
BinaryViT: Pushing Binary Vision Transformers Towards Convolutional Models

Phuoc-Hoan Charles Le *

le.charles55@gmail.com

Xinlin Li
Huawei Noah’s Ark Lab
xinlin.li1@huawei.com

Abstract

With the increasing popularity and the increasing size
of vision transformers (ViTs), there has been an increasing
interest in making them more efficient and less computa-
tionally costly for deployment on edge devices with limited
computing resources. Binarization can be used to help re-
duce the size of ViT models and their computational cost
significantly, using popcount operations when the weights
and the activations are in binary. However, ViTs suffer a
larger performance drop when directly applying convolu-
tional neural network (CNN) binarization methods or ex-
isting binarization methods to binarize ViTs compared to
CNNs on datasets with a large number of classes such as
ImageNet-1k. With extensive analysis, we find that binary
vanilla ViTs such as DeiT miss out on a lot of key architec-
tural properties that CNNs have that allow binary CNNs to
have much higher representational capability than binary
vanilla ViT. Therefore, we propose BinaryViT, in which in-
spired by the CNN architecture, we include operations from
the CNN architecture into a pure ViT architecture to enrich
the representational capability of a binary ViT without in-
troducing convolutions. These include an average pooling
layer instead of a token pooling layer, a block that contains
multiple average pooling branches, an affine transforma-
tion right before the addition of each main residual connec-
tion, and a pyramid structure. Experimental results on the
ImageNet-1k dataset show the effectiveness of these oper-
ations that allow a fully-binary pure ViT model to be com-
petitive with previous state-of-the-art binary (SOTA) CNN
models.

1. Introduction
Transformers [31] have attracted a lot of attention in nat-

ural language processing tasks such as BERT [6] and GPT
[4]. Also, they are gaining a lot of attention in computer
vision tasks [8, 29], since they have been able to outper-
form most CNNs when being pre-trained on large amounts

*This work was done when Phuoc-Hoan Charles Le was an intern at
Huawei Noah’s Ark Lab Montreal Research Center.

of data with proper data augmentation and regularization.

With the rising popularity and the increasing size of
vision transformers (ViTs), there has been a rising inter-
est in making them more efficient and less computation-
ally costly to deploy them onto edge devices with lim-
ited resources such as smartphones, smart watches, etc.
Therefore, model compression techniques such as quanti-
zation [15, 16, 21, 23, 39, 41], distillation [14, 23, 41], prun-
ing [10, 27, 40], etc. have been actively studied to re-
duce the model size and computational cost of transform-
ers. Among these compression methods, quantization can
not only reduce the memory requirement of the model but
can also replace expensive floating-point operations with
simpler fixed-point operations. An extreme form of quan-
tization is binarization. Binarization of weights and acti-
vations can facilitate the use of popcount operations to re-
duce the model size and reduce computational cost. How-
ever, matching the performance of a transformer with binary
weights and activations with its full-precision counterpart is
still a challenging task.

Previous works have shown that the drop in the per-
formance can be mitigated with distillation methods from
[23, 41] to encourage the binarized transformers to mimic
the full-precision model. Also, a scaling factor can be ap-
plied to reduce the drop in the performance of DNNs due
to binarization to minimize the quantization error [26]. The
scaling factor can also be determined by setting it as a learn-
able parameter and training it to minimize the task loss [19].
For CNNs, [22] proposes Bi-RealNet a binary CNN that has
extra residual connections to preserve more information to
increase its representational capability to make it more ac-
curate on tasks that have lots of classes like ImageNet-1k
[5]. [20] proposes ReActNet which further improves upon
the work Bi-RealNet [22] by adding a learnable threshold
before the sign function and by adding the RPReLU activa-
tion function after each residual connection to help reshape
the output distribution at near zero extra cost. For MLPs,
BiMLP [36] tries to solve the limited representational ca-
pability of fully-connected layers by proposing the multi-
branch block where they allow patch mixing and channel
mixing to happen simultaneously.

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

4665

(a) Baseline binary ViT with the DeiT-S structure

(b) Our BinaryViT with a global average pooling layer, Multi-Pooling
Branches, LayerScale, and a pyramid structure

Figure 1. We start from the baseline binary ViT architecture in (a) and slowly change the architecture to BinaryViT in (b).

However, fully binarized pure ViTs suffer huge per-
formance drop in tasks with large number of classes like
ImageNet-1k such that they have lower performance than
fully binarized CNNs when applying CNN binarization
techniques or applying existing transformer/MLP-based bi-
narization methods onto a pure vanilla ViT architecture
since existing binarization methods do not go into details
about how architectural or operational designs, besides ad-
ditional extra residual connections, affect the performance
of binary neural networks. BiMLP [36] only explores
the limited representational capability of a binarized fully-
connected layer itself and does not explore other architec-
tural details that can affect the accuracy of a binary fully-
connected-only-based model as this work does.

Therefore, in this work, after we design a baseline binary
pure ViT using existing binarization techniques in Section
2, we analyze the differences between the architecture of a
CNN model such as ResNet [11] and the architecture of a
pure vanilla ViT such as DeiT. From our analysis in Sec-
tion 3, we find that binary vanilla ViTs miss out on a lot

of key architectural properties that CNNs have that allow
CNNs to have much higher representational capability than
binary vanilla ViTs. Therefore, we propose BinaryViT, in
which inspired by the CNN architecture, we include oper-
ations from the CNN architecture into a pure ViT architec-
ture in Section 3.1, 3.2, 3.3, and 3.4 to enrich the represen-
tational capability of a binary pure ViT without introducing
convolutions and without significantly increasing the num-
ber of operations and the number of parameters. These in-
clude an average pooling layer instead of a token pooling
layer to account for information from all tokens/patches; a
block with multiple average pooling branches to compen-
sate for the loss of the representational capability from a bi-
narized fully-connected layer; an affine transformation right
before the addition of each main residual branch to prevent
the scale of each main residual branch from overwhelming
the scale of each main branch; and a pyramid structure to
allow binary features to be processed at higher resolution at
the early stages without increasing the computational com-
plexity.

4666

To the best of our knowledge, these operations or ar-
chitectural properties introduced in this work have already
been explored in previous works relating to full-precision
ViTs, but their effects on the accuracy of binary neural net-
works or on binary ViTs have not yet been explored. Also,
to the best of our knowledge, with these operations, we
are the first to outperform prior binary CNN models on the
ImageNet-1k dataset in terms of accuracy and the number
of operations (OPs), using a pure ViT architecture.

2. Designing a fully binarized ViT baseline
First, we design a baseline binary pure ViT model us-

ing the DeiT [8, 29] backbone, since, to the best of our
knowledge, there has never been works on a pure ViT model
with binary weights and activations. In this section, we use
existing binarization techniques applied on CNN, and on
BERT [6] to design the baseline binary pure ViT model as
shown in Figure 1a and 2a.

2.1. Binarized fully-connected layer

For the forward pass, for each matrix multiplication,
a sign function is used for each input activation matrix,
X ∈ RN×Din , and weight matrix, W ∈ RDin×Dout . A
threshold vector, βX ∈ RDin , can be applied to the real
value inputs right before applying the sign function to al-
low these inputs to have some distributional shift. For the
weights, the threshold, µ(W) ∈ RDout , can be determined
by computing the mean value of all elements inside the ma-
trix as in [23–25]. For the activations, the threshold param-
eter can be determined using backpropagation to minimize
the task loss as in [20, 37]. After applying the sign func-
tion, a scaling factor, αW ∈ R, where αW = 1

n∥W∥1, is
applied as in [23]. Then, the matrix multiplication output,
Y(X) ∈ RN×Dout , can be calculated using popcount, ⊗, as

Y(X) = αW Rsign(X)⊗ sign(W − µ(W)) (1)

where Rsign = sign(X + βX) as in [20].
For each binary fully-connected layer, BiFC, in a binary

transformer, we connect a residual connection, R, from the
input, X, to the output of the linear layer, BN(Y(X)), as:

BiFC(X) = RPReLU(BN(Y) + R(X)) (2)

to preserve the information from the previous layer as in
[20, 22]. RPReLU activation function proposed by [20] is
used after each residual connection. Also, we replace all
layer normalization in the ViT model with batch normaliza-
tion [13], BN, since all linear layers have a normalization
layer after it, as in [38], to enable faster inference and also
faster training compared to layer normalization. The resid-
ual function, R, from [20] can be an identity function if the

Method Top-1 (%)
BinaryBERT [2] 1.4

BiBERT [23] 33.5
BiT [19] 45.7

+Remove FFN-Distill 46.5
+SGBERT [1] 47.4

+ReActNet [20] 48.5

Table 1. Top 1 accuracy on ImageNet with existing transformer-
based binarization methods applied on the binarized DeiT-S.

input and output dimensions are the same. If the input di-
mension is smaller than the output channel by n times, the
residual function will be the input concatenation with itself
n times. If the input dimension is larger than the output
channel by n times, the residual function will be the aver-
age pooling function with a stride of n and a window size
of n. Therefore, R(X) can be defined as

R(X) =


X, cin = cout

Cat([X, for i in range(n)], dim=2), ncin = cout
1
n

∑n
i=1 X(:, :, i−1

n din : i
ndin)) cin = ncout

(3)
where Cat is the concatenation function.

Using a straight-through estimator [3], we approximate
the derivative of sign with respect to an input as

∂ sign(x)

∂x
≈

{
1, |x| ≤ 1

0, otherwise
(4)

2.2. Binarized vision transformer

A ViT uses N number of transformer encoder blocks
and each transformer block contains one multi-head atten-
tion (MHA) module and one feed-forward network (FFN)
module. Initially, the image, x ∈ RH×W×C gets split up
into fixed-size patches, xp ∈ RN×(P 2·C), in the embedding
layer, where (H,W) is the image dimensions, C is the num-
ber of channels of the input image, (P, P) is the dimension
of each image patch, and N = HW/P 2 is the number of
patches. Then, a linear projection, E ∈ R(P 2·C)×D, is ap-
plied onto each of these patches before being appended with
a cls-token embedding, xclass ∈ RD, and summed with the
position embeddings, Epos ∈ R(N+1)×D, as in Eq. (5)

H1 = [xclass; x1
pE; x2

pE; ...; xNp E] + Epos (5)

Like in previous works on binarization, the operations in the
first layer are always kept in full precision.

The output of the embedding layer H1 ∈ R(N+1)×D

then becomes the input for the first transformer block. In
each transformer block, the input H ∈ R(N+1)×D first gets

4667

normalized by a pre-batch-normalization layer as Ĥ =
BN1(H). Then, in the MHA module of the binarized
transformer with NH attention heads, the output of that
batch-normalization is then used to calculate the query,
Qh ∈ R(N+1)×Dh ; key, Kh ∈ R(N+1)×Dh ; and value,
Vh ∈ R(N+1)×Dh , for each head, h, as:

Qh = BiFCQh
(Ĥh)

Kh = BiFCKh
(Ĥh)

Vh = BiFCVh
(Ĥh)

(6)

using Eq. (1) and Eq. (2), where Dh = D/NH .
We then calculate the attention score as, Ah =
Rsign(Qh)Rsign(K

⊤
h).

From [19], to get the binarized attention probability ma-
trix of each head, Ph ∈ R(N+1)×(N+1) we apply the soft-
max function on the attention score, Ah ∈ R(N+1)×(N+1),
and then apply the round-to-nearest-integer function, ⌈·⌋,

Ph = αP

⌈
σ
(1

αP
Softmax

(Ah√
Dh

)
, 0, 1

)⌋
(7)

where αP ∈ R is a learnable scaling factor trained using
the method from [9] and the σ(x, r1, r2) function keeps the
output to be between r1 and r2. A boolean function from
[23] can also be applied on the attention score, but in Table
1, we find that it performs 12% worse than applying the
softmax function and then rounding the output.

To get the output of each head, headh ∈ R(N+1)×Dh ,
the binarized attention probability matrix, Ph, will be mul-
tiplied by the binarized value matrix, V̄h = Rsign(Vh).
Also, to preserve the information of the query, the key, and
the value, we also add the query, the key, and the value to
the head output as shown below

headh = RPReLU(BNat(PhV̄h) + Qh + Kh + Vh) (8)

and as shown in Figure 2a.
The outputs from all heads are then concatenated with

each other and used by the fully-connected layer, BiFCO,
to get the multi-head attention output. A main residual con-
nection is then applied to the output of MHA as

F = BiFCO(Cat(head1, ...,headNH
)) + H (9)

Then the residual output, F ∈ R(N+1)×D, gets normal-
ized by a 2nd pre-batch-normalization layer, BN2, as F̂ =
BN2(F) and goes through the binarized feed-forward net-
work layer, BiFFN, which has two binary fully-connected
linear (BiFC) layers. Finally, a second main residual con-
nection is then applied to the FFN output to get R

R = BiFFN(F̂) + F (10)

which gets inputted to the next transformer block.

Model R(...)
DeiT-S 153,216

ResNet-34 71,193,472

Table 2. Element-wise representational capability R(...) for the
fully-binary DeiT-S and for the fully-binary ResNet-34.

Like in previous works in binarization, the parameter bi-
ases, the parameters at the classifier, operations in the soft-
max, and normalization layers are kept in full precision.

To improve the performance of the binarized ViT, we dis-
till the knowledge of a full precision model to a model with
binary weights and activations by minimizing the soft cross-
entropy loss between the student’s logit and the teacher’s
logit as in [20]. We do not use distillation loss for the atten-
tion scores and output as the performance will significantly
degrade just as shown in [19, 23]. Also, we do not distill
the FFN outputs from [2, 19, 41] as it causes a slight loss of
accuracy by 1.2%. Using the partially-random-initialization
method from [1] where we initialize the first patch embed-
ding layer from the full precision model, improves the per-
formance by 0.9%.

3. What else do binary CNNs have that binary
transformers do not have?

In Table 1, using all of the aforementioned techniques
in Section 2 will only get us 48.5% top-1 accuracy on
ImageNet-1k which is far below the accuracy for most
SOTA binary CNNs. Therefore, in this section, we further
analyze the details/properties of the CNN architecture that
have not been explored in the context of binary neural net-
works and that can help pure ViTs with binary weights and
binary activations improve their representational capability
to improve their accuracy on a dataset with a large num-
ber of classes without introducing convolutions and with-
out significantly increasing the number of operations and
the number of parameters. From Table 4, even increasing
the number of parameters by either increasing the width or
depth, it has trouble surpassing SOTA binary CNN models.

Analysis of representational capability. First, let’s ana-
lyze and compare the element-wise representational capa-
bility of a binary CNN such as a fully-binary ResNet34,
R(ResNet-34) versus a binary ViT such as a fully-binary
DeiT-S, R(DeiT-S) with both of these models using the Re-
ActNet [20] design. As in [22,36], we quantify the element-
wise representational capability as the number of possible
absolute values that each element in a matrix/tensor can
have. We calculate the element-wise representational capa-
bility of these models by calculating the element-wise rep-
resentational capability of the tensor that will be the input
for the classifier layer, following the steps from [22, 36].

4668

Global Average Multi-Pooling LayerScale Pyramid ImageNet
Pooling Branches Structure Top-1 (%)

48.5
✓ 56.4
✓ ✓ 60.2
✓ ✓ ✓ 61.8
✓ ✓ ✓ ✓ 67.7

Table 3. Results of introducing different operations to the binary ViT model.

From Table 2, for fully-binary DeiT-S, we calcu-
late the element-wise representational capability to be
R(DeiT-S) = 153, 216, whereas for fully-binary ResNet-
34, we calculate the element-wise representational capabil-
ity to be R(ResNet-34) = 71, 193, 472 which is the order of
magnitudes greater than the fully binary DeiT-S. We believe
that the representational capability gap leads to the perfor-
mance gap between binary ResNet-34 and binary ViT.

Calculating the representational capability. A detailed
explanation of how the element-wise representational ca-
pability was calculated for binary DeiT-S and for binary
ResNet-34 can be found in the Appendix. Generally, from
[22,36], one single binary linear layer contributes Din ·K2

to the element-wise representational capability of an out-
put tensor, where Din is the input dimension, K is the ker-
nel size of the square-shaped weight filter. For an average
pooling layer with a kernel size of 2 × 2 and a stride of
2×2, the element-wise representational capability of an out-
put tensor would be equal to the element-wise representa-
tional capability of an input tensor multiplied by 4 such that
R(out) = 4×R(in), since that average pooling layer can be
seen as an information aggregation of 4 neighboring patches
if we ignore the element-wise division involved in average
pooling. For the global average pooling layer, the element-
wise representational capability of an output tensor would
be equal to the element-wise representational capability of
an input tensor multiplied by the number of patches/tokens
of that input tensor such that R(out) = N × R(in), where
N is the number of tokens/patches since the global average
pooling layer can be seen as an information aggregation of
all patches/token. For affine transformation such as batch-
normalization [13], we ignore its effect on the representa-
tional capability according to [22].

Increasing the representational capability. To increase
the representational capability of ViT architecture and
achieve better binary ViT performance, we proposed three
designs. (1) Adding global average pooling before the clas-
sifier layer. (2) Adding multiple average pooling branches
(3) Bringing Pyramid structure from CNN to ViT. Also,
we borrow from the successful design of ResNet and Mo-
bileNet and placed an affine transformation before the resid-
ual branch to prevent the scale of each main residual branch

from overwhelming the scale of each main branch such as
the MHA output and the FFN output. With these designs
added onto the binary ViT, we name the resulting binary
ViT, BinaryViT. While trying to improve the ViT with bi-
nary weights and activations, we try to keep the number of
parameters and the number of OPs to be around the same
as this baseline binary ViT or to be around the same as a
ReActNet ResNet-34 [20]. We define our baseline ViT as
the DeiT-S [29] architecture with the applied methods men-
tioned in Section 2. This baseline has 22.1M parameters
and 1.29× 108 operations (OPs).

3.1. Global average pooling before classifier layer

We noticed that most binary CNNs, such as binary
ResNet-34 [11] and binary MobileNet [12] have an average
pooling layer at right before the classifier fully-connected
layer, whereas the pure vanilla ViT models such as DeiT
[8,29] have a single cls-token pooling layer before the clas-
sifier layer. Using a single cls-token pooling layer prevents
the information from all tokens from being taken into ac-
count. Knowing from [22] that each output token right be-
fore the classifier layer has a very limited representational
capability for binary networks compared to full-precision
networks, it would be useful to have information from all to-
kens being taken into account through global average pool-
ing so that the final classifier layer has more flexibility in
adjusting its output during training. After the introduction
of the global average pooling into the model right before
the classifier, the total element-wise representational capa-
bility can be increased by up to 196× since there are 196
patches/tokens in the DeiT-S throughout the whole model,
increasing the total element-wise representational capabil-
ity to 153, 216 · 196 = 30, 030, 336.

We also remove the cls-token embedding from the model
such that in our binary ViT the output from the first embed-
ding layer, H1 ∈ RN×D is changed from Eq. (5) to

H1 = [x1pE; x2
pE; ...; xN

p E] + Epos (11)

where the position embedding is now Epos ∈ RN×D.
From Table 3, after replacing cls-token pooling with av-

erage pooling as shown in Figure 1b, we received an in-
crease in the performance from 48.5% to 56.4% top-1 on

4669

ImageNet-1k. Note that from [34], average pooling does
not change the performance by a lot for a full-precision ViT.
Also, the impact of the average pooling right before the final
layer on the number of OPs is negligible.

3.2. More branches

We find that a binary convolution has more represen-
tational power than a binary fully connected layer if the
number of parameters for the binary convolution and for
the binary fully-connected layer are the same. Let’s con-
sider a fully-connected layer with a binary weight matrix
of size 384 × 384 and a binary convolution weight filter of
size 3 × 3 × 128 × 128. For that binary fully connected
layer, the output tensor will have an element-wise repre-
sentational capability of 384 whereas, for that binary con-
volutional layer, that output tensor will have an element-
wise representational capability of 1152. As we can see,
the element-wise representational capability of that binary
convolutional layer is 3× larger than the element-wise rep-
resentational capability of that binary fully connected layer.

This huge element-wise representational capability from
the binary convolutional layer allows it to be more flexi-
ble in adjusting its output. As a result of this huge output
element-wise representational capability per layer, more in-
formation will be carried to the final layer through the resid-
ual connections, allowing the binary CNNs to adjust their
output during training more easily compared to a binary
ViT.

Therefore, we decided to add 4 branches right beside
each FFN block as shown in Figure 1b. The 4 branch con-
tains: an average pooling layer of kernel size 1 × 3, an av-
erage pooling layer of kernel size 3× 1, an average pooling
layer of kernel size 1 × 5, and an average pooling layer of
kernel size 5× 1. The average pooling branches that have a
kernel size of 1 ×K apply the filter along the feature map
width, whereas the average pooling branches that have a
kernel size of K × 1 apply the filter along the feature map
height. This branch design is not necessarily optimal and
how to better design the multi-branch structure to have a
better trade-off between the number of operations and ac-
curacy remains an open question.

The multi-branch structure increased the performance of
the binary ViT from 56.4% to 60.2% in Table 3. Also, the
number of OPs increased from 1.29×108 to 1.32×108, but
the number of OPs for the current binary ViT is still below
a ReActNet ResNet-34.

3.3. Scaling right before residual connection

We find that networks tested for binarization problems
such as ResNet [11] and MobileNet [12] tend to have a
batch-normalization layer [13] right before being added
by a residual connection. We are not sure if that batch-
normalization placement helps the signal that is propagat-

ing through the residual to be normalized as in [17] or if the
affine transformation property of batch normalization pre-
vents the signal of the main branch to be over-consumed by
the residual branch as in [30, 35].

In [35], they showed that with pre-norm architectures
like most ViTs, the scale of hidden states grows as we go
deeper into the layers of these pre-norm models such that

(1 + l
2)D ≤ E(||Hl||22) ≤ (1 + 3l

2)D

where l is the layer index. Therefore, even though we men-
tioned that an element-wise affine transformation should
have no effect on a binary model’s representational capabil-
ity, there is a possibility that the information from any main
branches in the deeper layer area could be over-consumed
by a residual branch, preventing information from any main
branches in the deeper layer area to be passed down in the
residual connection, such that the model’s representational
capability would be lower than what we would expect.

To test this, we test 3 configurations: one with
the residual-post-norm connection (res-post-norm) as in
ResNets; one with the residual-post-norm connection plus
the pre-norm connection (sandwich-configuration [7]); and
one with the pre-norm connection plus LayerScale [30].

From our experiments, using the res-post-norm configu-
ration gets us to 61.4% top-1, using the sandwich configura-
tion gets us to 61.8%, and using the third configuration gets
us to 61.8%. However, having any kind of affine transfor-
mation right before the residual connection is better than no
affine transformation at all. Using the third configuration,
we get increased the performance of the binary ViT from
60.2% to 61.8% as shown in Table 3. Therefore, for each
main residual connection in the transformer in the attention
and in the FFN, its main branch would contain an affine
transformation such that in our binary ViT Eq. (9) and Eq.
(10) are changed to

F = α1⊙BiFCO(Cat(head1, ..,headNH
))+β1+H (12)

R = α2 ⊙ BiFFN(F̂) + β2 + F (13)

where α1, α2 ∈ RD are scaling factors and β1, β2 ∈ RD

are the bias terms.
From [30, 34], the gain in accuracy for using res-post-

norm or LayerScale for a full-precision ViT is very small
compared to the gain in accuracy we get for a binary ViT.

3.4. Pyramid structure

Current SOTA binary CNN backbones such as ResNet
[11] and MobileNet [12] have a pyramid structure where the
feature map size progressively decreases from a high reso-
lution to low resolution and the hidden dimension size pro-
gressively increases. Also, BiMLP with a Wave-MLP [28]

4670

Methods Model Global Average Multi Pyramid FLOPs OPs BOPs Params Top-1 Acc
backbone Pooling Branches Stucture (×108) (×108) (×109) (×106) (%)

ReActNet [20] ResNet-34 ✓ ✓ ✓ 1.39 1.93 3.53 21.8 67.5
ReActNet-B [20] MobileNet ✓ ✓ ✓ 0.44 1.63 4.69 29.3 70.1

BiMLP-S [36] Wave-MLP-T ✓ ✓ ✓ 1.21 1.56 2.25 17.0 70.0
Baseline-S DeiT-S 0.57 1.29 4.51 22.1 48.5

Baseline-S×1.5 DeiT-S×1.5 0.57 1.70 7.15 34.9 48.7
Baseline-B DeiT-B 1.15 3.86 17.4 86.4 60.5
BinaryViT - ✓ ✓ ✓ 0.19 0.79 3.83 22.6 67.7
BinaryViT* - ✓ ✓ ✓ 0.95 1.54 3.75 22.6 70.6

Table 4. Comparing results of BinaryViT model with other SOTA binary models with different architecture backbones. * denotes that the
patch embedding layers in the middle are in full precision. Floating-point operations (FLOPs) is the number of operations on full-precision
layers, bit-operations (BOPs) is the number of operations on binarized layers, and from [20], OPs = BOPs/64 + FLOPs.

(a) Bi-Multi-Head-Attention
(b) Bi-Spatial-Reduction Multi-
Head-Attention

Figure 2. Normal Bi-Multi-Head-Attention (Bi-MHA) (a) versus
Bi-Spatial-Reduction Multi-Head-Attention (Bi-SR-MHA) (b).

backbone uses a pyramid structure, in which all SOTA bi-
nary neural networks with good performance have already,
but previous works in binary neural networks do not explore
the pyramid structure’s effect on its performance.

However, we found that the pyramid structure can im-
prove the element-wise representational capability of bi-
nary neural networks. Let’s consider an example of a net-
work containing 4 stages where each stage contains a differ-
ent feature map resolution and base hidden dimension like
the ResNet model [11], PVT [32] model, or the Swin [18]

transformer. One binary fully connected layer with a hid-
den dimension of 64 in the first stage can contribute up to
64 · 4 · 4 · 4 · 49 = 200704 of the element-wise representa-
tional capability, considering the downsampling layers for
each transition between stages and the global average pool-
ing layer right before the classifier layer. We can see that
this binarized fully-connected layer with a low hidden di-
mension that is applied on a high-resolution feature map
can contribute much more to the element-wise represen-
tational capability of a binary model than each binarized
fully-connected layer with a high hidden dimension and a
low feature-map resolution such as a binarized DeiT-S that
has a global average pooling layer, hidden dimension of
384, and a feature map resolution of 14× 14 in which each
of its binarized fully-connected layer contributes 75,264 to
the model’s representational capability. Therefore, we find
the pyramid structure can be useful to increase the element-
wise representational capability of the model without in-
creasing the computational complexity.

We design the pyramid architecture to be similar to PVT-
S and/or ResNet-34. Our pyramid architecture contains 4
stages with base channel dimensions of 64-128-256-512 as
in Figure 1b. The first stage contains 3 identical transformer
blocks, the second stage contains 4 transformer blocks, the
third stage contains 8 transformer blocks, and the last stage
contains 4 transformer blocks. More details on the pyramid
architecture can be found in the Appendix. We designed the
pyramid architecture in this way such that we still match the
number of parameters of the DeiT-S model [29] and for the
ReAcNet method [20] to be compatible with the transition
from the 2nd to the 3rd stage. If the third stage has a base
channel dimension of 320, we wouldn’t be able to apply the
concatenate operation properly as in [20], since 320 is not
divisible by 128.

For the first and second stages, applying attention to such
a large sequence size of 3136 and 784, respectively, is very
computationally costly. To remedy this, we apply a down-

4671

sampling layer on the input right before the calculation of
the key, and value matrix in the self-attention as in the PVT-
v2 model [33] and as shown in Figure 2b. Therefore, Eq.
(6) for the key and value would be changed to

Kh = BiFCKh
(BiFCR(AvgPool(Ĥ))h)

Vh = BiFCVh
(BiFCR(AvgPool(Ĥ))h)

(14)

where AvgPool is an average pooling function with a ker-
nel size of R and a stride of R and BiFCR is an additional
binary linear projection after the average pooling function.
Also the calculation of each head from Eq. (8) would be
changed to

headh = RPReLU(BNat(PhV̄h) + Qh +N(Kh) + N(Vh))
(15)

where N is the nearest-neighbor interpolation function used
to resize the resolution of the key and value feature back to
its original resolution after it was downsampled in Eq. (14).

The accuracy gain on ImageNet [5] from introducing
a pyramid structure into a full-precision ViT model as in
PVT [32] is negligible. However, from Table 3, the pyra-
mid structure increased the performance of the binary ViT
from 61.8% to 67.7%. Also, the number of OPs decreased
from 1.32× 108 to 0.79× 108.

4. Experiments
We evaluate our BinaryViT on the ImageNet [5] dataset

which contains around 1.2M training images and 50,000
validation images from 1,000 classes. We evaluate our
method on ImageNet because most of the SOTA binary
CNNs works have been evaluated on that dataset. Our train-
ing procedure is described in the Appendix.

4.1. Experimental results

We compare BinaryViT to other SOTA binary models
with different architectural backbones such as ReActNet
[20] and BiMLP [36]. From Table 4, if we let the down-
sampling layers in the patch embedding be run in full preci-
sion, our BinaryViT can achieve a competitive performance
of 70.6% top-1 accuracy while having less number of OPs
and FLOPs compared to ReActNet CNNs. BinaryViT can
achieve comparable performance with the MobileNet ver-
sion of the ReActNet-B with having less parameters and
less number of OPs. The MobileNet version of ReActNet
does not use depth-wise convolutions like the original Mo-
bileNet, so it’ll have 29.3M parameters.

Also, BinaryViT can outperform the ResNet-34 version
of the ReAcNet, with having less number of FLOPs, having
less number of OPs, and having approximately the same
number of parameters. If the patch embeddings in the
downsampling layers are binarized, it can outperform the
ReAcNet ResNet-34, with having around 7× less number
of FLOPs and having around 2× less number of OPs.

Comparing our BinaryViT with BiMLP-S [36] which
uses a WaveMLP-T [28] architecture as its backbone, we
can achieve competitive performance while having a lower
number of FLOPs and having a lower number of OPs.
This is due to the fact that our BinaryViT does not use an
overlapping convolutional layer in each patch embedding
layer which significantly increases the number of FLOPs
like in WaveMLP [28] or in BiMLP. Also, the BiMLP is
able to achieve competitive performance by just increas-
ing the number of branches, because its backbone architec-
ture, WaveMLP-T, already contains some operations from
the CNN architecture, such as a global average pooling and
a pyramid structure in which [36] is unaware of and hasn’t
explored their importance yet.

Overall, from Table 4, we can see that it is very important
to have a global average pooling layer, some sort of multi
branches layer, and a pyramid structure in which all of the
SOTA binary models have in their architecture backbone to
have a competitive accuracy.

4.2. Benefit of modifying the architecture

Model DeiT-S BinaryViT
FP32 79.9 79.9
1-bit 48.5 70.6

Table 5. Comparisons of the original and our proposed architec-
tures on FP32 and binary settings on ImageNet-1k top-1 accuracy.

Table 5 reports the accuracy gaps between the FP32
and the binary version of the vanilla ViT such as DeiT-
S and of the modified ViT. In FP32 setting, the modified
ViT achieves roughly the same performance as the DeiT-S.
However, in binary setting, our proposed BinaryViT archi-
tecture outperforms the DeiT-S significantly, which justifies
the effectiveness of the proposed BinaryViT architecture.

5. Conclusion
In this work, we point out that binary vanilla ViTs with

backbone architectures such as DeiT miss out on a lot of key
architectural properties that CNNs have that allow binary
CNNs to have much higher representational capability than
binary vanilla ViTs. Thus, we introduce some operations
from the CNN architecture into a pure ViT architecture to
increase representational capability without the use of con-
volutions. These include an average pooling layer instead
of a token pooling layer, a novel block that contains multi-
ple average pooling branches, an affine transformation right
before the addition of each main residual connection, and a
pyramid structure. Experimental results on the ImageNet-
1k dataset show the effectiveness of the proposed operations
to outperform prior binary CNNs.

4672

References
[1] Arash Ardakani. Partially-random initialization: A smoking

gun for binarization hypothesis of BERT. In Findings of the
Association for Computational Linguistics: EMNLP 2022,
pages 2603–2612, Abu Dhabi, United Arab Emirates, Dec.
2022. Association for Computational Linguistics. 3, 4

[2] Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jin Jin, Xin
Jiang, Qun Liu, Michael Lyu, and Irwin King. BinaryBERT:
Pushing the limit of BERT quantization. In Proceedings of
the 59th Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1: Long Pa-
pers), pages 4334–4348, Online, Aug. 2021. Association for
Computational Linguistics. 3, 4

[3] Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013. 3

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-
hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom
Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin, editors, Advances in Neural Infor-
mation Processing Systems, volume 33, pages 1877–1901.
Curran Associates, Inc., 2020. 1

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A large-scale hierarchical im-
age database. In 2009 IEEE Conference on Computer Vision
and Pattern Recognition, pages 248–255, 2009. 1, 8

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota, June 2019. Associa-
tion for Computational Linguistics. 1, 3

[7] Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng,
Chang Zhou, Da Yin, Junyang Lin, Xu Zou, Zhou Shao,
Hongxia Yang, and Jie Tang. CogView: Mastering text-
to-image generation via transformers. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Process-
ing Systems, volume 34, pages 19822–19835. Curran Asso-
ciates, Inc., 2021. 6

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. ICLR, 2021. 1, 3, 5

[9] Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani,
Rathinakumar Appuswamy, and Dharmendra S. Modha.
Learned step size quantization. In International Conference
on Learning Representations, 2020. 4

[10] Mitchell Gordon, Kevin Duh, and Nicholas Andrews. Com-
pressing BERT: Studying the effects of weight pruning on
transfer learning. In Proceedings of the 5th Workshop on
Representation Learning for NLP, pages 143–155, Online,
July 2020. Association for Computational Linguistics. 1

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 2, 5, 6, 7

[12] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. MobileNets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 5, 6

[13] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In Francis Bach and David Blei, editors, Pro-
ceedings of the 32nd International Conference on Machine
Learning, volume 37 of Proceedings of Machine Learning
Research, pages 448–456, Lille, France, 07–09 Jul 2015.
PMLR. 3, 5, 6

[14] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. TinyBERT: Dis-
tilling BERT for natural language understanding. In Findings
of the Association for Computational Linguistics: EMNLP
2020, pages 4163–4174, Online, Nov. 2020. Association for
Computational Linguistics. 1

[15] Yanjing Li, Sheng Xu, Baochang Zhang, Xianbin Cao, Peng
Gao, and Guodong Guo. Q-ViT: Accurate and fully quan-
tized low-bit vision transformer. In Alice H. Oh, Alekh
Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors,
Advances in Neural Information Processing Systems, 2022.
1

[16] Yang Lin, Tianyu Zhang, Peiqin Sun, Zheng Li, and
Shuchang Zhou. FQ-ViT: Post-training quantization for
fully quantized vision transformer. In Proceedings of the
Thirty-First International Joint Conference on Artificial In-
telligence, IJCAI-22, pages 1173–1179, 2022. 1

[17] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie,
Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong,
Furu Wei, and Baining Guo. Swin Transformer v2: Scal-
ing up capacity and resolution. In International Conference
on Computer Vision and Pattern Recognition (CVPR), 2022.
6

[18] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin Transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2021. 7

[19] Zechun Liu, Barlas Oguz, Aasish Pappu, Lin Xiao, Scott
Yih, Meng Li, Raghuraman Krishnamoorthi, and Yashar
Mehdad. BiT: Robustly binarized multi-distilled trans-
former. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,

4673

and Kyunghyun Cho, editors, Advances in Neural Informa-
tion Processing Systems, 2022. 1, 3, 4

[20] Zechun Liu, Zhiqiang Shen, Marios Savvides, and Kwang-
Ting Cheng. ReActNet: Towards precise binary neural net-
work with generalized activation functions. In European
Conference on Computer Vision (ECCV), 2020. 1, 3, 4, 5,
7, 8

[21] Zhenhua Liu, Yunhe Wang, Kai Han, Wei Zhang, Siwei Ma,
and Wen Gao. Post-training quantization for vision trans-
former. Advances in Neural Information Processing Systems,
34:28092–28103, 2021. 1

[22] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu,
and Kwang-Ting Cheng. Bi-Real Net: Enhancing the per-
formance of 1-bit cnns with improved representational ca-
pability and advanced training algorithm. In Proceedings of
the European conference on computer vision (ECCV), pages
722–737, 2018. 1, 3, 4, 5

[23] Haotong Qin, Yifu Ding, Mingyuan Zhang, Qinghua Yan,
Aishan Liu, Qingqing Dang, Ziwei Liu, and Xianglong Liu.
BiBERT: Accurate fully binarized bert. In International
Conference on Learning Representations (ICLR), 2022. 1,
3, 4

[24] Haotong Qin, Ruihao Gong, Xianglong Liu, Mingzhu Shen,
Ziran Wei, Fengwei Yu, and Jingkuan Song. Forward and
backward information retention for accurate binary neural
networks. In IEEE CVPR, 2020. 3

[25] Haotong Qin, Xiangguo Zhang, Ruihao Gong, Yifu Ding, Yi
Xu, and Xianglong Liu. Distribution-sensitive information
retention for accurate binary neural network. International
Journal of Computer Vision, pages 1–22, 2022. 3

[26] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,
and Ali Farhadi. XNOR-Net: Imagenet classification using
binary convolutional neural networks. In Bastian Leibe, Jiri
Matas, Nicu Sebe, and Max Welling, editors, Computer Vi-
sion – ECCV 2016, pages 525–542, Cham, 2016. Springer
International Publishing. 1

[27] Victor Sanh, Thomas Wolf, and Alexander Rush. Movement
pruning: Adaptive sparsity by fine-tuning. Advances in Neu-
ral Information Processing Systems, 33:20378–20389, 2020.
1

[28] Yehui Tang, Kai Han, Jianyuan Guo, Chang Xu, Yanxi Li,
Chao Xu, and Yunhe Wang. An image patch is a wave:
Phase-aware vision mlp. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 10935–10944, 2022. 6, 8

[29] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Herve Jegou. Training
data-efficient image transformers: distillation through atten-
tion. In International Conference on Machine Learning, vol-
ume 139, pages 10347–10357, July 2021. 1, 3, 5, 7

[30] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles,
Gabriel Synnaeve, and Hervé Jégou. Going deeper with im-
age transformers. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 32–42, 2021.
6

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Il-
lia Polosukhin. Attention is all you need. In I. Guyon,

U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 30. Curran Associates,
Inc., 2017. 1

[32] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao.
Pyramid vision transformer: A versatile backbone for dense
prediction without convolutions. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 568–578, October 2021. 7, 8

[33] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. PVT
v2: Improved baselines with pyramid vision transformer.
Computational Visual Media, 8(3):1–10, 2022. 8

[34] Ross Wightman. Pytorch image models. https:
//github.com/rwightman/pytorch- image-
models, 2019. 6

[35] Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin
Zheng, Chen Xing, Huishuai Zhang, Yanyan Lan, Liwei
Wang, and Tieyan Liu. On layer normalization in the trans-
former architecture. In International Conference on Machine
Learning, pages 10524–10533. PMLR, 2020. 6

[36] Yixing Xu, Xinghao Chen, and Yunhe Wang. BiMLP:
Compact binary architectures for vision multi-layer percep-
trons. In Advances in Neural Information Processing Sys-
tems, 2022. 1, 2, 4, 5, 7, 8

[37] Zhe Xu and Ray C. C. Cheung. Accurate and compact
convolutional neural networks with trained binarization. In
30th British Machine Vision Conference 2019, BMVC 2019,
Cardiff, UK, September 9-12, 2019, page 19. BMVA Press,
2019. 3

[38] Zhuliang Yao, Yue Cao, Yutong Lin, Ze Liu, Zheng Zhang,
and Han Hu. Leveraging batch normalization for vision
transformers. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 413–422, 2021. 3

[39] Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. Q8BERT: Quantized 8bit BERT. In 2019 Fifth
Workshop on Energy Efficient Machine Learning and Cogni-
tive Computing - NeurIPS Edition (EMC2-NIPS), pages 36–
39, 2019. 1

[40] Ofir Zafrir, Ariel Larey, Guy Boudoukh, Haihao Shen, and
Moshe Wasserblat. Prune once for all: Sparse pre-trained
language models. arXiv preprint arXiv:2111.05754, 2021. 1

[41] Wei Zhang, Lu Hou, Yichun Yin, Lifeng Shang, Xiao Chen,
Xin Jiang, and Qun Liu. TernaryBERT: Distillation-aware
ultra-low bit BERT. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Processing
(EMNLP), pages 509–521, Online, Nov. 2020. Association
for Computational Linguistics. 1, 4

4674

