Ds
co =

{
gi
tu, y

i
ps,c

}ntu′′

i=1
denoting co-training feature set

for Fs which consists of labels from U c and correspond-
ing features from Ds

tu. ntu′′ and ntu′ denote the size of
pseudo-label sets U c and Us respectively. We use standard
cross-entropy loss for co-training, which can be written as:

Lce(D;w) = − 1

n

n∑
i=1

K∑
k=1

(
yi
)
k
log

(
F
(
xi
))

k
, (2)

where, w is the weight of classifier F , D denotes the la-
beled dataset, (xi, yi) is the i-th sample of dataset D, K
is the number of classes and n is the number of samples
in dataset D. Inspired by the success of consistency reg-
ularization in previous works [1, 39, 45], we integrate it
into our framework to learn a more robust model. In our
work, we apply consistency regularization by setting pre-
dictions of target unlabeled data features as the pseudo-
labels on predictions of strongly augmented target unla-
beled data features. Strong data augmentation generates
a broader range of highly perturbed data, and training on
them makes the model learn only important characteristics
about the data and therefore enhances the model’s gener-
alizability. Our work uses RandAugment [6] as a strong
data augmentation technique. Only reliable target unla-
beled data features (i.e. data features with maximal prob-
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Figure 3. Illustration of the proposed MARRS framework. Ex-
tracted features are passed through a linear classifier for obtaining
predictions. For reliable source data features (i.e. data features
with maximal probability score over a threshold τs) and target la-
beled data features, losses are calculated using their predictions
and available ground truths. Confident predictions of target un-
labeled data features are converted into pseudo-labels, which are
then used for 2 purposes: (i) For calculating consistency loss on
predictions of strongly augmented target unlabeled data features;
(ii) For calculating co-training loss on predictions of target unla-
beled data features of another classifier. For ease of visualization,
training for only Fc is shown; training of Fs is obtained by replac-
ing input features with features extracted from Gs and by using
yps,c as pseudo-labels for calculating co-training loss.

ability score over a threshold τtu) are retained for loss es-
timation to limit the influence of inaccurate pseudo-labels.
We have already computed features of target unlabeled data
and features of strongly augmented version of target unla-
beled data (cf. Sec. 3.1 for details). We apply cross-entropy
loss using Eq. (2) for consistency regularization in which
targets are pseudo-labels obtained from Eq. (1), and pre-
dictions are classifier outputs for corresponding strongly
augmented target unlabeled data features. Hence, two la-
beled features sets constructed for consistency regulariza-
tion are: (i) Dc

cons =
{
f itu′ , yips,c

}ntu′′

i=1
denoting consis-

tency regularization feature set for Fc which contains la-
bels from U c and corresponding features from Dc

tu′ ; (ii)
Ds

cons =
{
gi
tu′ , yips,s

}ntu′

i=1
denoting consistency regulariza-

tion feature set for Fs with labels from Us and correspond-
ing features from Ds

tu′ . For labeled feature sets Dc
s,Dc

tl,Ds
s

and Ds
tl, we use cross-entropy loss with label-smoothing

regularization [41]. It is a simple technique to reduce the
over-fitting of a model on labeled data by regularizing the
label with a small smoothing parameter ϵ, formulated as:

Llsr (D;w) = − 1

n

n∑
i=1

K∑
k=1

(
yismooth

)
k
log

(
F
(
xi
))

k
,

(
yismooth

)
k
=

{
1− ε; if

(
yi
)
k
= 1,

ε/K; otherwise.
(3)
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Figure 4. Illustration of student model training. Initial data
(i.e. source data, target labeled data and target unlabeled data) are
passed through the feature extractor G (MobileNetV2) followed by
a classifier F which is a linear network. For source data and tar-
get labeled data, losses are calculated using their predictions and
available labels. For target unlabeled data, loss is calculated us-
ing its predictions and agreed pseudo-labels with high confidence
obtained from MARRS trained classifiers (See supplementary ma-
terial for the detailed algorithm).

where, ϵ is the smoothing parameter, yismooth denotes the
i-th sample label after smoothing and other notations are
same as Eq. (2). Importantly, in source features sets (Dc

s and
Ds

s), we considered only those source data features whose
maximal probability score lies above a threshold (τs) be-
cause source data features with low confidence scores are
unlikely to be informative. At test time, the average of pre-
dictions of Fc and Fs are used for classification. Fig. 3 and
Algorithm 1 outlines the main steps of MARRS.

3.3. Knowledge Distillation

Knowledge Distillation (KD) [3,14,27,32] is the process
of capturing the knowledge of a large model or an ensem-
ble of models into a more petite model without suffering a
significant performance loss. The main reason for explor-
ing knowledge distillation in our work is to eliminate the
burden of keeping two large backbones at inference time
for resource constrained situations (e.g. autonomous driv-
ing cars, video surveillance, robotics and augmented real-
ity). Hence, we use KD to transfer the knowledge from
the teacher model (MARRS-trained classifiers) to a student
model. We use MobileNetV2 [35] as a student model be-
cause it is a compact yet efficient network designed pri-
marily for mobile applications. MobileNetV2 also allows
memory-efficient inference, which significantly reduces the
memory footprint needed during inference time.

The most important component of a knowledge dis-
tillation algorithm is the knowledge itself. In our case,
knowledge consists of the pseudo-labels (class with max-
imal probability) generated by the MARRS-trained classi-
fiers on unlabeled data. To reduce the effect of uncertain
pseudo-labels on learning, we use only those pseudo-labels
for which both classifiers are confident (probability confi-
dence score of both classifiers pseudo-labels are more than
a threshold τ ) and agreed (pseudo-labels of both classifiers

Algorithm 1: Proposed MARRS algorithm
Input : Linear classifiers Fc and Fs, parameters

wc and ws, Fc feature sets Dc
s,Dc

tl,Dc
tu

and Dc
tu′ , Fs feature sets Ds

s,Ds
tl,Ds

tu and
Ds

tu′ , learning rate η, weight balancing
parameters λs, λtl, λco and λcons, outer
iterations Nouter, inner iterations Ninner,
confidence thresholds τs and τtu.

Output: updated parameters wc and ws.

1 for p← 1 to Nouter do
2 U c, Us ← Calculate pseudo-label sets using Fc

and Fs by Eq. (1) with τ = τtu.
3 Dc

co,Ds
co ← Obtain co-training feature sets

using U c, Us,Dc
tu and Ds

tu (See Sec. 3.2 ).
4 Dc

cons,Ds
cons ← Obtain consistency

regularization feature sets using U c, Us,Dc
tu′

and Ds
tu′ (See Sec. 3.2).

5 for q ← 1 to Ninner do
// Calculating Losses for Fc

6 Lc
s = Llsr (Dc

s;wc) ( for source features
whose p(y | fs;wc) > τs) using Eq. (3).

7 Lc
tl = Llsr (Dc

tl;wc) using Eq. (3).
8 Lc

co = Lce (Dc
co;wc) using Eq. (2).

9 Lc
cons = Lce (Dc

cons;wc) using Eq. (2).
10 Lc

tu = λco ∗ Lc
co + λcons ∗ Lc

cons

11 Lc
total = λs ∗ Lc

s + λtl ∗ Lc
tl + Lc

tu

// Calculating Losses for Fs

12 Ls
s = Llsr (Ds

s;ws) ( for source features
whose p(y | gs;ws) > τs) using Eq. (3).

13 Ls
tl = Llsr (Ds

tl;ws) using Eq. (3).
14 Ls

co = Lce (Ds
co;ws) using Eq. (2).

15 Ls
cons = Lce (Ds

cons;ws) using Eq. (2)
16 Ls

tu = λco ∗ Ls
co + λcons ∗ Ls

cons

17 Ls
total = λs ∗ Ls

s + λtl ∗ Ls
tl + Ls

tu

// Updating parameters

18 wc = wc − η · ∇Lc
total

19 ws = ws − η · ∇Ls
total

20 end
21 end

are identical). We train student model on original datasets
Ds,Dtl andDtu using same learning settings as in [33]. An
outline of student model training is given in Fig. 4.

4. Experiments
Datasets: We use DomainNet [30], which is a large-

scale adaptation dataset consisting of 6 domains with 345
categories. Following [33] we use 4 domains Clipart (C),
Real (R), Sketch (S) and Painting (P), with 126 categories
and perform 7 different cross-domain evaluations. We also
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Table 1. Accuracy (%) on DomainNet. Methods that use modern backbones are given in the shaded region. MARRS∗ (student model)
uses MobileNetV2, and all other baselines use ResNet34. Best results are in bold and the second-best results are underlined.

Method R → C R→P P→C C→S S→P R→S P→R Mean
1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot

S+T 55.6 60.0 60.6 62.2 56.8 59.4 50.8 55.0 56.0 59.5 46.3 50.1 71.8 73.9 56.9 60.0
ENT 65.2 71.0 65.9 69.2 65.4 71.1 54.6 60.0 59.7 62.1 52.1 61.1 75.0 78.6 62.6 67.6
MME 70.0 72.2 67.7 69.7 69.0 71.7 56.3 61.8 64.8 66.8 61.0 61.9 76.1 78.5 66.4 68.9
CLDA 76.1 77.7 75.1 75.7 71.0 76.4 63.7 69.7 70.2 73.7 67.1 71.1 80.1 82.9 71.9 75.3
CDAC 77.4 79.6 74.2 75.1 75.5 79.3 67.6 69.9 71.0 73.4 69.2 72.5 80.4 81.9 73.6 76.0
MCL 77.4 79.4 74.6 76.3 75.5 78.8 66.4 70.9 74.0 74.7 70.7 72.3 82.0 83.3 74.4 76.5
PACE 82.4 84.2 84.5 84.9 82.6 84.5 74.6 76.0 84.8 85.3 74.0 75.4 91.7 92.5 82.1 83.3

MARRS∗ 84.2 85.0 84.7 85.0 85.6 85.7 75.4 77.6 83.0 84.6 73.7 76.2 90.2 91.1 82.4 83.6
MARRS 84.5 85.5 85.1 85.9 86.1 86.1 76.0 77.6 84.8 86.1 74.5 77.3 91.9 92.9 83.3 84.5

Table 2. Accuracy (%) on Office-Home. Methods that use modern backbones are given in the shaded region. MARRS∗ (student model)
uses MobileNetV2, and all other baselines use ResNet34. Best results are in bold and the second-best results are underlined.

Method R→C R→P R→A P→R P→C P→A A→P A→C A→R C→R C→A C→P Mean
1-shot

S+T 52.1 78.6 66.2 74.4 48.3 57.2 69.8 50.9 73.8 70.0 56.3 68.1 63.8
ENT 53.6 81.9 70.4 79.9 51.9 63.0 75.0 52.9 76.7 73.2 63.2 73.6 67.9
MME 61.9 82.8 71.2 79.2 57.4 64.7 75.5 59.6 77.8 74.8 65.7 74.5 70.4
CLDA 60.2 83.2 72.6 81.0 55.9 66.2 76.1 56.3 79.3 76.3 66.3 73.9 70.6
CDAC - - - - - - - - - - - - -
MCL 67.0 85.5 73.8 81.3 61.1 68.0 79.5 64.4 81.2 78.4 68.5 79.3 74.0
PACE 86.2 95.2 90.4 94.7 82.9 90.4 95.2 85.4 94.4 94.3 91.1 94.7 91.2

MARRS∗ 87.0 95.2 90.5 94.3 85.4 90.2 94.7 86.6 93.5 94.3 91.5 93.6 91.4
MARRS 87.3 95.3 90.8 94.7 85.5 90.9 95.2 86.8 93.7 94.6 92.0 93.8 91.7

3-shot
S+T 55.7 80.8 67.8 73.1 53.8 63.5 73.1 54.0 74.2 68.3 57.6 72.3 66.2
ENT 62.6 85.7 70.2 79.9 60.5 63.9 79.5 61.3 79.1 76.4 64.7 79.1 71.9
MME 64.6 85.5 71.3 80.1 64.6 65.5 79.0 63.6 79.7 76.6 67.2 79.3 73.1
CDAC 67.8 85.6 72.2 81.9 67.0 67.5 80.3 65.9 80.6 80.2 67.4 81.4 74.2
CLDA 66.0 87.6 76.7 82.2 63.9 72.4 81.4 63.4 81.3 80.3 70.5 80.9 75.5
MCL 70.1 88.1 75.3 83.0 68.0 69.9 83.9 67.5 82.4 81.6 71.4 84.3 77.1
PACE 87.0 95.7 90.8 95.1 85.0 90.7 95.3 86.3 94.9 94.9 91.2 95.3 91.9

MARRS∗ 86.3 96.0 90.6 95.2 86.4 90.0 95.7 86.4 94.5 95.2 91.2 95.1 91.9
MARRS 87.0 96.0 90.6 95.3 86.5 90.7 95.7 86.5 94.7 95.2 91.8 95.1 92.1

evaluate on Office-Home [42], which is a middle-size adap-
tation dataset consisting of 65 classes from four domains,
namely Clipart (C), Real (R), Product (P), and Art (A). Fol-
lowing [33], we report performance for all possible 12 adap-
tation scenarios.

Implementation details: All experiments are imple-
mented on a single NVIDIA RTX 2080 GPU using Py-
torch [28]. We choose ConvNeXt-XL [22] and Swin-L [21]
pretrained on ImageNet [7] as our two fixed backbone net-
works. We use gradient descent on the entire dataset with
momentum and learning rate of 0.9 and 30 respectively,
with no weight decay. In knowledge distillation, we use
MobileNetV2 [35] as student model and set the value of τ
to 0.7. Other experimental settings like learning rate, batch
size, optimizers are same as [33] except for number of iter-
ations in which we use only 10K/2.5K iterations as opposed
to 50K/10K iterations on DomainNet/OfficeHome datasets.
Additional experimental details are given in supplementary.

Baselines: We compare our framework MARRS with
recent state-of-the-art SSDA approaches, including S+T,
ENT [11], MME [33], CLDA [38], CDAC [17], MCL [46],
and PACE [20]. Among baselines, S+T is trained on the
only source and labeled target samples.

4.1. Main Results

Results of MARRS: Results of MARRS in Tabs. 1 and 2
emphasizes on four major findings: (1) MARRS outper-
forms all ResNet34 based baselines by a large margin across
all evaluation settings in both datasets, which supports our
motivation that efficient use of features from modern back-
bones can obtain superior performance in relatively less
time. (2) MARRS gives comparatively higher performance
in data efficient scenario (i.e. 1-shot), where it outperforms
SOTA ResNet34 based method (MCL [46]) by significant
margin of 8.9% and 17.7% on mean accuracy of DomainNet
and OfficeHome datasets respectively. (3) In both datasets,
MARRS also beats PACE [20], which uses an ensemble of
28 modern backbones, unlike our method, which utilizes
only 2 modern backbones. This shows that using mod-
ern backbones is not the only reason for marvelous result
of MARRS, the design choice of leveraging modern back-
bones using co-training equipped with novel diversity mod-
ule and other components are also an important reason for
phenomenal performance of MARRS. (4) Gains of MARRS
are more prominent in complex settings like C→S in Do-
mainNet and P→C in OfficeHome, which shows the vitality
of proposed framework in hard domain adaptation settings.
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Table 3. Comparison of performance among variations of
MARRS on mean test accuracy (%) across all settings. Best re-
sults are in bold and the second-best results are underlined.

Method DomainNet OfficeHome
1-shot 3-shot 1-shot 3-shot

MARRSnone 81.0 83.7 90.7 91.8
MARRSboth,both 82.8 83.9 91.5 91.8
MARRSboth,conv 82.9 84.4 91.5 92.0
MARRSboth,swin 83.0 84.3 91.6 92.1

MARRSrev. 83.0 84.3 91.6 92.0
MARRS 83.3 84.5 91.7 92.1

MARRSswin 81.1 82.6 90.8 91.4
MARRSconv 82.0 83.4 91.0 91.5

Table 4. Analysis of each com-
ponent’s relative importance
on mean test accuracy (%) of
DomainNet, 1-shot task.

Method Accuracy
Swin-L 78.2

ConvNext-XL 80.0
Ensemble 80.4

Co-training (A) 81.3
A+ID A+FD 81.8 82.4

A+ID+FD (B) 82.8
B+LS+CR (MARRS) 83.3

Table 5. Analysis of MARRS
with smaller backbones us-
ing mean test accuracy (%) on
Office-Home dataset.

Method 1-shot 3-shot
MME 70.4 73.1
CDAC - 74.2
CLDA 70.6 75.5
MCL 74.0 77.1

MARRSnone 73.0 76.4
MARRSboth,both 73.9 76.0

MARRS 74.6 77.3

Results of MARRS∗: We use MobileNetV2 as a stu-
dent model (MARRS∗) consisting of 3.4 M parameters that
are nearly 6 times lesser than of ResNet34 (22 M) still, as
can be seen from Tabs. 1 and 2, it outperforms all previ-
ous ResNet34 based methods by a large margin and mod-
ern backbone based method PACE with smaller margin on
both datasets. These results show that it is also possible to
deploy domain adaptation with high performance even on
resource constrained devices (i.e. mobile, AR/VR devices).

4.2. Ablation Studies

How effective is the proposed diversity module in in-
ducing diversity?: For this, we conducted an experiment
by excluding co-training from MARRS to correctly exam-
ine the effect of the proposed diversity module. Now, each
classifier will use its own pseudo-label sets to construct two
labeled feature sets, namely Dc

co and Ds
co (cf. Sec. 3.2). Af-

ter training both classifiers Fc and Fs, we calculate None

representing the number of unlabeled examples on which
exactly one of the classifiers have confidence. Since we
know that if classifiers are diverse, they will be confident
on different unlabeled examples. As a result, we may as-
sert that diversity is directly proportional to None. Our pro-
posed module consists of 3 different diversity modules: ID,
FD, and BD (cf. Sec. 3.1 for details). Fig. 5 depicts that in
the case of both datasets the value ofNone rises when either
ID or FD is used, and it increases even more when both are
used, which shows their complementary nature. However,
the value of None falls when we use the same family back-
bones (i.e. Baseline-2 and Baseline-3), which signifies the

(a) Real→Sketch (b) Painting→Clipart

Figure 5. Analysis of variation of None on complex (a)
Real→Sketch, setting of the DomainNet dataset; (b) Painting →
Clipart, task of the OfficeHome dataset. Baseline-1: MARRS w/o
co-training, ID and FD. Baseline-2: Baseline-1 with ID and FD,
but with both backbones as Swin-L. Baseline-3: Baseline-1 with
ID and FD, but with both backbones as ConvNeXt-XL.

importance of BD in producing diversity. Yet, the values of
None are larger than that of Baseline-1, which does not use
ID and FD. It emphasizes that the ID and FD modules are
capable of inducing diversity even with same backbones.

Performance impact of the proposed diversity mod-
ule: For extensive studies, we perform comparison
with seven other variants of our framework MARRS. In
MARRS, we applied weak augmentation (ψ) at Gc and
CORAL at Gs. MARRSnone is obtained by removing both
ψ and CORAL from the framework. MARRSboth,both is ob-
tained by applying both ψ and CORAL in both Gc and Gs.
MARRSboth,conv is obtained by using both ψ and CORAL
in Gc. Similarly, MARRSboth,swin is obtained by using
both ψ and CORAL in Gs. MARRSrev. is the reverse of
MARRS, obtained by using CORAL in Gc and ψ in Gs.
MARRSconv and MARRSswin are the MARRS with both
backbones as ConvNeXt-XL and Swin-L respectively. Re-
sults in Table 3 shed light onto three important findings:
(1) All four MARRS, MARRSrev., MARRSboth,conv and
MARRSboth,swin are designs based on the proposed ID
and FD modules and all are consistently outperforming
MARRSnone and MARRSboth,both across all 4 adaptation
settings, signifying the importance of our proposed image
level and feature distribution level diversity modules which
says that applying ψ or CORAL at only one of the back-
bones helps to introduce diversity, which ultimately leads to
an improvement in performance. (2) Applying ψ at Gc and
CORAL at Gs yields superior results when compared to the
other three strategies, hence we use this order of applying ψ
and CORAL in our framework MARRS. (3) Drop in perfor-
mance of MARRSswin and MARRSconv highlight the im-
portance of backbone level diversity module (BD), which
emphasizes that different family backbones should be em-
ployed for larger diversity and higher performance gains.

Importance of individual components: A recent
method PACE [20] uses an ensemble of 28 different modern
backbones and still our method MARRS outperforms it by
using just two modern backbones, which shows the impor-
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Table 6. Performance analy-
sis of various feature level aug-
mentation methods on mean
test accuracy (%) of DomainNet
3-shot task.

Method Mean Accuracy
Gaussian noise (σ = 0.001) 83.7
Gaussian noise (σ = 0.01) 83.8
Gaussian noise (σ = 0.1) 83.4
Gaussian noise (σ = 1) 81.1

Interpolation 84.0
CORAL 84.5

Table 7. Performance analy-
sis of different weak augmen-
tation techniques on mean test
accuracy (%) of DomainNet, 1-
shot task.

Augmentation Mean Accuracy
Color jitter 82.7
Grayscale 82.9

Horizontal flipping 83.1
Square padding 83.1

Perspective preserving 83.3Padding

tance of our design choice. Further, results in Table 4 show
that simply using an ensemble gives only marginal improve-
ments over standalone modern backbones. On using co-
training, 0.9% increment in performance can be seen. Per-
formance further improves on introducing either ID or FD.
While utilizing both ID and FD, performance boost of 1.5%
can be seen, which is a compelling improvement in com-
plex and label scarce DomainNet 1-shot setting and shows
the value of our novel diversity module. Finally, introduc-
ing Consistency regularization (CR) and Label smoothing
(LS) further adds 0.5 % to mean accuracy.

Effectiveness of MARRS with smaller backbones:
For fair comparison with prior works which use ResNet34
as a backbone, we also performed an experiment in which
we replaced modern backbones with variations of ResNet34
backbone. For ensuring a relaxed version of our backbone
level diversity module (i.e. employ different backbones),
we use two variants of ResNet34 namely ResNet34d [13]
as Gc and skResNet34 [19] as Gs, having 21.8M and 22.1M
parameters respectively, which are comparable to ResNet34
with 22M parameters. Results in Table 5 highlight two
key findings: (1) Superior performance than all ResNet34
based works without using any complex learning tech-
niques, shows that our framework, MARRS is simple yet
effective. However, performance gap now becomes thin-
ner as we are training only linear classifiers using fixed fea-
tures extracted from ResNet34 variants, which are not dis-
criminative enough to give high performance without get-
ting updated during training. (2) MARRS outperforms both
MARRSnone and MARRSboth,both. It demonstrates the
versatility of proposed FD and ID modules, which can suc-
cessfully produce diversity even with smaller backbones.

Comparison with other feature level augmentation
methods: Table 6 shows the performance of MARRS
with two other learning free feature level augmentation
techniques (random Gaussian noise and Interpolation [8]),
which are used for inducing feature distribution level diver-
sity at the place of CORAL in MARRS. Random Gaussian
noise performs well on smaller values of standard deviation
(σ) and achieves maximum accuracy of 83.8% at σ=0.01.
Interpolation produces relatively better results as it interpo-
lates a given feature with its nearest neighbor feature, unlike

Figure 6. Runtime (in hours) on a single NVIDIA RTX 2080
GPU for DomainNet, 3-shot task. Runtime consists of feature ex-
traction time (features are extracted and stored) and training time.
MCL [46] and CLDA [38] are recent ResNet34 based methods.

adding just random Gaussian noise. On using either of the
two, results are superior to all the baselines but inferior to
the result gained with CORAL, supporting our novel idea
that CORAL can be used as an effective learning free fea-
ture level augmentation in domain adaptation scenarios.

MARRS with different weak augmentation tech-
niques: In Table 7, we analyse the effect of different weak
augmentations (ψ) on the performance of MARRS. We dis-
cover that the optimum performance comes from utilizing
perspective preserving padding as ψ. But the crucial finding
is that performance of MARRS does not differ wildly and
beats all prior works, even when using different ψ, which
shows the stability of our framework MARRS.

Runtime comparison: We compare runtime of our
framework with a recent modern backbone based method
PACE [20] and two ResNet34 based methods, namely
CLDA [38] and MCL [46]. From Fig. 6, we can see that our
method is 7 to 9 times faster than ResNet34 based meth-
ods and nearly 4.25 times faster than PACE. Despite be-
ing compute friendly, our method gives dominant perfor-
mance across all evaluation settings, which encourages fu-
ture SSDA works to incorporate modern backbones in their
framework for robust and energy-efficient training [15, 43].

5. Conclusion
In this work, we propose a novel SSDA framework

named MARRS. It integrates strong feature representation
of modern backbones by training two linear classifiers using
co-training. To induce diversity among classifiers, a novel
three stage diversity module is proposed, including a simple
yet promising new idea of using CORAL to induce diversity
at feature level. For instances where resources are limited, a
smaller student model is trained by utilizing the knowledge
from MARRS-trained classifiers. Experiments on bench-
mark SSDA datasets show that both MARRS and MARRS-
trained student model outperforms previous SSDA methods
in significantly less time. In future work, we are keen to ex-
tend our method to more data efficient problems like source-
free domain adaptation, few-shot domain adaptation and in
other related computer vision tasks, namely video domain
adaptation, adaptive object detection and depth estimation.
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