
BlazeStyleGAN: A Real-Time On-Device StyleGAN

Haolin Jia, Qifei Wang, Omer Tov, Yang Zhao, Fei Deng, Lu Wang, Chuo-Ling Chang, Tingbo Hou,
Matthias Grundmann

Google
{haolinmz, qfwang, omertov, yzhaoeric, dfei, luwa, chuoling, tingbo, grundmann}@google.com

Abstract

StyleGAN models have been widely adopted for gener-
ating and editing face images. Yet, few work investigated
running StyleGAN models on mobile devices. In this work,
we introduce BlazeStyleGAN — to the best of our knowl-
edge, the first StyleGAN model that can run in real-time
on smartphones. We design an efficient synthesis network
with the auxiliary head to convert features to RGB at each
level of the generator, and only keep the last one at infer-
ence. We also improve the distillation strategy with a multi-
scale perceptual loss using the auxiliary heads, and an ad-
versarial loss for the student generator and discriminator.
With these optimizations, BlazeStyleGAN can achieve real-
time performance on high-end mobile GPUs. Experimen-
tal results demonstrate that BlazeStyleGAN generates high-
quality face images and even mitigates some artifacts from
the teacher model.

1. Introduction
Generative Adversarial Networks (GANs) [5] are well

known for their impressive image generation capabilities.
As a successful example, the StyleGAN family [11–13] has
been widely adopted for unconditional face generation and
various face editing tasks. However, due to the high com-
putational complexity, many of the applications have to run
offline on powerful machines. Very few works investigated
running StyleGAN models on mobile devices. An earlier
attempt, MobileStyleGAN [2] was distilled from StyleGAN
and can run faster than StyleGAN on Intel CPUs. However,
it did not achieve real-time performance on mobile devices.
Along with the rising need of real-time experiences in mo-
bile apps, including short videos, virtual reality, and gam-
ing, accelerating StyleGAN models to achieve real-time on-
device performance will enable more applications.

To improve the efficiency, various GAN compression
methods have been proposed. [3, 4] use knowledge distilla-
tion [8] for compressing general GAN architectures. [15,18]
further combine channel pruning [6] with knowledge distil-

lation to improve performance. However, these methods are
designed for compressing conditional GANs, which usu-
ally have paired training data. Unconditional GANs are in
general more challenging to compress due to their unpaired
training setting. [16] shows that directly applying [18] to
StyleGAN2 [13] leads to sub-optimal performance.

In this paper, we propose BlazeStyleGAN, an efficient
StyleGAN implementation to optimize model performance
and on-device latency. We revisit the complexity of Style-
GAN, and notice that the modulated convolutions and the
feature-to-RGB modules are taking significant inference
time. To address these issues, we simplify the modulated
convolution, and design an efficient auxiliary head to con-
vert features to RGB (called UpToRGB) at each level of the
generator. At inference time, we only keep the last auxil-
iary head and remove others. We adopt the popular Style-
GAN2 [13] as our teacher model, and perform knowledge
distillation to train our BlazeStyleGAN. We also introduce
a multi-scale perceptual loss to improve the model’s gener-
ation capability by learning image generations at multiple
levels of granularity. Our BlazeStyleGAN is smaller than
MobileStyleGAN [2] in terms of parameter numbers and
model complexities. To demonstrate the performance, we
benchmark BlazeStyleGAN on various smartphones, where
it achieves real-time performance on mobile GPUs. The vi-
sual quality of the image generated by BlazeStyleGAN is
similar to its teacher model. We also observe that, in some
examples, BlazeStyleGAN can even improve visual qual-
ity by mitigating the artifacts generated from the teacher
model. BlazeStyleGAN achieves fair Fréchet Inception
Distance (FID) [7] scores compared to the teacher Style-
GAN.

Our contributions can be summarized as follows:

• We design a mobile-friendly architecture by introduc-
ing a new auxiliary UpToRGB head at each level of the
generator, and only running the last one at inference.
• We improve the distillation strategy by computing a

multi-scale perceptual loss with the auxiliary heads
and an adversarial loss against real images, which im-
proves image generation and suppresses transferring

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

4690



artifacts from the teacher model.

• Our BlazeStyleGAN achieves real-time performance
on many popular smartphones, while preserving high-
quality image generation.

2. Related Work
Early work on unconditional GAN compression [1] fo-

cuses on low-resolution images. It uses an MSE loss to
make the student generator produce similar images as the
teacher generator when given the same latents. With the ad-
vent of StyleGANs [11–13], compressing StyleGANs for
high-resolution image synthesis has attracted a lot of in-
terest. Content-Aware GAN compression (CAGAN) [16]
adapts channel pruning and knowledge distillation proposed
in [18] to work with unconditional GANs, and uses a
content-of-interest mask to guide the pruning and distilla-
tion process. However, this requires the student network
to inherit the main structure of the teacher network. Xu et
al. [19] find that when the student and teacher networks
have different architectures, the output discrepancy limits
the performance of CAGAN, and propose an initialization
strategy to solve the issue. MobileStyleGAN [2] takes a dif-
ferent approach by leveraging frequency-based image rep-
resentations and using the wavelet transform as the predic-
tion target for the student model. However, we found that
frequency-based image representation misses details in gen-
erated images, and the model efficiency can be further to
achieve real-time performance.

3. Model Architecture
The StyleGAN generator contains two main compo-

nents, the mapping network and the synthesis network. The
mapping network is designed as a multi-layer perceptron
(MLP) to map the input latent z to an intermediate latent
space W as the style input to the adaptive instance normal-
ization for each convolutional layer in the synthesis net-
work. The synthesis network contains multiple convolu-
tional layers that generate images from style input (A in
Fig. 1) and noise (B in Fig. 1). Since the synthesis blocks
contribute to the majority of model parameters, we focus
on the design of an efficient synthesis network to improve
on-device performance.

The StyleGAN synthesis network is composed of a stack
of convolutional blocks, with 3×3 convolutional layers, up-
sampling layers, and adaptive instance normalization lay-
ers. Each synthesis block is attached with a latent-feature-
to-RGB (ToRGB) block to calculate multi-scale perceptual
loss. Such a complicated architecture results in a cum-
bersome model, which is unfriendly to on-device applica-
tions. Following MobileNet [9] for using depth-wise convo-
lution, MobileStyleGAN [2] proposes a modulated depth-
wise convolutional (DWModulatedConv) layer to merge the

Figure 1. The synthesis block of BlazeStyleGAN. See text for
details.

adaptive normalization with the depth-wise convolution. It
transforms the latent feature to RGB via a single frequency
domain transformation at the end of the synthesis network.
Thus, it significantly reduces the number of model param-
eters from StyleGAN. Although MobileStyleGAN claims
the wavelet transformation can enhance the high frequency
details, we observe that using a single feature-to-RGB layer
at the end of the chains is prone to losing image details.

To achieve better quality, we design an efficient synthesis
network with a new feature-to-RGB transformation block,
as shown in Fig. 1. Each synthesis block has an auxiliary
head (named as UpToRGB) to upsample and transform its
latent feature to an RGB image. To reduce the complexity of
the synthesis block, we downsample the latent feature map’s
resolution of each synthesis block in BlazeStyleGAN to 1/4
of the resolutions of the counterpart layers in the teacher
StyleGAN’s synthesis blocks. To match the teachers’ out-
put resolution, each feature map is further upsampled to the
target resolution in the UpToRGB head as shown in Fig. 1.
Since only the UpToRGB head processes the full resolution
feature map in each block, the complexity is much reduced
compared to processing the full resolution feature map in
the synthesis block. The RGB images output by the aux-
iliary UpToRGB heads construct a coarse-to-fine pyramid
used for calculating the multi-scale perceptual quality loss.

4691



Figure 2. Multi-scale perceptual loss in distillation.

4. Distillation
We train the student BlazeStyleGAN by distilling the

teacher StyleGAN model, using a multi-scale perceptual
loss and an adversarial loss.

Multi-scale Perceptual Loss. The UpToRGB transfor-
mation blocks output an RGB map pyramid with coarse-to-
fine resolutions (from 8× 8 to the target output resolution),
as shown in Fig. 2. We resize the output from the teacher
model to the same resolutions and calculate the perceptual
loss, formulated as Eq. 1.

Ll
p(Is, It) =

∑
l

(‖VGG(I lt)−VGG(I ls)‖2), (1)

where I ls and I lt denote the images generated by student and
teacher models at level l, respectively. VGG represents the
multi-scale feature extractor using VGG19 [10] backbone.

Adversarial Loss. We also use the adversarial loss for
training the student model. The loss of the student generator
is

Lg(A,B) = f(−D(Gs(A,B))), (2)

whereGs is the student generator,D represents the discrim-
inator network, f is a non-saturating function, and A and B
represent style and noise, respectively.

Our discriminator loss is defined as

Ld(A,B) = f(−D(real image) + f(D(Gs(A,B)))

+
γ

2
µ(‖∇D(Gs(A,B)‖),

(3)

where the third regularization term penalizes the discrimi-
nator from deviating from the Nash Equilibrium [17].

Instead of using the images generated by the teacher
model, we use real images to train the discriminator. That
design is motivated by the observation that the teacher
model may generate images with strong artifacts, which can
mislead student models in the distillation. Our experiments
show that the student model can suppress the artifacts from
the teacher model and improve the quality when training the
discriminator with real images.

Overall training objective The final training objective
is defined as a combination of the multi-scale perceptual

Table 1. Comparison of model complexity.

Model Image Size #Params (M) FLOPs (G)

StyleGAN 1024 33.17 74.3

MobileStyleGAN 1024 8.01 30.2

BlazeStyleGAN 1024 2.07 4.70

BlazeStyleGAN 512 2.05 1.57

BlazeStyleGAN 256 2.01 1.28

loss and adversarial loss, represented as Eq. 4 with hyper-
parameter weights λ1, λ2, and λ3,

L = λ1 × Lp + λ2 × Lg + λ3 × Ld. (4)

The weighting hyperparameters are tuned in the experi-
ments for the best performance.

5. Experiments
We use the FFHQ [12] dataset for model training and

evaluation. For the teacher model, we re-implement Style-
GAN2 [13] using TensorFlow 2.0, and train the model on
FFHQ 1024 × 1024. It has a FID score of 2.92, which
approximately matches the official implementation1. We
train our BlazeStyleGAN models at multiple resolutions.
All models are trained on NVIDIA A100 GPUs with a
batch size of 32, using the Adam optimizer [14] with β1 =
0.9, β2 = 0.999, and 800K training steps.

Table 1 summarizes the model complexity in terms of
the number of parameters and FLOPs. Our BlazeStyleGAN
significantly reduces the model complexity. Compared with
MobileStyleGAN [2], our model has only 26% parameters
and 16% FLOPS.

To benchmark BlazeStyleGAN’s performance on mobile
devices, we convert the BlazeStyleGAN model to Tensor-
Flow Lite format, and run inference on various mobile de-
vices. Each benchmark reports the average time of 50 it-
erations of inference on a device. As shown in Table 2,
both BlazeStyleGAN-256 and BlazeStyleGAN-512 achieve
real-time performance on all GPU devices in the bench-
mark. It can run in less than 10 ms runtime on high-end cell-
phones’ GPU. BlazeStyleGAN-256 can also achieve real-
time performance on the iOS devices’ CPU. The bold num-
bers represent the real-time performance in the benchmark.

Fig. 3 shows the images generated from the teacher
StyleGAN and our BlazeStyleGAN at 256×256 and 512×
512 resolutions. Overall BlazeStyleGAN generates images
with similar visual quality to the teacher model, despite mi-
nor facial detail loss caused by model compression. Some
results demonstrate the student BlazeStyleGAN suppresses
the artifacts from the teacher model in the distillation.

1https://github.com/NVlabs/stylegan2

4692



Table 2. Benchmark of inference time (ms) on various high-end mobile devices.

Model Chip iPhone 11 iPhone 12 iPhone 13 Pro Pixel 6 Pixel 7 Galaxy S10 Galaxy S20

BlazeStyleGAN-256
CPU 23.02 18.87 16.05 43.14 37.83 52.83 40.23
GPU 12.14 11.99 7.22 12.24 17.00 17.01 8.95

BlazeStyleGAN-512
CPU 38.39 37.33 29.46 67.57 62.23 87.50 56.89
GPU 18.46 15.66 9.29 16.71 21.81 24.05 14.14

Figure 3. Generated images of teacher StyleGAN and our BlazeStyleGAN at 256× 256 (top two rows) and 512× 512 (bottom two rows).

Table 3. FID scores of teacher StyleGAN and BlazeStyleGAN.

Teacher StyleGAN BlazeStyleGAN

FID-256 6.64 9.94
FID-512 4.33 8.96

The FID scores are reported in Table 3. Our BlazeStyle-
GAN is able to preserve the generation quality from the
teacher StyleGAN. Specifically, comparing to the teacher
StyleGAN-256 achieves FID score as 6.64 and teacher
StyleGAN-512 has 4.33, BlazeStyleGAN improves FID to
9.94 and 6.64 for the resolution of 256 and 512 respectively.

6. Conclusions

In this work, we present the first StyleGAN model
(BlazeStyleGAN) that can generate high-quality face im-
ages in real-time on most high-end smartphones. Efficient
on-device generative models are an early and open research
topic with a lot of challenges. We design an efficient archi-
tecture for the StyleGAN synthesis network, and optimize
distillation strategy to mitigate artifacts from the teacher
model. By significantly reducing the model complexity, our
BlazeStyleGAN can achieve real-time performance on mo-
bile devices in our benchmark.

4693



References
[1] Angeline Aguinaldo, Ping-Yeh Chiang, Alex Gain, Ameya

Patil, Kolten Pearson, and Soheil Feizi. Compress-
ing GANs using knowledge distillation. arXiv preprint
arXiv:1902.00159, 2019. 2

[2] Sergei Belousov. MobileStyleGAN: A lightweight convolu-
tional neural network for high-fidelity image synthesis. arXiv
preprint arXiv:2104.04767, 2021. 1, 2, 3

[3] Ting-Yun Chang and Chi-Jen Lu. TinyGAN: Distilling Big-
GAN for conditional image generation. In ACCV, 2020. 1

[4] Hanting Chen, Yunhe Wang, Han Shu, Changyuan Wen,
Chunjing Xu, Boxin Shi, Chao Xu, and Chang Xu. Distilling
portable generative adversarial networks for image transla-
tion. In AAAI, 2020. 1

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks. Commu-
nications of the ACM, 63(11):139–144, 2020. 1

[6] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning
for accelerating very deep neural networks. In ICCV, 2017.
1

[7] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. NIPS, 30, 2017. 1

[8] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 1

[9] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. MobileNets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 2

[10] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
ECCV, pages 694–711. Springer, 2016. 3

[11] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen,
Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Alias-free
generative adversarial networks. In NeurIPS, 2021. 1, 2

[12] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
CVPR, 2019. 1, 2, 3

[13] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improving
the image quality of StyleGAN. In CVPR, 2020. 1, 2, 3

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 3

[15] Muyang Li, Ji Lin, Yaoyao Ding, Zhijian Liu, Jun-Yan Zhu,
and Song Han. GAN compression: Efficient architectures
for interactive conditional gans. In CVPR, 2020. 1

[16] Yuchen Liu, Zhixin Shu, Yijun Li, Zhe Lin, Federico Perazzi,
and Sun-Yuan Kung. Content-aware GAN compression. In
CVPR, 2021. 1, 2

[17] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin.
Which training methods for gans do actually converge? In
International conference on machine learning, pages 3481–
3490. PMLR, 2018. 3

[18] Haotao Wang, Shupeng Gui, Haichuan Yang, Ji Liu, and
Zhangyang Wang. GAN slimming: All-in-one GAN com-
pression by a unified optimization framework. In ECCV,
2020. 1, 2

[19] Guodong Xu, Yuenan Hou, Ziwei Liu, and Chen Change
Loy. Mind the gap in distilling StyleGANs. In ECCV, 2022.
2

4694


	. Introduction
	. Related Work
	. Model Architecture
	. Distillation
	. Experiments
	. Conclusions

