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Abstract

Large number of ReLU and MAC operations of Deep
neural networks make them ill-suited for latency and
compute-efficient private inference. In this paper, we
present a model optimization method that allows a model
to learn to be shallow. In particular, we leverage the ReLU
sensitivity of a convolutional block to remove a ReLU layer
and merge its succeeding and preceding convolution layers
to a shallow block. Unlike existing ReLU reduction meth-
ods, our joint reduction method can yield models with im-
proved reduction of both ReLUs and linear operations by up
to 1.73× and 1.47×, respectively, evaluated with ResNet18
on CIFAR-100 without any significant accuracy-drop.

1. Introduction

Machine learning as a service (MLaaS) helps many
users leverage the benefits of artificial intelligence (AI)
augmented applications on their private data. However,
due to the growing concerns associated with the model IP
protection [14], the service providers often prefer to re-
tain the model at its end rather than sharing the black box
model IP with the user. Users often do not prefer shar-
ing their personal data due to various data privacy issues.
To tackle these concerns, various private inference (PI)
methods [7, 18, 20, 21] have been proposed that leverage
techniques such as Homomorphic encryption (HE) [1] and
secure multi-party computation (MPC) protocols to pre-
serve the privacy of the client’s data as well as the model’s
IP. Popular PI frameworks including Gazelle [9], DELPHI
[18], CryptoNAS [5], and Cheetah [19] leverage these pri-
vacy preserving mechanisms. However, unlike traditional
inference, the non-linear ReLU operation latency in PI can
increase up to two orders of magnitude. For example, PI
methods generally use Yao’s Garbled Circuits (GC) [22]
that demand orders of magnitude higher latency and com-
munication than that of linear multiply-accumulate (MAC)

Figure 1. Comparison of the proposed method with the baseline
and the existing state-of-the-art (SoTA) [12]. Compared to exist-
ing SoTA, our method reduces both the linear and ReLU opera-
tions of the model at the cost of in-significant accuracy drop. We
normalized each metric with respect to the maximum value of that
metric. “Ours-AC” represents the model with AC output. We used
ResNet18 on CIFAR-100 for evaluation.

operations.
This has inspired the unique problem of reducing the

ReLU operations and thus, the latency overhead associated
with PI. In particular, earlier works leveraged neural archi-
tecture search [2,5] to reduce the ReLU layer count. Recent
works [3, 12] proposed model linearization via systematic
ReLU reduction that can reduce ReLU at the level of layer,
channel, and pixel. However, all these works focus on re-
ducing only the ReLU operation. Interestingly, the reduced
ReLU models may often have comparable total non-linear
and total linear MAC operation latency. Moreover, recent
improvement of non-linearity operation latency in PI via
oblivious transfer [7] has essentially demanded simultane-
ous reduction of ReLU as well as MAC operations.

Our contributions. Towards this goal, we present a
model architecture optimization framework that simultane-
ously learns to reduce both the ReLUs and the MACs of a
model. In particular, we systematically replace every con-
volutional block (example: basic-block layer for ResNet18)
having a low ReLU budget [12], with a shallower block
having no non-linearity module allowing us to reduce both
MACs and ReLUs. We term this method as gated branch-
ing (GB) as we allow gradual learning of the branch with
a shallower block via a gating condition, that changes over
epochs (refer to Fig. 3(b)). To further reduce the depth at the
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later layers, we present a auxiliary knowledge distillation
(AKD) to an auxiliary classifier (AC) at a shallower depth
of the DNN model. We conduct experiments with ResNet18
on CIFAR-10, CIFAR-100, and WRN-22-8 on CIFAR-100
datasets to evaluate the efficacy of the proposed framework.
As Fig. 1 shows, our joint learning method can yield linear
and ReLU operation reduction of up to 1.47× and 19.23×
compared to the baseline models.

2. Priliminaries
Private inference. We assume a semi-honest client-

server PI scenario where a client, holding private data, in-
tends to use inference service from a server having a private
model [18]. Here, each party tries to reveal their collab-
orator’s private data by inspecting the information they re-
ceived while strictly following the protocol. To protect from
data revelation, we assume the PI to happen on encrypted
data [5, 17, 18] in an offline-online format [18], that trans-
fers input data independent computations to the offline stage
while performing the data-dependent operations online.

ReLU reduction for efficient PI. Existing works use
model designing with reduced ReLU counts via methods
including the search for ReLU-efficient models [2,5,17,18]
and manual ReLU-importance-driven non-linearity reduc-
tion [8]. More recently, [3] leveraged l1-regularization to
remove ReLU at the granularity of both pixel and chan-
nels to yield improved accuracy vs. non-linearity trade-
off. Finally, a contemporary work [12] demonstrated an
automated ReLU sensitivity evaluation method and for a
given ReLU budget, leveraged that to propose a three-stage
training framework, dubbed as SENet, towards linearizing a
model via ReLU reduction. In particular, for a given ReLU
budget, at stage 1, SENet automatically identifies per-layer
ReLU count. During stage 2, it learns the binary mask as-
sociated to the ReLU locations in a non-linear layer of the
partial ReLU model (PR) model. 1 value in a mask position
assigns a ReLU unit for that position while the 0 value as-
signs an identity unit. Finally, during stage 3, it fine-tunes
the PR model with the mask frozen. SENet yields the SoTA
accuracy vs. non-linearity trade-off, and can meet a tar-
get ReLU budget without any costly hyper-parameter tun-
ing that is necessary for the l1-regularization method [3].
For these notable advantages, we adopt SENet’s training
method into our optimization framework.

3. Motivational Analysis
For a given ReLU budget, we start by evaluating the

ReLU sensitivity1 of the non-linearity layers of a DNN.
To perform this analysis, we used a ResNet18 model and

1ReLU sensitivity of a layer is measured as the ratio of ReLUs assigned
in a layer (mask location value of 1) to the total number of possible ReLU
units of that layer.

Figure 2. (a) Comparison of layer-wise ReLU sensitivity evaluated
via SNL [3] and SENet [12] for a ReLU budget of 100k; (b) Com-
parison of layer-wise ReLU sensitivity for different ReLU budgets
using SENet training method. We used the basic block ReLUs of
a ResNet18 trained on CIFAR-100 for both the plots.

trained it on CIFAR-100 using two recent automated ReLU
reduction frameworks, SNL [3] and SENet [12]. We keep a
target ReLU budget of 100k for both. As demonstrated in
Fig. 2(a), both the frameworks yield ReLU distribution sen-
sitivity with the initial layers having less sensitivity than the
later layers. As we understand, high ReLU sensitivity may
be co-related to high non-linearity importance [12], the ear-
lier non-linearity layers may play a less significant role in
retaining the classification performance as compared to the
later non-linearity layers.

We further conducted ReLU sensitivity analysis for three
different ReLU budgets of 25k, 49.5k, and 100k with the
ResNet18 on CIFAR-100. As demonstrated in Fig. 2(b),
the earlier non-linearity layers consistently show less im-
portance compared to the later ones, for all the three ReLU
budgets. Inspired by these observations, we pose the fol-
lowing intriguing question.

Is it possible to design a shallow DNN by removing the
less important ReLU layers while retaining the classifica-
tion performance?

4. Methodology
We now describe our training framework that can jointly

reduce the ReLU and the depth of a DNN. While we fol-
low [12], to train a partial ReLU model via a three-stage
optimization framework, we replace the stage 3 of [12] with
our novel fine-tuning stage. In the first stage, we identify the
per-layer ReLU count for a given ReLU budget by comput-
ing the normalized ReLU sensitivity [12]. For a layer l, the
ReLU sensitivity ηαl can be computed as [12],

ηαl = (1− ηθl), (1)

Where, ηθl represents the pruning sensitivity [11,13,15,16]
of the preceding layer represented in terms of the fraction
of non-zero weights for a given parameter density. Next, in
stage 2, we compute a binary mask M l ∈ {0, 1}hl×wl×cl
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Figure 3. (a) Fine-tuning framework of the partial ReLU (PR) model that uses gated branching to reduce the depth of the earlier blocks,
while learning a shallow auxiliary classifier to reduce the depth for later blocks. (b) The gradual training procedure to learn the gated
branching path when the non-linearity budget of the main branch is below a certain threshold.

for each non-linearity layer l, where hl, wl, and cl repre-
sents the height, width, and the number of channels in the
activation map. The 1’s in M l represents the locations with
ReLU units while 0’s represents identity units in the acti-
vation tensor. During the fine-tuning stage (stage 3), we
present a training strategy for joint reduction of ReLU op-
eration and depth of the PR model.

In the our fine-tuning stage, we first introduce a thresh-
old ReLU sensitivity value denoted by dth, that represents
the minimum ReLU sensitivity for a non-linearity layer to
be retained. In particular, at the end of stage 3, for a con-
volutional layer block (example, basic block for ResNets),
we only keep those ReLU layers that have a sensitivity
d > dth. Removal of a non-linear layer effectively con-
nects the preceding and succeeding linear layers (example
convolution) one after the other. It is well known that a
function represented through a sequence of linear function
layers like convolution, can be approximated with a sin-
gle linear function layer [4]. We thus replace the convo-
lution batch-normalization (CONV-BN) pairs located im-
mediately before and after the dropped ReLU layer, with a
single CONV-BN unit.

Gated branching. As during fine-tuning, we initialize
the PR model weights with that of the best model evalu-
ated during stage 2, modifying the model architecture with
shallow layer blocks (as depicted in Fig. 3(a) at the ear-
lier blocks of ΦS) with untrained weights is not straight for-
ward. In particular, direct replacement of some of the blocks
with shallow blocks from the beginning of fine-tuning stage
may significantly reduce the PR model’s final performance
due to sub-optimal training. We thus present a gated branch-
ing (GB) method that assigns a shallow branch for the layer
blocks having ReLU sensitivity < dth (see Fig. 3(b)). We
assign a gating hyperparameter γg to the shallow branch
with the main branch having the weight factor of (1 − γg).
Thus, for an input tensor X , the functional representation of

the combined block is γg(fGB(X))+ (1− γg)(fMB(X)),
with fGB and fMB representing the functions represented
by the gated and the main branch, respectively. We start the
γg from 0 and gradually increase it to 1 with the training
epochs using either a cosine or linear increment function.
This allows a gradual introduction of the shallow branches
helping the PR model to transfer knowledge from the corre-
sponding deeper blocks that finally become inactive at the
end of the fine-tuning. In particular, we gradually increase
γg to 1 till the end of the epoch when the first learning-
rate (LR) decay occurs. We keep γg fixed to 1 during the
remaining part of the fine-tuning allowing the fixed archi-
tecture with shallow branches to fine-tune. Note, we keep
the first ReLU after the CONV stem, out of the GB method.

Auxiliary knowledge distillation. It is note-worthy
that reducing the depth via GB, may be applicable for a
DNN’s initial layers only, due to the less importance of non-
linearity in those layers. Later non-linearity layers, on the
other hand, play a critical role in retaining the classification
performance, and thus ReLU layer removal via the thresh-
olding method may cost a huge accuracy drop. To reduce
depth at the later layers, we present an auxiliary classifier
(AC) branch located after a shallow depth of the DNN. In
particular, inspired by the model architecture used in self-
distillation [24], we place the AC before the final convo-
lutional layer block (refer to Fig. 3(a)). This architecture
allows the PR model (ΦS) to learn and predict at two layer
depths, one at the original classifier and the other at AC at a
shallower depth. To further improve the accuracy of ΦS , we
present an auxiliary knowledge distillation (AKD) that dis-
tills the knowledge from an all-ReLU (AR) baseline model
(ΦT ) to the AC of the ΦS .

We thus, combine the two methods of GB and AKD, al-
lowing additional ReLU reduction both at the initial and
later layers during the fine-tuning stage, compared to that
proposed in SENet [12]. Moreover, the systematic depth
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Table 1. Comparison between the proposed method with gated branching (w/ GB) and SoTA reduction method [12] (w/o GB). ↑ and ↓
indicate the higher the better and the lower the better, respectively.

Model Baseline dth #ReLUs (k) ↓ Accuracy (%) ↑ Layer depth ↓ MAC saving ↑ ReLU ops reduction ↑
Acc (%) w/o GB w/ GB w/o GB w/ GB w/o GB w/ GB w/o GB w/ GB w/o GB w/ GB

Dataset: CIFAR-10
ResNet18 95.2 0.1 82 76.8 93.05 93.05 16 13 1× 1.17× 6.8× 7.3×

Dataset: CIFAR-100
ResNet18 78.05 0.05 24.9 21.1 70.59 69.10 16 12 1× 1.3× 21.8× 26.4×
ResNet18 78.05 0.05 49.6 47.4 75.28 74.62 16 14 1× 1.16× 11.2× 11.8×
WRN22-8 80.82 0.1 240 221 79.81 79.62 18 15 1× 1.15× 5.8× 6.3×

reduction makes the model yielded by our method have sig-
nificantly fewer linear operations compared to the SoTA al-
ternatives. let Ψm

pr and Ψm
ar represent the mth pair of vec-

torized post-ReLU activation maps of same layer for Φpr

and Φar, respectively. Our loss function for the fine-tuning
phase is given by

L =λLKL

(
σ

(
zar

ρ

)
, σ

(
zprac
ρ

))
︸ ︷︷ ︸

KL-div. loss

+(1− λ)Lpr(y, y
pr)︸ ︷︷ ︸

CE loss

+
β

2

∑
m∈I

∥∥∥∥ Ψm
pr

∥Ψm
pr∥2

− Ψm
ar

∥Ψm
ar∥2

∥∥∥∥
2︸ ︷︷ ︸

PRAM loss

. (2)

where σ is the softmax function with ρ being KL-div. tem-
perature. λ balances the importance between the CE and
KL divergence loss components, and β is the weight for the
post-ReLU AR-PR activation mismatch (PRAM) loss.

5. Experiments
5.1. Experimental Setup

To evaluate the efficacy of our method, we performed ex-
periments with ResNet18 [6]and wide residual network 22-
8 (WRN22-8) [23]. In particular, we evaluated ResNet18 on
two popular datasets, CIFAR-10 and CIFAR-100 [10] and
WRN22-8 on CIFAR-100. We used PyTorch API to define
and train our models on an Nvidia RTX 2080 Ti GPU.

To perform stage 1 and 2, we followed the same hyper-
parameters as [12]. To perform joint ReLU and depth re-
duction during fine-tuning stage, we initialized a PR model
with the weights that provided the best accuracy during the
mask evaluation stage (stage 2). We then trained the model
for 180 epochs with starting LR of 0.01 that decayed by a
factor of 10 at epochs 90, 140, and 160. Unless otherwise
stated, we used a linear increase of γg each epoch by i

90 and
kept it to 1 for i > 90, where i represents the epoch number.
Similar to [12], we weighted the loss of each component by
setting λ = 0.9, β = 1000, and used KD temp. ρ = 4.

5.2. Model Performance Analysis

Results with GB. Table 1 demonstrates results of the PR
models with GB. Note, for models with GB, similar to [12].

Table 2. Performance of our method with depth reduction both at
the earlier layers via GB and later layers via AC output from an
intermediate shallow layer. The AC is placed after the 3rd basic-
block layer of a ResNet18. ‘✓’ and ‘✗’ in AC output indicates
whether output is taken at the AC or the final classifier.

Model Baseline With GB AC Accuracy ReLU ops MAC Layer
Acc (%) output (%) ↑ reduction ↑ saving ↑ depth ↓

Dataset: CIFAR-10
ResNet18 95.2 ✓ ✗ 95.17 3.94× 1.15× 14

✓ ✓ 94.51 5.07× 1.46× 10
Dataset: CIFAR-100

ResNet18 78.05 ✓ ✗ 78.24 5.8× 1.15× 14
✓ ✓ 76.31 8.5× 1.46× 10

Due to the shallow layer blocks, the models with GB can
provide MAC saving and reduce the layer depth by up to
1.3× and 1.33×, respectively, while yielding reduction of
ReLU operation by up to 26.4×. To train models with GB,
apart from the CE loss of ΦS , we used the PRAM loss and
a KL-div. between the final classifiers of ΦS and ΦT .

Results with GB and AKD. Table 2 demonstrates the
results of the models whose depth are reduced via both GB
and AKD with the final classification results taken from the
AC of the PR model. In particular, at the cost of modest ac-
curacy drop, the AC can provide an additional depth reduc-
tion of 1.4× compared to the one using only GB. Further,
classification via AC reduces both the ReLU and MAC op-
erations by up to 1.46× and 1.27×, respectively, than mod-
els using only GB.

6. Conclusions
We introduced a training method to jointly reduce both

the ReLU operations and layer depth of a DNN model
suitable for latency-compute-efficient PI. In particular, we
present a gated branching method to learn a shallow block in
replacing the deep CONV layer blocks having non-linearity
layers with low ReLU sensitivity. We further place an aux-
iliary classifier to allow classification at a shallower depth
compared to that with original classifier. Empirical demon-
stration showed that the shallow-reduced-ReLU models can
yield improved reduction of both ReLUs and layer depth by
up to 1.73× and 1.6×, respectively, without any significant
accuracy-drop, compared to that yielded via SoTA ReLU
reduction methods.
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