
AdaMTL: Adaptive Input-dependent Inference for Efficient Multi-Task
Learning

Marina Neseem*, Ahmed Agiza*, Sherief Reda
Brown University

Providence, RI
{marina neseem, ahmed agiza, sherief reda}@brown.edu

Abstract

Modern Augmented reality applications require per-
forming multiple tasks on each input frame simultaneously.
Multi-task learning (MTL) represents an effective approach
where multiple tasks share an encoder to extract representa-
tive features from the input frame, followed by task-specific
decoders to generate predictions for each task. Generally,
the shared encoder in MTL models needs to have a large
representational capacity in order to generalize well to var-
ious tasks and input data, which has a negative effect on
the inference latency. In this paper, we argue that due to
the large variations in the complexity of the input frames,
some computations might be unnecessary for the output.
Therefore, we introduce AdaMTL, an adaptive framework
that learns task-aware inference policies for the MTL mod-
els in an input-dependent manner. Specifically, we attach
a task-aware lightweight policy network to the shared en-
coder and co-train it alongside the MTL model to recog-
nize unnecessary computations. During runtime, our task-
aware policy network decides which parts of the model to
activate depending on the input frame and the target com-
putational complexity. Extensive experiments on the PAS-
CAL dataset demonstrate that AdaMTL reduces the com-
putational complexity by 43% while improving the accu-
racy by 1.32% compared to single-task models. Combined
with SOTA MTL methodologies, AdaMTL boosts the accu-
racy by 7.8% while improving the efficiency by 3.1×. When
deployed on Vuzix M4000 smart glasses, AdaMTL reduces
the inference latency and the energy consumption by up to
21.8% and 37.5%, respectively, compared to the static MTL
model. Our code is publicly available 1.

1. Introduction
Modern computer-vision-based applications require

solving multiple tasks simultaneously in order to form a

*The first two authors contributed equally to this work.
1https://github.com/scale-lab/AdaMTL.git
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Figure 1. Accuracy-Efficiency trade-off by AdaMTL compared to
SOTA MTL techniques. The x-axis shows the FLOPS, while the
y-axis represents the average accuracy of the tasks compared to
the single-task model.

complete perception of the surrounding visual environment.
For example, a simple augmented reality application might
need to determine the surface normals, estimate the depths,
detect an object of interest, and track it. Similarly, an au-
tonomous vehicle should be able to detect both static and
dynamic objects in the scene, determine their proximity and
track them [12, 21]. Moreover, all that complex processing
needs to be performed on every input frame in real-time,
which is extremely challenging, especially since those ap-
plications usually run on resource-constrained devices with
strict compute, memory, and energy budgets. That is why
enabling efficient computation models where these tasks
can be performed simultaneously is crucial to make those
applications practical.

In recent years, Multi-task learning (MTL) has been used
to learn related vision tasks simultaneously [15, 24, 36]. On
the one hand, MTL models leverage shared representations
and inter-task interactions to improve performance on each
task, potentially outperforming single-task models. On the
other hand, compared to single-task models, MTL models
can reduce both the memory footprint, the energy consump-
tion, and the latency during inference since they avoid re-

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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computing the features in the shared layers. Different ap-
proaches have been proposed to determine which layers
should be shared across tasks and which layers should be
task-specific in MTL models [20, 26, 33].

One common MTL approach is to have a shared encoder
that extracts the critical features from the input scene, fol-
lowed by some task-specific decoders that predict the out-
put of the corresponding task [28, 29, 33]. Generally, the
shared encoder in MTL models needs to have a large rep-
resentational capacity in order to generalize well to vari-
ous tasks and input data from different complexities. Vision
Transformers have proven to be a powerful tool for extract-
ing strong feature representations from the inputs, improv-
ing the performance of the downstream tasks [6, 17, 27].
Hence, few recent works have explored using them as
a shared encoder for feature extraction in MTL models
[1, 34]. Although these approaches achieve impressive per-
formance outcomes, their computational complexity and
memory footprint are usually huge, making them imprac-
tical for real-time processing. That’s why, in this work, we
focus our efforts on improving the computational complex-
ity of transformer-based Multi-task Learning models.

Real-world visual scenes have large variations in com-
plexity. For example, a scene with a single object and an
open background would be easier to process than one with
an occluded object and a cluttered background. We argue
that treating all input frames equally regarding processing
complexity can be wasteful. Therefore, we propose using
an adaptive inference policy to reduce the computational
complexity of MTL models based on the input complex-
ity. Dynamic Input-dependent inference policies have only
been explored for single-task image classification problems
[19, 35]. However, MTL models are more complex due to
inter-task dependencies and complex architectures.

To this end, we propose an adaptive MTL framework that
recognizes the unnecessary computations in the model de-
pending on the input complexity. We achieve this by learn-
ing an adaptive task-aware policy network that ultimately
decides on which parts of the MTL model to activate during
runtime. Our contributions can be summarized as follows:

• We propose an adaptive Multi-task Learning frame-
work that optimizes Transformer-based MTL models
depending on the input complexity.

• We introduce a task-aware policy network, and we
show that it is more effective in recognizing the un-
necessary computations in MTL models compared to
task-agnostic policy networks.

• To prove that our policy network can be easily plugged
to improve MTL models’ efficiency, we combine
AdaMTL with a SOTA MTL model [29] and show that
AdaMTL boosts the accuracy by 7.8% while improv-
ing the efficiency by 3.1×.

• We deploy AdaMTL on the Vuzix M4000 AR glasses
[31], reducing the inference latency and the energy
consumption by up to 21.8% and 37.5%, respectively,
compared to the static MTL model.

The rest of the paper is organized as follows. We re-
view the related work in Section 2. Then, we introduce
our adaptive input-dependent MTL framework in Section 3.
Next, we show the qualitative and quantitative analysis of
our methodology as well as the ablation study in Section 4.
Finally, we conclude in Section 5.
2. Background and Related Work

Deep Multi-task Architectures For dense prediction
tasks, deep multi-task architectures usually consist of an
encoder that extracts a feature representation from the in-
put frame, followed by task-specific decoders that generate
predictions for each of the downstream tasks [20, 29, 33].
Researchers categorize multi-task architectures based on
the location of task interactions into encoder- and decoder-
focused architectures [28]. Encoder-focused architectures
share the information between tasks in the encoder stage
[16, 20], while the decoder-focused architectures exchange
information between tasks in the decoding stage [29, 33].
Moreover, some approaches share the information across
tasks in both encoder and decoder stages [1, 26]. In this
paper, our baseline MTL model follows an encoder-focused
architecture where a shared encoder is used to extract visual
features from the input frame, followed by task-specific de-
coders. Moreover, our MTL framework can easily adopt
other decoder-based task-interaction techniques, as we will
show in Subsection 4.3.

Vision Transformer Models Transformers [30] have
achieved impressive performance improvements in various
domains such as language understanding [3], speech recog-
nition [7], and computer vision [4, 27]. The self-attention
modules in transformers have proved to be capable of ex-
tracting strong feature representations from the inputs, im-
proving the performance of the downstream tasks. To pre-
serve local visual context, Vision Transformers (ViTs) split
the input image into patches which are embedded as tokens
[4]. Those tokens pass through successive ViT blocks. Each
ViT block has a multi-head attention module followed by a
multi-layer perceptron module to extract the global relation-
ship among input tokens. Improvements have been made to
ViTs enabling data-efficient training [27] as well as efficient
inference [6]. Inspired by ResNets [9], Swin Transform-
ers [17] use a hierarchical ViT block architecture as well
as shifted window attention to serve as a general-purpose
backbone for computer vision tasks. That is why, ViTs
started replacing CNNs as a backbone for different com-
puter vision tasks such as image classification [6, 27], ob-
ject detection [2], and segmentation [25]. Moreover, several
works proposed using them for multi-task learning [1, 34].
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Figure 2. Overview of our proposed AdaMTL framework integrating our AdaMTL Block Policy Network and our AdaMTL Tokens Policy
Network. The AdaMTL Block policy network decides on which blocks to activate during runtime. If the decision is to activate a certain
block, our AdaMTL Tokens policy network runs to decide which tokens to process through that block. Our policy network achieves a
task-aware behavior that improves the quality of the generated policies for multi-task learning models.

Sparsely-Activated Vision Models As computer vision
models become increasingly complex, researchers have
started sparsifying the models to prevent redundant com-
putations. For example, DSelect-k [8] and M3ViT [14]
proposed Mixture-of-Experts (MoE) architectures that use
trainable sparse gates to activate a subset of experts depend-
ing on the given input. Other methods employ early-exiting
strategies to adaptively allocate computations depending on
input complexity [11, 37]. Other dynamic models skip re-
dundant layers [32], while others use a bottleneck layer to
direct the computations in an input-dependent manner [22].
More recent approaches use lightweight policy networks to
generate execution strategies based on the input complex-
ity [19, 35]. Despite the effectiveness of these approaches
for image classification problems, adaptive policies have
not yet been explored for MTL scenarios. Sparsifying MTL
models is more challenging; the multi-objective nature of
those models complicates the overall objective of optimiz-
ing the performance of the different tasks in addition to
the policy networks. Therefore, there is a need to explore
and develop techniques that can adaptively sparsify MTL
models based on input complexity while being aware of the
multi-objective nature of those models.

3. Methodology
In this section, we propose AdaMTL – an adaptive end-

to-end Multi-task Learning framework. We start by present-
ing our transformer-based MTL architecture in Subsection
3.1. In Subsection 3.2, we introduce our task-aware policy
network that dynamically recognizes the unnecessary com-

putations in the MTL model depending on the input com-
plexity. Finally, we explain our proposed multi-staged task-
aware training recipe in Subsection 3.3.

3.1. Overview

Figure 2 illustrates an overview of our proposed adap-
tive end-to-end Multi-task Learning framework - AdaMTL.
AdaMTL consists of two main components: a static MTL
model and a lightweight policy network. Our MTL model
has three parts: a Shared Hierarchical Encoder, a learn-
able task-specific multi-scale fusing layer, and a pool of
task-specific decoders. We adopt an off-the-shelf hier-
archical Vision Transformer Swin [17] as our shared en-
coder to extract visual features from the input frames. Vi-
sion Transformers (ViTs) usually split the input image into
patches which are embedded as tokens. Those tokens pass
through successive ViT blocks. Each ViT block has a multi-
head attention module followed by a multi-layer perceptron
module to extract the global relationship among input to-
kens. Our learnable multi-scale fusing layers use a resid-
ual blocks-based architecture [9]. They are added to com-
bine the features at different scales (i.e., receptive fields)
in an informative way for every downstream task. Finally,
we use simple task-specific decoders consisting of two con-
volutional layers. Each decoder takes the output from the
corresponding multi-scale fusing layer to generate the cor-
responding task predictions.

On top of our static MTL model, AdaMTL adds a
lightweight policy network that runs alongside the original
model to decide which parts of the model to activate, adapt-
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ing to the complexity of the input frame. Our policy net-
work works as a multi-grained decision maker; it consists of
an AdaMTL Block policy network and an AdaMTL Tokens
policy network. The AdaMTL Block policy network decides
on which blocks to activate during runtime. If the decision
is to activate a certain block, our AdaMTL Tokens policy
network runs to decide which tokens to process through that
block. Our intuition behind AdaMTL is that not all patches
in the input frame are equally informative; for example, a
patch of an input frame from the background is less infor-
mative than a patch with a person for a task such as human-
parts detection. Moreover, the receptive field at which dif-
ferent patches should be processed differs depending on the
scale of the objects in the input frame. For example, an
image with multiple smaller objects might benefit from be-
ing processed by the first few layers of the models where
the receptive field is small. However, the later layers with
larger receptive fields are essential for an accurate output
on a zoomed-in frame with one object. In other words, our
AdaMTL Policy Network decides which patches are needed
to accurately perform the downstream tasks and the recep-
tive field at which those patches should be processed.

3.2. AdaMTL Policy Network

Our policy network works as a multi-grained decision
maker; the Block Policy Network decides on which blocks
to activate, while the Tokens Policy Network decides on
which tokens (i.e., patches) to process through the activated
blocks. Our Block Policy Network generates a learnable bi-
nary mask for each block in the shared encoder. We use this
binary mask to recognize the necessary blocks needed by
the MTL model in order to perform well on the downstream
tasks. Similarly, for each block, we attach a Tokens Pol-
icy Network that generates a learnable policy to determine
the tokens that need to be processed through the activated
block. Intuitively, the policy network should learn to rec-
ognize the most informative patches in every input frame as
well as the receptive field at which it needs to be processed.
Each policy network has two simple fully-connected layers,
followed by a Gumbel Softmax activation to generate bi-
nary masks [13]. We devise two different settings for the
policy network: a task-agnostic policy network and a task-
aware policy network.
Task-agnostic Policy: In the task-agnostic setting, the pol-
icy network is unaware of the number of downstream tasks.
We achieve this by co-training the whole policy network
alongside the MTL model. We mainly experiment with this
setting to show the necessity of task awareness while creat-
ing an effective policy network for multi-task scenarios.
Task-aware Policy: In the task-aware setting, we want
our policy network to capture task-specific computational
needs. We achieve this by dividing the policy network
into sub-networks, where each sub-network is responsible

for recognizing the necessary blocks/tokens for the corre-
sponding task. As shown in Figure 2, the AdaMTL To-
kens Policy Network consists of a sub-network for each
task (i.e., Normals Controller, Semantic Segmentation Con-
troller, Saliency Controller, etc.). Each sub-network makes
a decision that is plausible to its respective task. Finally, to
get a unified policy, we make a decision to activate a token
if at least one of the tasks needs to process it. The intuitive
way to combine the masks would be to apply the logical
ORing operation on all the generated task-specific masks.
However, to make it more learnable, we combine the masks
using addition and clamping. As shown in the example out-
put from the Tokens Policy Network in Figure 2, the policy
network only activates a token if at least one task-specific
policy sub-network decides to activate it.

3.3. AdaMTL Training Recipe

For our adaptive MTL framework to work effectively,
we need to learn the MTL model weights as well as the
execution policy (i.e., policy network’s binary masks) that
achieves the target efficiency without compromising the ac-
curacy of the various tasks in our MTL model. Our end-to-
end training recipe consists of 3 stages:
Stage 1: Static MTL Model Training
First, we train a static MTL model. We adopt a shared en-
coder along with task-specific decoders to perform multi-
task learning as explained in Subsection 3.1. For our shared
encoder, we use the publicly-available pre-trained Swin
Transformer backbones [17]. Then, we attach the multi-
scale fusing layer as well as task-specific decoders, and we
fine-tune the end-to-end MTL model to get our static base-
line. In this stage, our loss function is the weighted sum of
the losses of the various downstream tasks as follows.

Lstage1 =

m∑
i

ωtask i × Ltask i (1)

where ωtask i and Ltask i are the weight and the loss of the
various tasks in the MTL model, respectively, and m is the
number of downstream tasks in the MTL model. We adopt
the task weights used by Vandenhende et. al. [29].
Stage-2 Policy Network Initialization
We aim to co-train both the policy network as well as the
MTL model. Randomly initializing the policy network
while co-training can lead to degrading the model accu-
racy since the policy network would make random decisions
in the earlier epochs. That’s why we choose initialization
weights for the policy network that activates all the blocks
and the tokens. To achieve this, we freeze the static MTL
model and pre-train our AdaMTL policy network with the
following loss function:

Lstage2 =

blocks∑
k

(1−Mb/k) +

blocks∑
k

(1−Mt/k) (2)
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Where Mb/k and Mt/k are the output masks generated
by the Block Policy Network and the Tokens Policy Net-
work attached to the Encoder block k, respectively. This re-
sults in an adaptive model that behaves exactly like the static
model, where all blocks and tokens are activated. This acts
as a good initialization point to start co-training the policy
network and the MTL model.
Stage 3: Policy Network/MTL Model Co-training
In this stage, we co-train the policy network along with the
MTL model. Our goal is to learn the binary masks that
our policy network should generate in order to meet the tar-
get computational budget (i.e., the target percentage of the
MTL model components to be activated) while maintain-
ing the accuracy of the downstream tasks. Thus, we use a
multi-objective loss as shown in Equation 3. Our loss func-
tion incorporates the various task losses Ltasks as well as
the efficiency loss Leff multiplied by a factor α. α repre-
sents the efficiency weight which controls the trade-off be-
tween accuracy and efficiency. In our experiments, we set
α to unity; however, different values can be used to control
the trade-off depending on the application requirements.

Lstage3 = Ltasks + αLeff (3)

The efficiency loss incorporates the efficiency of the de-
cisions made by the blocks as well as the tokens controller,
as shown in Equation 4. In order to minimize the num-
ber of activated blocks, we set Lblocks as mean squared
error (MSE) between the actual percentage of the acti-
vated blocks and the target percentage of activated blocks
as shown in Equation 5. Similarly, we set Ltokens as the
MSE between the actual percentage of the activated tokens
and the target percentage of activated tokens. However, it
is common for hierarchical ViTs to have more tokens in
the earlier layers compared to the later layers (i.e., the ear-
lier layers have smaller receptive fields, thus more patches,
while later layers have larger receptive fields, thus fewer
patches). This means that the number of tokens does not
linearly reflect the computational complexity since layers
with more tokens have smaller embedding dimensions per
token, while layers with fewer tokens have larger embed-
ding dimensions. That’s why we multiply the percentage of
tokens in each layer by a weight ωd equivalent to the em-
bedding dimension in this layer as shown in Equation 6.

Leff = Lblocks + Ltokens (4)

Lblocks = MSE(
Bactiv

Btotal
,
Btarget

Btotal
) (5)

Ltokens = MSE(
ωd × Tactiv

Ttotal
,
ωd × Ttarget

Ttotal
) (6)

To make our policy network task-aware, we co-train
each task-specific policy sub-network independently with
the end-to-end model. Sequentially co-training the policy
sub-networks along with the end-to-end model suffers from

Algorithm 1: AdaMTL - Alternating Task Training
(ATT)

Input: model: Model w/ initialized policy network
Tasks: Task names in MTL model
m: Number of tasks in MTL model
epochsatt: Number of epochs for ATT
Li: Loss for the epoch i

1 for i in 0, . . . , epochsatt do
2 current task = Tasks[i%m] ;
3 Li = Lcurrent task + αLeff ;
4 for task in Tasks do
5 if task = current task then
6 model.unfreeze decoder(task) ;
7 model.enable policy network(task) ;
8 end
9 else

10 model.freeze decoder(task) ;
11 model.disable policy network(task) ;
12 end
13 end
14 train one epoch(model, Li) ;
15 end

catastrophic forgetting (i.e., the model gets biased towards
behaving well on the last task, and the performance dete-
riorates on the earlier tasks). That’s why we propose an
Alternating Task Training (ATT) where we shift the focus
between the tasks every one epoch. Algorithm 1 shows the
steps of our ATT technique. For each epoch, we choose a
task to focus on, and we set the loss accordingly, as shown
in lines 2 and 3, respectively. Then, we only activate the
decoder and the policy sub-network corresponding to the
chosen task, as shown in lines 4-13. We train the MTL
model for one epoch using that setting. Then, we move on
to co-training the decoders and the policy sub-networks of
the other tasks. Finally, we perform end-to-end fine-tuning
to improve the overall model accuracy. The training loss
remains the same as in Equation 3, and we unfreeze all
the model’s components. This results in an adaptive MTL
model that generates task-aware inference policies depend-
ing on the complexity of the input.

4. Experiments
4.1. Setup

Dataset: We evaluate our method on the PASCAL dataset
[5]. Following other papers in MTL literature [29, 33, 34],
we use the PASCAL-Context split that has annotations for
various dense prediction tasks such as semantic segmenta-
tion, human part detection, surface normals estimation, and
saliency distillation. It has 4,998 images in the training split
and 5,105 in the validation split.
Implementation and Training details: We implemented
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Table 1. Quantitative analysis of AdaMTL on PASCAL dataset. The table shows the accuracy-efficiency trade-off by our adaptive MTL
model compared to the single-task model as well as static MTL models. H and L represent high and low computational complexity targets
for AdaMTL, respectively. ∆ m (ST) and ∆ FLOPS (ST) show the change in the average accuracy of the tasks and percentage of FLOPS
compared to the single-task model, respectively. ↓ means the lower the better, while ↑ means the higher the better. Bolded values represent
the Pareto-frontier of the accuracy-efficiency trade-off.

Policy Backbone Image Sal Human Parts Sem Seg Normals ∆ m (ST) GFLOPS ∆ FLOPS (ST) Params
Size maxF ↑ mIoU ↑ mIoU ↑ mERR ↓ (%) ↑ ↓ (%) ↓ (M) ↓

Single-Task Swin-T 224 71.93 48.63 60.35 18.45 0.00 18.33 1 × 111.42

Static MTL
Swin-T

224 74.15 47.62 59.08 19.20 -1.20 5.79 0.32 × 34.77
AdaMTL (H) 224 73.72 47.64 57.13 19.16 -2.18 5.34 0.29 × 34.87
AdaMTL (L) 224 73.01 46.85 55.9 19.54 -3.86 4.82 0.26 × 34.87

Static MTL
Swin-S

224 75.00 50.66 61.84 18.71 +2.35 12.5 0.68 × 67.02
AdaMTL (H) 224 75.23 51.22 61.88 18.79 +2.65 12.51 0.66 × 67.12
AdaMTL (L) 224 74.75 50.07 59.91 18.61 +1.31 10.35 0.57 × 67.12

Static MTL
Swin-B

384 73.93 56.68 67.47 17.69 +8.81 59.39 3.24× 108.66
AdaMTL (H) 384 76.55 56.28 65.04 17.74 +8.43 51.29 2.80× 108.88
AdaMTL (L) 384 76.23 55.04 62.63 17.92 +6.46 41.229 2.25× 108.88

AdaMTL using PyTorch. As mentioned in Subsection 3.1,
we adopt the publicly available pre-trained Swin Trans-
former backbone [17] as our shared encoder. To get our
adaptive MTL model, we employ a three-stage training
recipe as explained in Subsection 3.3. In Stage 1, we fine-
tune the Swin Transformer backbone along with our task-
specific decoders for 1000 epochs. Then in stage 2, we
freeze the MTL model and initialize the policy network by
training it to activate the whole MTL model. We run this
stage for another 80 epochs. Finally, in stage 3, we use
our proposed Alternating Task Training technique to co-
train the policy network along with the MTL model for an-
other 150 epochs, followed by fine-tuning the end-to-end
AdaMTL model for another 150 epochs. Our method does
not only increase the model efficiency during inference, but
it also reduces the carbon emission since we avoid retrain-
ing complex ViTs from scratch by reusing off-the-shelf pre-
trained backbones; AdaMTL needs only 1 V100 GPU for
around 24-48 hours (i.e., depending on the used backbone)
in order to run our end-to-end training recipe.

4.2. Quantitative Analysis

Accuracy-Efficiency Trade-off: We apply AdaMTL on
three SOTA ViTs from the Swin Transformer family [17].
We include Swin-Tiny, Swin-Small, and Swin-Base, repre-
senting three different scales of ViTs in terms of computa-
tional complexity. We include two different computational
complexity targets: H and L. H represents a higher com-
putational budget where the target percentage of activated
tokens and blocks are 60% and 90%, respectively. L rep-
resents a lower computational budget where both the target
percentage of activated tokens and blocks are set to 50%. In
both settings, the accuracy-efficiency trade-off weight (i.e.,
α in Equation 3) is set to unity. To evaluate the accuracy-
efficiency trade-off by AdaMTL, we compare it to two base-
lines: (1) Single-Task models and (2) Static MTL models

Table 2. Comparison with SOTA MTL models.

Method Backbone ∆ m (ST) ∆ FLOPS (ST)
↑ (%) ↓ (%)

PAD-Net [33] HRNet-18 +4.98 23.21×
AdaMTL (Ours) Swin-B +6.46 2.25 ×

ASTMT [18] R26-DLv3 +8.38 5.66 ×
AdaMTL (Ours) Swin-B +8.81 3.24 ×

MTI-Net [29] ResNet-50 +13.49 9.6 ×
InvPT [34] ViT-B +27.20 21.35 ×

(i.e., our base MTL model before attaching our task-aware
policy network). Table 1 shows the accuracy, the com-
putational complexity (i.e., FLOPS) as well as the model
size (i.e., Params) of AdaMTL compared to the single-
task model and the static MTL models. ∆ m (ST) and ∆
FLOPS (ST) show the change in the average accuracy of
the tasks and percentage of FLOPS compared to the single-
task model, respectively. Results show how our method en-
hances the accuracy-efficiency trade-off for MTL models.
For example, by applying AdaMTL to Swin-S backbone, we
can get an MTL model with 43% less FLOPS and 1.31%
more accuracy compared to the single-task model. Simi-
larly, by applying AdaMTL to Swin-T backbone, we can
get an MTL model with 71% less FLOPS and only 2.18%
drop in accuracy compared to the single-task model. There-
fore, given any target computational complexity, AdaMTL
can meet it while potentially improving the accuracy.

Comparison to SOTA MTL models: We also compare
the accuracy-efficiency trade-off of AdaMTL to four SOTA
MTL models that vary in computational complexity and ac-
curacy. Figure 1 shows the accuracy and the computational
complexity of AdaMTL compared to those of PAD-Net
[33], ASTMT [18], MTI-Net [29], and InvPT [34]. We can
notice that AdaMTL dominates both PAD-Net and ASTMT.
Moreover, AdaMTL achieves a more efficient trade-off
compared to MTI-Net and InvPT. As shown in Table 2,
AdaMTL has 3× less FLOPS than MTI-Net and 7× less
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Figure 3. Qualitative insights on the computational budget allocated by AdaMTL to process input frames of different complexity. We can
notice that AdaMTL assigns fewer computations for simpler scenes, as in (a) and (b), while it justly assigns more computations to process
more complex and cluttered scenes as in (c) and (d).

Table 3. Combining AdaMTL with SOTA MTL components.

Method Backbone ∆ m ∆ FLOPS Params
% ↓ (M)

Single-Task Swin-T +0.00 18.33 G 111.42
AdaMTL Swin-B +8.81 1.1× 108.66

MTI-Net [29] ResNet-50 +13.49 9.6× 91.00
AdaMTL + MTI-Net Swin-B +20.29 3.1× 101.14

FLOPS than InvPT. It is important to note that our effort in
AdaMTL is directed specifically toward enabling efficient
Multi-Task learning. That is why we argue that while the
performance of MTI-Net and InvPT is impressive, their de-
manding computational complexity might not be suitable
for real-time processing on resource-constrained devices.

4.3. Combining with SOTA MTL components

Our adaptive MTL framework can easily adopt other
SOTA MTL components to further enhance the accuracy-
efficiency trade-off. In this section, we show a case study
where we integrate AdaMTL with the SOTA MTL concepts
in MTI-Net [29] in order to improve both its efficiency and
accuracy. MTI-Net has two main modules: (1) A multi-
scale multi-modal distillation unit to model task interactions
at different scales and (2) A feature propagation module that
propagates distilled task information from lower to higher
scales. In this experiment, we attach those two modules be-
tween the shared hierarchical encoder and the task-specific
decoders in our AdaMTL framework. Following the exact
same training recipe introduced in Subsection 3.3, the re-
sults in Table 3 show that AdaMTL can be integrated with
other MTL modules from MTI-Net to boost MTI-Net’s ac-
curacy by 7.8% while improving its efficiency by 3.1×.

4.4. Qualitative Analysis

Figure 3 shows some insights about the allocated amount
of computations by AdaMTL for input frames of differ-
ent visual complexity. Figures 3a, 3b, 3c, and 3d shows
examples where AdaMTL allocated 55%, 65%, 75%, and
85% of the static model FLOPS respectively. We can
see that AdaMTL allocates fewer computations to simple
frames with fewer objects as compared to complex scenes

(a) Input Frame (b) Layer 1 (c) Layers 12-15 (d) Layer 18

Figure 4. Sample of the generated masks by AdaMTL tokens pol-
icy network. The white areas in (b)-(d) represent activated tokens.

with multiple objects and cluttered backgrounds. Figure
3e shows a histogram of AdaMTL’s computational com-
plexity per example for all the images in PASCAL vali-
dation set. The red line represents the average number of
FLOPS needed to process all the images. We can notice that
AdaMTL adapts to the large variation in the computational
complexity requirement by various images in the dataset.

To gain more insights into the decisions made by our pol-
icy network, we visualize a sample of the generated tokens
masks in Figure 4. Column 4a represents the input frames,
while columns 4b, 4c, and 4d represent the generated tokens
masks by our policy network at different layers, such that
the white areas represent activated tokens. We can notice
that the policy network tends to activate more tokens in the
earlier layers to understand the global features of the input
frame. Then, it narrows down its scope in the later layers,
focusing on the most informative patches (i.e., patches with
the main objects) in the input frame.

4.5. Deployment on Vuzix M4000 AR glasses

We compile our AdaMTL model using PyTorch for An-
droid [23], and we deploy it on the Vuzix M4000 AR glasses
[31]. The Vuzix glasses have an 8 Core 2.52Ghz Qualcomm
XR1 board with 6GB RAM. It operates using Android 11.0.
Using the Battery Historian tool [10] to profile the energy
consumption on the device, we record the average latency
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Table 4. Performance Analysis on Vuzix Augmented Reality
Glasses [31]. We analyze the percentage of the inference latency
and the energy consumption by our AdaMTL model compared to
its corresponding static model.

Method Backbone Inference Energy
Latency (%) Consumption (%)

AdaMTL Swin-T -20.6% -35.3%
AdaMTL Swin-S -21.8% -37.5%

Table 5. Comparison between the quality of our task-aware policy,
the task-agnostic, and the random execution policy.

Policy Backbone ∆ m (ST) ∆ FLOPS (ST)
(%) ↑ ↓

Random

Swin-T

-34.53 0.24×
Random+ -8.64 0.24×

Task-Agnostic -5.68 0.24×
Task-Aware -3.86 0.26×

Random

Swin-B

-34.86 0.82×
Random+ -8.57 0.82×

Task-Agnostic +0.77 0.84×
Task-Aware +1.12 0.83×

and energy consumption across random samples from the
PASCAL validation dataset. Table 4 shows that AdaMTL
reduces the inference latency and the energy consumption
by up to 21.8% and 37.5%, respectively, compared to its
corresponding static MTL model.

4.6. Ablation Study

Quality of the learnt inference policies: To analyze the
quality of the learned inference policies by our task-aware
policy network. Table 5 compares the accuracy-efficiency
trade-off achieved by our task-aware policy network (i.e.,
referred to as Task-Aware) to three other baselines: (1)
Random where we activate random blocks and tokens from
the static MTL model, (2) Random+ where we again acti-
vate random blocks and tokens from the static MTL model
but after performing our adaptive training pipeline, and (3)
Task-Agnostic policy network explained in Subsection 3.2.
The results in Table 5 show that the policies learned by our
task-aware policy network outperform the other baselines.
We can also notice that performing adaptive training gives
the MTL model robustness towards sparsification (i.e., Us-
ing a random policy on the static model reduced the accu-
racy by 34%, while it only reduced the accuracy by 8%
when applied to the adaptively trained MTL model).
Analysis of the adaptation along each component of
our policy network To understand the contribution of both
components of our policy network (i.e., blocks policy net-
work and tokens policy network) to the accuracy-efficiency
trade-off of AdaMTL, we compare the results from four dif-
ferent settings: (1) the static model where neither compo-
nent of the policy network is activated, (2) AdaMTL while
activating the block policy network only, (3) AdaMTL
while activating the tokens policy network only, and (4)

Table 6. The contribution of different adaptive dimensions to
AdaMTL. ∆ m is measured relative to the static MTL model.

Adaptive Adaptive ∆ m FLOPS
Blocks Tokens % (G)

× × -0.00 5.8
✓ × -1.66 5.23
× ✓ -1.46 5.08
✓ ✓ -0.85 5.37

(a) Without weighted tokens (b) With weighted tokens

Figure 5. Loss function ablation: The figure illustrates the average
percentage of activated tokens over the 12 blocks in Swin-T using
(a) non-weighted tokens loss and (b) weighted tokens loss.

AdaMTL where both policy networks are activated. Ta-
ble 6 shows that enabling both components enhances the
accuracy-efficiency trade-off of AdaMTL.
Analysis of the behavior of our loss function To analyze
the importance of the weight factor ωd in Equation 6 of our
loss function, we visualize the average percentage of acti-
vated tokens across the blocks of Swin-T encoder with and
without ωd in Figure 5. We can notice that adding the ωd

factor to the loss function leads to a more distributed FLOPS
reduction across different blocks, which is essential for the
effectiveness of our adaptive MTL framework.

5. Conclusion

In this paper, we propose AdaMTL - an adaptive frame-
work that learns task-aware inference policies for the MTL
models in an input-dependent manner. We achieve this
by co-training a lightweight policy network along with
our MTL model. During runtime, our policy network
recognizes the unnecessary computations and dynamically
chooses an execution strategy depending on the input com-
plexity and the target computational budget. Our experi-
ments on PASCAL dataset demonstrate that AdaMTL re-
duces the computational complexity by 43% while improv-
ing the accuracy by 1.32% compared to the single task mod-
els. Combined with SOTA MTL components, AdaMTL
boosts the accuracy by 7.8% while improving the SOTA
MTL model efficiency by 3.1×. Finally, we deployed
AdaMTL on Vuzix M4000 AR glasses showing up to 21.8%
and 37.5% reduction in inference latency and energy con-
sumption, respectively, compared to the static MTL model.
Acknowledgements: This work is partially supported by
NSF grant 1814920 and DoD ARO grant W911NF-19-1-
0484.
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