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Abstract

Semi-supervised object detection (SSOD) has made sig-
nificant progress with the development of pseudo-label-
based end-to-end methods. However, many of these meth-
ods face challenges due to class imbalance, which hin-
ders the effectiveness of the pseudo-label generator. Fur-
thermore, in the literature, it has been observed that low-
quality pseudo-labels severely limit the performance of
SSOD. In this paper, we examine the root causes of low-
quality pseudo-labels and present novel learning mecha-
nisms to improve the label generation quality. To cope with
high false-negative and low precision rates, we introduce an
adaptive thresholding mechanism that helps the proposed
network to filter out optimal bounding boxes. We further
introduce a Jitter-Bagging module to provide accurate in-
formation on localization to help refine the bounding boxes.
Additionally, two new losses are introduced using the back-
ground and foreground scores predicted by the teacher and
student networks to improvise the pseudo-label recall rate.
Furthermore, our method applies strict supervision to the
teacher network by feeding strong & weak augmented data
to generate robust pseudo-labels so that it can detect small
and complex objects. Finally, the extensive experiments
show that the proposed network outperforms state-of-the-
art methods on MS-COCO and Pascal VOC datasets and
allows the baseline network to achieve 100% supervised
performance with much less (i.e., 20%) labeled data.

1. Introduction
The semi-supervised learning (SSL) theory provides a

useful illustration of how the vast amount of unlabeled data
can be exploited using a small labeled data set [28]. In this
work, we revisit the problem of SSL-based object detection
(SSOD), in which an object detector is trained with a large
amount of unlabeled data and a small amount of labeled
bounding boxes. To achieve this, existing SSOD meth-
ods typically use two strategies: consistency-based SSOD
[6,24] and pseudo-tagging-based SSOD [1,8,17,29,32,35].

*Pankaj Wasnik is the corresponding author.
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Figure 1. Foreground detection on challenging scenarios such as
bad exposure, high perturbations, small, and blur.

Figure 2. Comparison between proposed network and the existing
SOTA method called Active Teacher [17] on MS-COCO dataset.

Consistency-based approaches train their detector by mini-
mizing the inconsistency between the predictions of unla-
beled data with different perturbations. Their performance
is highly dependent on the design of the perturbations and
the consistency measurement. Recently, pseudo-labeling-
based frameworks [1,8,17,29,32,35] have become popular.
These methods follow teacher-student scheme in which the
teacher network generates pseudo-labels using unlabeled
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data. Concurrently, the student network is trained at each
iteration with the predicted pseudo-labels and few labeled
data. The benefit of such learning is that as the network
converges during training, the quality of the pseudo-labels
increases. However, a high-quality pseudo-label requires
both precise classification and localization [29]. In this pa-
per, we examine the root cause of the negative impact of
low-quality pseudo labels.

Low-quality pseudo-labeling can aggravate class imbal-
ance issues, resulting in a high false-negative rate (i.e., fail-
ing to identify objects from the less prevalent classes) and
a low precision rate (i.e., incorrectly identifying objects
from the less common classes). To address this, the exist-
ing pseudo-label-based SSOD frameworks [25, 32, 38] use
a hand-crafted threshold to distinguish pseudo-bounding
boxes for student training. However, the hard threshold
as a hyperparameter must be carefully tuned and dynami-
cally adjusted according to the model capability in different
time steps [31]. To carefully discriminate pseudo-bounding
boxes, we introduce an adaptive threshold filter mechanism
that adjusts the threshold based on background/foreground
bounding boxes at each time step. From experimental anal-
ysis, we also proved the effectiveness of adaptive threshold
mechanism over static hand-crafted threshold.

Applying pseudo-labels directly to object detection
raises the problem of imprecise bounding box localization
[29]. Xu et al. [32] also analyzed this effect and found
that bounding boxes with high foreground scores may not
provide accurate localization information and therefore not
suitable for box regression tasks. To address this issue, we
introduce a Jitter-Bagging module to estimate the reliable
bounding boxes by measuring the consistency of its regres-
sion prediction. The effectiveness of the proposed Jitter-
Bagging is also validated in the experimental section.

Another problem is the low recall rate of pseudo-labels,
which impairs model training and causes many candidate
boxes to be mistaken for a background category due to poor
matching of pseudo-labels [29]. To address this issue, we’re
introducing two new losses that will help to improve fore-
ground classification accuracy. The first loss is the back-
ground similarity loss, which helps the network to match the
teacher-generated pseudo-boxes and the predicted boxes.
Minimizing this loss ensures that the pseudo-boxes gener-
ated by the teacher and predicted by the students become as
similar as possible. Another loss function is the foreground-
background dissimilarity loss to separate the foreground
bounding box from the background boxes. These losses
help the proposed network to improve the pseudo-label re-
call rate, so that it can improve detection performance.

In addition, we analyzed impact of the Exponential Mov-
ing Average (EMA) update mechanism and found that it
faces a lag issue that limits its performance in sudden
weight fluctuations. To address this, we employed Double

EMA (DEMA) [19], which gives more weight to the lat-
est observations and removes the lag compared to EMA.
As per our knowledge, the DEMA is being used in the
SSOD weight update mechanism for the first time, and its
effectiveness in detail is discussed in the Section 4.5. Our
scheme also applies strict supervision to the teacher net-
work and feeds strong and weak augmented data into the
teacher network to generate accurate pseudo-labels. Inter-
estingly, the proposed network can accurately detect the
foreground bounding boxes even for small and highly com-
plex objects. This can be verified using Figure 1, where
some results generated by the proposed network on chal-
lenging scenarios are visualized.

We perform extensive experiments with benchmark
datasets, namely MS-COCO [13] and Pascal VOC [4] to
validate the proposed method. The experimental analy-
sis not only confirms the significant performance gain over
SOTA methods, but also shows that the proposed method al-
lows the baseline network to achieve 100% supervised per-
formance with much less (i.e., 20%) annotated images in
the MS-COCO dataset as shown in Figure 2.

Finally, the key contributions of the paper can be sum-
marized as follows:

• The existing class imbalance can significantly hinder
the efficacy of pseudo-label generators. This issue can
be alleviated by incorporating suitable learning mech-
anisms in end-to-end manner.

• The high false negative and low precision rates can
be improvised by carefully distinguishing the pseudo-
bounding boxes. To handle this, we propose an adap-
tive thresholding mechanism that adjusts the threshold
based on background/foreground bounding boxes and
helps to filter out optimal bounding boxes.

• To provide accurate localization information, we in-
troduce a Jitter-Bagging module for the regression
task that helps the proposed network to refine optimal
bounding boxes.

• To improve pseudo-label recall rate and detect blurry
and distorted small objects as foreground objects, we
introduce two new losses: background similarity loss
and foreground-background dissimilarity loss.

2. Related works
Existing SSOD frameworks can be categorized as the

pseudo-label-based methods [1, 8–12, 14, 17, 20, 23, 29,
30, 32, 34–36, 39] and consistency-based methods [6, 24].
The pseudo-label-based works proved better performance
against consistency-based SSOD approaches.

In [23], Shon et al. introduce a pseudo-labeling-based
method but it lacks consideration of serious data imbalance
issues. Zhang et al. [34] proposed an adaptive self-training
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Figure 3. Network architecture of the proposed teacher-student-based network.

model for class-rebalancing but it requires additional mem-
ory module. Yang et al. [33] proposed interactive form of
self-training to tackle the discrepancies in results. How-
ever, their model requires two ROI heads to mine comple-
mentary information. In contrast, Xu et al. [32] present an
end-to-end based soft teacher mechanism to generate better
pseudo-labels. Similarly, Tang et al. [25] follow the teacher-
student dual model framework to generate more consistent
pseudo-labels. These methods [25, 32] perform better than
multi-stage based approaches with less complexity, but they
still suffers from class imbalance problem.

Zheng et al. [36] observed the effects of single threshold
and introduced a two-stage threshold mechanism based dual
decoupling framework. Recently, Liu et al. [14] proposed
a cycle self-training network to overcome the coupling ef-
fect of teacher-student learning. In [9], Li et al. proposed
a method that uses the dense guidance teacher directly to
monitor student training. Recently, Mi et al. [17] exam-
ined teacher-student learning from the perspective of data
initialization where the label set is partially initialized and
gradually augmented by evaluating key factors of unlabeled
examples. In [29], Wang et al. identified the inconsistency
in object proposals and proposed a framework to overcome
the harm caused by insufficient quality of pseudo-labels.

Recent, authors in [16] showed the generalization of the
SSOD method to anchor-free detectors and also introduced
Listen2Student mechanism to prevent misleading pseudo-
labels. Chen et al. [2] also studied anchor-free detectors
and proposed a dense learning-based framework to gener-
ate stable and precise pseudo-labels. In [37], Zhou et al.
proposed replacing sparse pseudo-boxes with dense predic-

tions to obtain rich pseudo-label information. Li et al. [10]
introduced noisy pseudo box learning and multi-view scale-
invariant learning to provide better pseudo-labels. To take
full advantage of labeled data, Li et al. [8] proposed a multi-
instance alignment model that improves prediction consis-
tency based on global class prototypes. Che et al. [1] pro-
posed a framework from two perspectives, i.e., distribution-
level and instance-level to handle the class imbalance issue.
Recently, Zhang et al. [35] introduced a dual pseudo-label
polishing framework to reduce the deviation of pseudo-
labels from ground truth through dual-polishing learning.

To address the crucial class imbalance issue and produce
better pseudo-labels, we also employ pseudo-label-based
teacher-student scheme and introduce two crucial modules,
two new classification losses and a new learning mecha-
nism.

3. Methodology
3.1. Problem Statement

This paper aims to perform robust pseudo-label-based
end-to-end SSOD where a set of labeled images Dl =
{xl,i; yl,i}Nl

i=1 and a set of unlabeled images Du =

{xu,j}Nu

j=1 are used for training. Here, Nl and Nu are the
number of labeled and unlabeled images. Further, xl and yl
denote the image and its ground-truth annotations i.e., class
labels and bounding box coordinates, respectively.

3.2. Overview of the proposed network

The architectural pipeline of proposed end-to-end net-
work is illustrated in Figure 3. In each training iteration,
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labeled and unlabeled images are arbitrarily sampled to
form an input batch. The teacher network produces the
pseudo labels based on the weak and strong augmented un-
labeled images. While the student network is trained using
weakly augmented labeled images with ground-truth and
strongly augmented unlabeled images with pseudo-labels as
ground-truth. Here, the student network is trained using the
weighted combination of the supervised and pseudo-label
loss. This can be expressed mathematically as

LTotal = Lsup + λ · (Lwa
pl + Lsa

pl ). (1)

Here, λ controls the contribution of pseudo label loss. Lsup

is the supervised loss consisting Lt
sup and Ls

sup loss asso-
ciated with the teacher and student network, respectively.
While Lwa

pl and Lsa
pl are the pseudo-label losses based on the

weak and strong augmented samples, respectively. These
losses are mathematically described as

Lsup =
1

Nl

Nl∑
i=1

(
Lcls
sup(Il,i) + Lreg

sup(Il,i)
)
, (2)

Lwa
pl =

1

Nu

Nu∑
i=1

(
Lcls
pl (I

wa
u,i ) + Lreg

pl (Iwa
u,i )
)
, (3)

Lsa
pl =

1

Nu

Nu∑
i=1

(
Lcls
pl (I

sa
u,i) + Lreg

pl (Isau,i)
)
. (4)

Here, Il,i denotes the ith labeled image. Isau,i and Iwa
u,i indi-

cates the ith strong augmented and weak augmented unla-
beled image, respectively. Lcls

sup and Lreg
sup are the supervised

classification and regression loss. Similarly, Lcls
pl and Lreg

pl

are pseudo-label based classification and regression losses.
Here, the number of labeled images and unlabeled images
are noted as Nl and Nu, respectively.

During the training process, the student network is
trained using the weighted loss function given in Eq.1, and
the teacher network is updated via the Double Exponen-
tial Moving Average (DEMA) update mechanism [19]. The
teacher network predicts many bounding boxes for an un-
labeled image. Hence, we employ the Non-Max Suppres-
sion (NMS) to eliminate redundancy. Although most of the
redundant boxes are removed, some non-foreground candi-
dates may remain. Therefore, only candidates with a fore-
ground score1 greater than an adaptive threshold are re-
tained as pseudo boxes. These pseudo boxes are then uti-
lized in the classification loss. To learn box regression, the
bounding boxes are passed through our Jitter-Bagging mod-
ule to select reliable pseudo boxes, which are subsequently
refined by the adaptive threshold filter.

In the following subsections, we discuss the adaptive
threshold filter, efficient classification loss, Jitter-Bagging
module and update mechanism in detail.
1The foreground score is defined as the maximum probability of all non-
background categories.

3.3. Adaptive threshold filter

The performance of the detector network depends on
quality of the pseudo-label. However, quality degrades due
to the class imbalance, especially when there are few an-
notations. For underrepresented classes, the teacher net-
work produces relatively lower confidence score [3], which
barely survives the large threshold τ . On the other hand,
simply lowering τ leads to noisier pseudo-labels in common
classes. Therefore, we propose adaptive threshold filter that
adjusts the threshold value based on the confidence scores
of the background and foreground bounding boxes for each
category. The adaptive threshold (i.e., τa) is mathematically
defined for Nfg

b number of foreground and N bg
b number of

background bounding boxes as

τa =

⌊( 1

Nfg
b

∑Nfg
b

i=1 Sfg
i

1

Nbg
b

∑Nbg
b

j=1 S
bg
j

)γ⌋
, (5)

where γ controls the degree of the underrepresented classes
and it is set to 0.05, ⌊·⌋ indicates the closest decimal floor
function for single precision (e.g. 0.94 will be set to 0.9).
Here, Sfg

i and Sbg
j denote the scores obtained from the ith

and jth foreground and background bounding boxes.
At the beginning of the training, when parameters of the

networks are not fully learned, the majority is mispredic-
tions, i.e., predominantly background predictions than fore-
ground predictions. So adaptive threshold outputs a rela-
tively smaller value and as the training progresses towards
convergence, foreground predictions increases and thus, the
adaptive threshold provides a larger value and more con-
straints for selecting appropriate bounding boxes.

3.4. Efficient classification loss

For classification task, the overall loss is obtained by
combining four different losses: foreground classification
loss (i.e., Lcls

fg ), background classification loss (i.e., Lcls
bg ),

background similarity loss (i.e., Lsim
bg ) and foreground-

background dissimilarity loss (i.e., Ldissim
fg−bg ). The overall

classification loss function can be defined as

Lcls
pl = Lcls

fg + Lcls
bg + Lsim

bg + Ldissim
fg−bg . (6)

1) Foreground classification loss: Given student-
generated foreground bounding boxes (i.e., bfg), the fore-
ground classification loss is defined as

Lcls
fg =

1

Nfg
b

Nfg
b∑

i=1

lcls(b
fg
i (s),Bcls), (7)

where Bcls denotes the set of teacher-generated pseudo
boxes used for classification, lcls is the box classification
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loss2, Nfg
b is the number of box candidates of box set bfg .

2) Background classification loss: We employ the same
loss function proposed by Xu et al. [32] for the background
classification loss. Given background bounding boxes (i.e.,
bbg), the classification loss is calculated as

Lcls
bg =

Nbg
b∑

j=1

δj lcls(b
bg
j (s),Bcls) (8)

where, δj denoted as reliability weighting factor associated
with jth sample and the same can be expressed as

δj =
rj∑Nbg
b

k=1 rk

(9)

Here rj is the reliability score for jth background box can-
didate, N bg

b is the number of box candidates of box set bbg .
3) Background similarity loss: Inspired from [18], we
introduce a novel loss to match the scores obtained from
the background bounding boxes generated through teacher
and student networks. Minimizing this loss will ensure that
the teacher-generated pseudo boxes and student-predicted
boxes become as similar as possible. The background sim-
ilarity loss can be expressed as follows:

Lsim
bg =

1

N bg
b

Nbg
b∑

i=1

β · log(|e|S
bg
i (s)| − e|S

bg
i (t)||+ 1), (10)

where, β denotes the controlling parameter, Sbg
i (t) and

Sbg
i (s) indicates ith scores obtained from the background

bounding boxes generated using teacher and student net-
works, respectively.
4) Foreground-Background dissimilarity loss: Inspired
from relativistic average discriminator [7], a novel loss is
introduced to separate out the foreground and background
bounding boxes. The introduced loss considers the dissim-
ilarity between scores obtained from background and fore-
ground bounding boxes. Mathematically, this can be ad-
dressed as follows:

Ldissim
fg−bg =

1

Nfg
b

Nfg
b∑

i=1

(
1− |Sfg

i (s)− 1

N bg
b

Nbg
b∑

j=1

Sbg
j (s)|

)
.

(11)
Here, Sfg

i (s) and Sbg
i (s) indicate ith and jth scores ob-

tained from the student-generated foreground and back-
ground bounding boxes.

3.5. Jitter-Bagging module

Xu et al. [32] found that the selection of the teacher-
generated pseudo boxes according to the foreground score

2We use standard cross-entropy loss function as classification loss.

is not suitable for box regression. To tackle this issue,
we introduce a Jitter-Bagging module where we sample a
jittered-box around the teacher-generated pseudo box can-
didate bi and then feed to the teacher network to obtain re-
fined box b

′

i. This can be formulated as

b
′

i = fJitter(bi). (12)

Here, fJitter denotes the function of the Jitter operation.
This procedure is repeated several times to collect the set of
Njitter refined jittered boxes (i.e., {b′i}). These refined jit-
tered boxes are then fed to the traditional bagging algorithm
which helps to obtain optimum refined boxes. Mathemati-
cally, this can be stated as:

b̂i = fBagging({b
′

i}), (13)

where, fBagging = max(·) is the bagging operation which
selects the bounding box candidate with maximum area.
The obtained bounding boxes (i.e., b̂i) are further passed
through an adaptive threshold filter to generate foreground
bounding boxes (i.e., b̂fgi ). Finally, given the pseudo boxes
Breg for training the box regression on unlabeled data, the
regression loss is formulated as

Lreg
pl =

1

Nfg
b

Nfg
b∑

i=1

lreg(b̂
fg
i ,Breg), (14)

where, Nfg
b is the total number of foreground box, lreg is

the box regression loss3.

3.6. Update mechanism

At each iteration, the teacher weights get marginal up-
dates using the student’s weights via the update mechanism.
The gradually updated teacher is prone to weight fluctua-
tions of the student network when a teacher network mis-
predicts a label. In [25, 32], authors used the Exponential
Moving Average (EMA) mechanism to mitigate the nega-
tive effect of incorrect pseudo-labels [26]. However, the
EMA update mechanism faces an issue of lagging, which
limits its performance during sudden weight fluctuations.
In this work, we employ EMA’s extension, i.e., Double Ex-
ponential Moving Average (DEMA) [19, 27]. The DEMA
provides higher weight to the most recent observations and
removes the inherent lag as compared to the EMA update
mechanism. Further, the DEMA update mechanism can be
mathematically defined as:

w(t)ts = 2 · EMA(t)ts − EMA(EMA(t))ts, (15)

where, the EMA can be expressed as

EMA(t)ts = α2w(t)ts−1 + (1− α2)w(s)ts. (16)

Here, w(t)ts and w(s)ts are the weights of teacher and stu-
dent network at current timestamp ts and α is set to 0.999.
3We use standard mean absolute error for regression task.
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4. Experimental Setup and Discussion
4.1. Details of Dataset and Evaluation

We present our results on benchmark MS-COCO [13]
and Pascal VOC [4] datasets.
MS-COCO dataset: It comprises of more than 118k la-
beled images (train2017 set), 123k unlabeled images (un-
labeled2017 set) and 5k labeled validation dataset (val2017
set). For validation purpose, we follow the principles sug-
gested in [6, 23, 24] and the same is discussed below:

• Partially Labeled Data: Here, 1%, 5%, and 10% of
the train2017 set are sampled as labeled data, while re-
maining unsampled images are operated as unlabeled
data. The network is performed on five different folds
and evaluated by taking an average of all five folds.

• Fully Labeled Data: This setting is more challenging.
It aims to enhance a trained detector on large-scale la-
beled data by using the extra unlabeled data. The train-
ing process uses the entire train2017 set as the labeled
data and unlabeled2017 set as unlabeled dataset.

Pascal VOC dataset: It takes VOC07 trainval set as la-
beled data having 5,011 images, and 11,540 images from
the trainval set of VOC12 as an unlabeled data. The perfor-
mance is evaluated on the test set of VOC07 in three exper-
imental setups: (a) fully supervised on VOC07 labeled set;
(b) VOC07 labeled set and VOC12 additional unlabeled set;
and (c) VOC07 labeled set and VOC12 & COCO20cls4 as
additional unlabeled sets.

Furthermore, we follow the data augmentation guide-
lines given in STAC [23] and FixMatch [22] for training and
pseudo-label generation. For evaluation, we use the mean
average precision (mAP)5 metric with its different variants
i.e., mAP at IoU=0.5 (mAP@50), IoU=0.75 (mAP@75)
and IoU=0.5:0.95 (mAP).
4.2. Training Setups and Hyper-parameter Tuning

All experiments are performed with NVIDIA A100 dual
GPUs. To allow a fair comparison with previous methods,
we use Faster R-CNN [21] as our default detection network
with pre-trained ResNet-50 [5] as a backbone. For training
and inference, 2k and 1k region proposals have been gen-
erated using a non-maximum suppression threshold of 0.7.
We sample 512 out of 2k proposals as the box candidates in
each training step.

The proposed network is trained for 180k with 0.2 data
sampling ratio and 720k iterations with 0.5 data sampling
ratio for partially labeled data setting and fully labeled data
setting, respectively. We adopt SGD as optimizer with
learning rate of 0.001 divided by 10 at 120k and 160k itera-
tions for partially labeled data setting and at 480k and 680k
4COCO20cls is generated by leaving only COCO images whose object
categories overlap with the object categories used in PASCAL VOC07.

5Average Precision (AP) is finding the area under precision-recall curve.
The mAP is defined as the average of AP.

Table 1. Comparison with supervised baseline for various %s of
labeled data.

1% 5% 10% 100%
Supervised Ours Supervised Ours Supervised Ours Supervised Ours

mAP@50 21.3 44.6 41.0 52.1 45.1 57.6 57.6 65.2
mAP@75 11.0 28.0 24.4 34.6 28.4 41.0 40.4 48.1
mAP 11.4 26.3 23.4 32.2 27.1 37.4 37.9 44.0

Table 2. Comparison between different semi-supervised methods
on val2017.

Methods Remarks 1% 5% 10%
Soft-teacher [32] ICCV 2021 20.46 ± 0.39 30.74 ± 0.08 34.04 ± 0.14
ACRST [34] Arxiv 2021 26.07 ± 0.46 31.35 ± 0.13 34.92 ± 0.22
DDT [36] AAAI 2022 19.44 ± 0.32 29.92 ± 0.12 33.46 ± 0.18
CST [14] ACM MM 2022 22.73 ± 0.14 30.83 ± 0.08 33.90 ± 0.17
Active Teacher [17] CVPR 2022 22.20 30.07 32.58
MA-GCP [8] CVPR 2022 21.31 ± 0.28 31.67 ± 0.16 35.02 ± 0.26
DCST [29] IJCAI 2022 23.02 ± 0.23 32.10 ± 0.15 35.20 ± 0.20
PseCo [10] ECCV 2022 22.43 ± 0.36 32.50 ± 0.08 36.06 ± 0.24
LabelMatch [1] CVPR 2022 25.81 ± 0.28 32.70 ± 0.18 35.49 ± 0.17
Polishing Teacher [35] AAAI 2023 23.55 ± 0.25 32.10 ± 0.15 35.30 ± 0.15
Ours — 26.32 ± 0.35 32.21 ± 0.08 37.40 ± 0.15

iterations for fully labeled data setting. Initially, we set fore-
ground threshold to 0.5 and then it adjusts itself adaptively
between 0.5 to 0.9.

We set Njitter to 10 in the proposed Jitter-Bagging mod-
ule for regression task. The jittered boxes are randomly
sampled by adding the offsets on four coordinates, and
the offsets are uniformly sampled from [-6%, +6%] of the
height or width of the pseudo box candidates.

4.3. Result analysis of proposed network

This section provides the result comparison between the
proposed network along with its supervised network on
MS-COCO dataset. The validation performance is tabu-
lated in Table 1. Here, one can see that our proposed net-
work shows a significant performance improvement than
the supervised baseline network in all protocols. In addi-
tion, we present the visual comparison for different propor-
tion of labeled data in Figure 4. Here, it is clearly observed
that the proposed network is able to detect tiny and occluded
objects with better confidence score than that of the super-
vised framework.

4.4. Comparison with state-of-the-art methods

4.4.1 Comparison on MS-COCO:

Partially labeled data setting: This section compares our
network with existing state-of-the-art (SOTA) SSOD meth-
ods under the partially labeled data setting. The correspond-
ing average mAP measures of 5 folds are noted in Table
2. From the table, we can observe that the proposed net-
work outperforms all other methods and obtain +0.25%, and
+1.34% higher mAP values than previous best performing
SOTA methods [10, 34] on 1%, and 10% labeled data, re-
spectively. While in case of 5% labeled data setting, it per-
forms slightly inferior than SOTA methods [1, 10].
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Figure 4. Visual comparison with supervised results.

Table 3. Comparison with other state-of-the-arts under the setting
of fully labeled data of train2017 set.

Methods Remarks Extra Dataset mAP
Self-training [39] NIPS 2020 ImageNet+OpenImages 41.1 +0.8−−−→ 41.9
Soft-teacher [32] ICCV 2021 unlabeled2017 40.9 +3.6−−−→ 44.5
MA-GCP [8] CVPR 2022 unlabeled2017 40.9 +5.0−−−→ 45.9
LabelMatch [1] CVPR 2022 unlabeled2017 40.3 +5.0−−−→ 45.3
DDT [36] AAAI 2022 unlabeled2017 37.6 +4.6−−−→ 42.2
CST [14] ACM MM 2022 unlabeled2017 37.6 +5.7−−−→ 43.3
DTG-SSOD [9] Arxiv 2022 unlabeled2017 40.9 +4.8−−−→ 45.7
PseCo [10] ECCV 2022 unlabeled2017 41.0 +5.1−−−→ 46.1
DCST [29] IJCAI 2022 unlabeled2017 40.9 +3.7−−−→ 44.6

Ours — unlabeled2017 37.9 +6.1−−→ 44.0

Fully labeled data setting: Here, we compare our network
with other methods in the fully labeled data setting. Since
the reported performance of the supervised baseline varies,
we report the results of the comparison methods and their
baseline simultaneously in Table 3. The additional unla-
beled dataset required to improve the baseline performance
is also mentioned here and the corresponding improvement
is noted in this table. One can see that the proposed network
shows a larger performance gain (i.e., +6.1%) than the ex-
isting state-of-the-art methods.

Table 4. Comparison with other state-of-the-art methods on the
VOC07 test set.

Model Remarks mAP mAP@50 mAP@75
VOC07 labeled data

(Supervised) — 41.91 66.0 45.1

VOC07 labeled set + VOC12 unlabeled set
RPL [11] Arxiv 2021 54.60 79.00 59.40
CST [14] ACM MM 2022 51.50 78.70 —
MA-GCP [8] CVPR 2022 — 81.72 —
DDT [36] AAAI 2022 54.70 82.40 59.80
LableMatch [1] CVPR 2022 55.11 85.48 —
Polishing Teacher [35] AAAI 2023 52.40 82.50 —
Ours — 56.92 82.04 62.84
VOC07 labeled set + VOC12 & COCO20cls unlabeled set
Unbiased teacher [15] ICLR 2021 50.34 78.82 —
Instant Teaching [38] CVPR 2021 50.80 79.90 55.70
RPL [11] Arxiv 2021 56.10 79.60 61.20
CST [14] ACM MM 2022 53.50 80.50 —
DDT [36] AAAI 2022 55.90 82.50 61.10
Ours — 57.10 82.21 63.47

4.4.2 Comparison on Pascal VOC:

We also evaluate our network on the Pascal VOC bench-
mark dataset and the comparison is presented in Table
4. When utilizing VOC07 labeled and VOC12 unlabeled
data, the proposed network obtains +15.01%, +16.04% and
+17.74% higher values compared to the supervised setting
on mAP, mAP@50 and mAP@75, respectively. The pro-
posed network also outperforms the previous best perform-
ing SOTA methods [1,36] by +1.81%, and +3.04% on mAP,
and mAP@75, respectively. To analyze how increasing un-
labeled data can help to improve performance, we have used
the COCO20cls dataset as an additional unlabeled set. As
a result, the proposed network shows an absolute improve-
ment of +15.19%, +16.21% and +18.37% compared to the
fully supervised baseline. We can also see that the proposed
network outperforms the SOTA methods [11] by +1.00%,
and +2.27% on mAP, and mAP@75, respectively. These
results verify that our network can further improve object
detection by using more unlabeled data.

4.5. Ablation Analysis

All experiments are carried out on 10% partially labeled
setting of MS-COCO. However, the analysis on 1% and 5%
data settings are covered in the supplementary material.

Effectiveness of adaptive threshold filter: To prove the
effectiveness of proposed adaptive threshold filter, few ex-
periments have been carried out and the corresponding re-
sults are presented in Table 5. Here, we can see that the
proposed adaptive threshold filter performs better than the
static threshold values. To check its effectiveness over the
threshold module proposed by Li et al. [11], we employed
their thresholding module in our framework. The corre-
sponding results are added in Table 5, which is marginally
inferior to the proposed thresholding module. In our adap-
tive mechanism, we have used discrete thresholding to re-
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Table 5. Analysis to validate adaptive threshold mechanism.

Proposed Network mAP mAP@50 mAP@75
with static 0.7 threshold 33.0 52.7 36.8
with static 0.8 threshold 36.3 55.6 39.1
with static 0.9 threshold 37.0 56.4 40.3
with dynamic thresholding [11] 37.1 56.8 40.6
with continuous form-based threshold 36.1 55.9 39.5
with proposed adaptive threshold 37.4 57.5 41.0

Table 6. Analysis to validate the Jitter-Bagging module.

Proposed Network mAP mAP@50 mAP@75
without Jitter-Bagging 36.2 56.9 39.7
with Box Jittering [32] 36.8 57.0 40.1
with Jitter-Bagging 37.4 57.5 41.0

Table 7. Analysis to validate introduced losses for classification.

Network mAP mAP@50 mAP@75
Case I: Lcls

fg + Lcls
bg 36.8 56.9 40.4

Case II: Lcls
fg + Lcls

bg + Lsim
bg 37.2 57.3 40.6

Case III: Lcls
fg + Lcls

bg + Ldissim
fg−bg 37.1 57.2 40.6

Proposed: Lcls
fg + Lcls

bg + Lsim
bg + Ldissim

fg−bg 37.4 57.5 41.0

Figure 5. Analysis of the introduced classification loss during
training iterations.

duce fluctuations in the threshold value, Further, we trained
a variant of our model with a continuous form of threshold
and found lower performance than proposed discrete form.

Importance of Jitter-Bagging module: The ablation
analysis of Jitter-Bagging module is presented in Table 6,
where we can see that the proposed Jitter-Bagging module
achieves highest performance and shows +1.2% absolute
improvement in mAP measure over without Jitter-Bagging
module. Interestingly, when we employ the Box Jittering
[32] in our network, we observe that the proposed Jitter-
Bagging still obtains +0.6% higher mAP than Box Jittering.

Effect of losses for classification: For classification
task, we introduce two novel losses; background similar-
ity loss i.e., Lsim

bg and foreground-background dissimilar-
ity loss i.e., Ldissim

fg−bg . To check its effectiveness, the pro-
posed network is trained without both introduced losses

Table 8. Analysis to validate the DEMA update mechanism.

Network mAP mAP@50 mAP@75
Deep Copy 32.1 51.5 33.8
EMA update 36.2 56.4 39.9
DEMA update 37.4 57.5 41.0

Table 9. Analysis to check importance of label generators.

Network mAP mAP@50 mAP@75
Proposed (Both label generators) 37.4 57.5 41.0

- w/o label generator (weak augmented data) 35.2 55.4 38.9
- w/o label generator (strong augmented data) 36.6 56.8 40.4

(i.e., Case I), with background similarity loss (i.e., Case
II) and with foreground-background dissimilarity loss (i.e.,
Case III). The corresponding measures are depicted in Ta-
ble 7. Here, it can be noticed that both introduced losses
help the proposed network to obtain better mAP measures.
Additionally, Figure 5 shows the effect of loss values during
the training iteration. Here, it can be seen that the proposed
network with both losses converges better than others.

Effect of update mechanism: To verify the effective-
ness of the DEMA update mechanism, we ablate the pro-
posed network trained using EMA mechanism as well as
employing deep copy configuration (i.e., weights of teacher
network are copied from student network). The corre-
sponding results are noted in Table 8, where it can be seen
that DEMA helps to obtain +1.2% higher mAP measure,
demonstrating its efficacy over EMA update mechanism.

Importance of label generator module: In our pro-
posed network, we use two label generator modules; one
associated with weak augmented samples while the other is
based on strong augmented sample. To see the importance
of this setting, the proposed network with individual label
generator is trained and the obtained results are presented
in Table 9. Here, it is observed that the proposed network
with both label generators outperforms the individual label
generator settings.

5. Conclusion
In this paper, we present an end-to-end teacher-student

network to address the class imbalance issue in semi-
supervised object detection. It successfully examines the ef-
fect of class imbalance on pseudo-label generation and pro-
poses novel learning mechanisms to improve the pseudo-
label quality. Specifically, we tackle the high false-negative
and low precision rates using the proposed adaptive thresh-
old mechanism and refine optimal bounding boxes using
our Jitter-Bagging module. We further introduce two novel
losses based on background and foreground bounding boxes
to improve the pseudo-label recall rate so that it can detect
small objects as foreground. Finally, our extensive exper-
imentation shows that the proposed network outperforms
existing state-of-the-art SSOD methods on MS-COCO and
Pascal VOC benchmark datasets.
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