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Abstract

We solve the analysis sparse coding problem considering
a combination of convex and non-convex sparsity promoting
penalties. The multi-penalty formulation results in an iter-
ative algorithm involving proximal-averaging. We then un-
fold the iterative algorithm into a trainable network that fa-
cilitates learning the sparsity prior. We also consider quan-
tization of the network weights. Quantization makes neural
networks efficient both in terms of memory and computation
during inference, and also renders them compatible for low-
precision hardware deployment. Our learning algorithm
is based on a variant of the ADAM optimizer in which the
quantizer is part of the forward pass and the gradients of the
loss function are evaluated corresponding to the quantized
weights while doing a book-keeping of the high-precision
weights. We demonstrate applications to compressed im-
age recovery and magnetic resonance image reconstruc-
tion. The proposed approach offers superior reconstruction
accuracy and quality than state-of-the-art unfolding tech-
niques and the performance degradation is minimal even
when the weights are subjected to extreme quantization.

1. Introduction
The objective in Compressive Sensing (CS) is to recon-

struct a sparse signal x ∈ Rn from its compressed obser-
vation, y = Φx ∈ Rm, where Φ is an m× n matrix, with
m ≪ n. The standard convex optimization formulation to
solve the CS problem is given as follows:

min
x

1

2
∥Φx − y∥22 + λ∥Ψx∥1, (1)

where y is the observation, Ψ is the sparsifying transform
for x, and sparsity is enforced on Ψx using an appropriate
regularizer, which in this case is the ℓ1-norm, and λ is the
regularization parameter.

However it has been shown that ℓ1-norm regularization
results in biased amplitude estimates [1]. Non-convex reg-
ularizers are known to reduce the bias in the estimates. One

Figure 1. Brain MRI image reconstruction for CS ratio 40% by
the proposed 1-bit Quantized models. The bottom row visualizes
the absolute difference between the ground truth and the recon-
structed images. The Q-PAN+ (3R) model captured the brain
structure better and hence the difference image is majorly com-
posed of noise.The numbers indicates the PSNR, SSIM values.

can design efficient non-convex regularizers by consider-
ing a combination of several sparsity-promoting regulariz-
ers. The CS framework has enabled several practical appli-
cations particularly in the context of computational imag-
ing [2], ultrasound imaging [3], magnetic resonance imag-
ing [4], cognitive radar [5], cognitive radio [6], etc.

Sparse recovery algorithms are iterative and involve
manual parameter tuning and several iterations to achieve
accurate reconstruction. Iterative algorithms when unfolded
into a feedforward neural network architecture can greatly
enhance the reconstruction accuracy since the network has
the advantage of learnability. Further, the depth of the net-
work is also significantly lower than the number of itera-
tions of the algorithm from which it is inspired. Therefore,
the inference time is reduced. However, the price to pay for
these advantages is the overhead of training.

A practical bottleneck in deploying such models is
that they require more memory to store the high-precision
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weights and consequently also more computation. In appli-
cations involving low-precision hardware, the reconstruc-
tion accuracy reduces drastically. One of the issues that is
addressed in this paper is the effect of weight quantization
on the performance of unfolded networks. The objective is
to obtain comparable accuracy to the full-precision scenario
considering weights that are coarsely quantized (which we
show in the Figure 1). Such quantized unfolded networks
are more amenable to practical implementation particularly
in resource constrained settings.

Another important aspect that we focus on in this paper
is the problem of analysis prior learning using a combi-
nation of convex/non-convex sparsity promoting regulariz-
ers. The analysis prior is more effective than the synthesis
prior because most naturally occurring signals and images
are sparse only when analyzed using a suitable transforma-
tion [7]. Further, employing a combination of penalty func-
tions has been shown to result in superior reconstruction
performance than a single penalty function [8] and gives
rise to the notion of proximal averaging. The penalty func-
tions could be convex or non-convex. Learning a convex
combination of penalty functions is also likely to improve
the sparse recovery performance.

Before proceeding with further developments, we review
recent state of the art in these domains.

2. Prior Art
We present the literature in two categories, namely,

quantized networks and analysis sparse recovery tech-
niques.

2.1. Quantized Networks

Neural Networks that employ binary weights and ac-
tivations, also known as binary neural networks (BNNs)
[10–12] have been shown to be promising for solving clas-
sification problems. Their efficacy has been demonstrated
on MNIST [13] and CIFAR10 [14] datasets. The XNOR-
Net [15] used a gain term computed from the statistics
of the weights to scale the binary weights in order to re-
duce the quantization error. The XNOR-Net performed
relatively better than previous BNN architectures on the
ImageNet [16] dataset. DoReFa-Net [17] generalizes the
quantization framework with variable bit-precision for the
weights, the activations and the gradients required during
backpropagation. The learned quantization networks (LQ-
Net) [18] was proposed to minimize the quantization er-
ror by jointly learning the quantizer and the network. The
Bi-Real Network [19] employs residual connections where
full-precision activations from the previous layer affect the
quantization in the current layer. Bai et al. poses quantized
network training as a regularized learning problem and opti-
mizes via the proximal gradient method [20]. The problem
of outliers affecting the quantization has been addressed by

channel splitting in [21]. On the optimization front Xiang-
ming et al. justified the straight-through-estimator (STE)
method used for training the BNNs through bayesian learn-
ing [22]. The quantization of weights has also been shown
to be promising in the context of generative adversarial net-
works (GANs) [23, 24]. Jhu et al. adapts Neural Archi-
tecture Search (NAS) to find an optimized architecture for
the binarization of Convolutional Neural Networks (CNNs)
[25]. Duncan et al. showed that quantized neural networks
are generally robust relative to their full precision counter-
part against adversarial perturbations [26]. While the role of
quantization has been considered in classification and gen-
eration problems, it has been relatively unexplored in the
context of optimizing unfolded networks for sparse recov-
ery.

2.2. Prior Art on Analysis Sparse Priors

Several works [27–30] have considered the ℓ1-
regularized analysis/synthesis sparse recovery problems
owing to its convexity. The analysis-sparse recovery prob-
lem can be solved by employing interior-point techniques.
However, they become challenging to handle computation-
ally as the dimensionality of the problem grows [31]. An
alternative approach for solving the analysis-sparse prob-
lem is based on the alternating direction method of multi-
pliers (ADMM) algorithm [32]. Nonetheless, the efficiency
of the ADMM method depends highly on the structure of
A [33]. Beck & Teboulle [27] proposed a fast variant of
iterative soft-thresholding algorithm (ISTA) [34] based on
Nesterov’s momentum [35] for solving the synthesis-sparse
recovery problem. Smoothing FISTA (SFISTA) [33] was
proposed to address the limitation associated with FISTA,
and it solved the analysis-sparse recovery problem consid-
ering a redundant operator.

Liu et al. demonstrated that SFISTA convergence and
reconstruction performance is sensitive to the smoothness
parameter µ and proposed projected FISTA to overcome
the limitation of SFISTA [29]. In order to solve the CS
problem in the context of recovering natural images, opti-
mization based techniques assumed that the input images
are sparse in a fixed transform domain such as the discrete
cosine transform (DCT), wavelet domain [36], gradient-
domain [37], etc. Denoising based AMP (D-AMP) [38],
etc. ensures good recovery for natural images. Most meth-
ods exploit structured sparsity of the data as an image prior
and solve the problem iteratively [37–40]. However, natu-
ral images are non-stationary and lead to poor reconstruc-
tion on a fixed basis. All iterative sparse recovery meth-
ods require hundreds of iterations to solve Eq. (1), which
inevitably gives rise to high computational overhead thus
restricting the application of CS. In addition, the analysis
operator or the hyperparameters such as learning rate and
regularization parameter are usually hand-crafted.
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Table 1. Sparsity-promoting regularizers and corresponding proximal operators employed in this study.

NAME PENALTY FUNCTION PROXIMAL OPERATOR

ℓ1 − norm (λ > 0) g1(x) = λ |x| P1(x) = sgn(x)max (|x| − λ, 0)

MCP [1] (λ > 0, γ > 1) g2(x) =


λ |x| −

|x|2

2λγ
, for |x| ≤ γλ,

λ2γ

2
, for |x| ≥ γλ.

P2(x) =


0, for |x| ≤ λ,

sgn (x)
γ

γ − 1
(|x| − λ) , for λ < |x| ≤ γλ,

x, for |x| > γλ.

SCAD [9] (λ > 0, a >
2)

g3(x) =


λ |x| , for |x| ≤ λ,

|x|2 − 2aλ |x|+ λ2

2(1− a)
, forλ < |x| ≤ aλ,

(a+ 1)λ2

2
, for |x| > aλ.

P3(x) =


sgn (x)max (|x| − λ, 0) , for |x| ≤ 2λ,

(a− 1)x− sgn (x) aλ

a− 2
, for 2λ < |x| ≤ aλ,

x, for |x| > aλ.

To overcome the limitations of optimization based tech-
niques, network-based approaches have been proposed re-
cently. ReconNet is a neural network approach proposed
in [41], which takes in CS measurements of an image as in-
put and outputs an intermediate reconstruction. However, it
does not utilize the structure offered by iterative algorithms
and is not interpretable. Learnable ISTA (LISTA) [42], un-
rolls the iterations of ISTA [27] into an interpretable neu-
ral network architecture. The parameters are learned by
end-to-end training instead of being hand-crafted. Several
works exploited the idea of deep-unfolding of iterative al-
gorithms and have shown better results than their iterative
counterparts [43–45]. In order to solve the CS problem in
the context of recovering natural images, it is assumed that
the input images are sparse in a fixed transform domain
such as the discrete cosine transform (DCT), wavelet do-
main [36], gradient-domain [37], etc. However, natural im-
ages are non-stationary and lead to poor reconstruction on
a fixed basis. Networks such as ISTA-Net [45] performed
better when the sparsifying transform was learned by im-
posing the ℓ1 penalty on the prior. Many CNN based mod-
els were proposed to solve the compressed image recovery
problem [46, 47].

Two aspects are missing from current literature. First,
finer approximation of ℓ0 pseudonorm in the context of
data-driven analysis-prior learning and second, reducing the
model size and improved hardware-compatibility of the CS
networks. We aim to address these two aspects with appli-
cation to compressed image reconstruction.

3. Contribution of this Paper

Our contribution lies at the intersection between the two
aspects – network quantization and optimization for anal-
ysis sparse prior learning while employing several regular-
izers. The starting point for the developments is a multi-
penalty/composite regularization formulation of the sparse

recovery problem in an analysis-sparse setting. The re-
sult is the proximal-averaged iterative shrinkage algorithm
(PAISA), which when unfolded gives rise to the proximal-
averaging network (PAN). It is in the context of PAN that we
consider the effect of quantization (Q-PAN). On the appli-
cation front, we consider image recovery from compressed
measurements both for natural images and magnetic reso-
nance images.

4. Composite Regularization in the Analysis
Setting

Consider the problem of compressed sensing recovery
based on multiple penalties {gi} as given below:

min
x

1

2
∥Φx− y∥22 +

p∑
i=1

αigi(F(x))︸ ︷︷ ︸
g(x)

subject to
p∑

i=1

αi = 1, 0 < αi < 1, ∀i,

(2)

where F is the data-driven, sparsifying, analysis operator
and p is the number of sparsity-promoting regularizers. The
convex and non-convex regularizers that are considered in
our work are the ℓ1-norm, minimax-concave penalty (MCP)
[1], and smoothly clipped absolute deviation (SCAD) [9].
While the ℓ1-norm is convex, the other two penalties – MCP
and SCAD – are not convex. The MCP and SCAD penalties
approximate the ℓ0 pseudonorm better than the ℓ1 norm and
hence give rise to better recovery performance [1, 48]. The
ideal sparse recovery problem requires minimization of the
ℓ0 pseudonorm, but it is NP-hard and hence tractable solvers
that approximate ℓ0 minimization are preferred. The MCP
and SCAD penalties perfectly fit the bill and hence we con-
sider them for composite regularization. The combination
of these penalties has been shown to outperform the indi-
vidual penalties for various application [49–51]. The three
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Figure 2. Illustration of the proposed Quantized Proximal Averaging Network (Q-PAN).

penalties under consideration and the corresponding proxi-
mal operators are given in Table 1.

4.1. Proximal-Averaged Iterative Shrinkage Algo-
rithm (PAISA)

The problem in Eq. (2) is optimized based on
majorization-minimization [52] and proximal-averaging
[53]. The update x at (k + 1)th iteration is obtained by
solving the following optimization problem:

min
x

1

2ρ
∥x− r(k+1)∥22 +

p∑
i=1

αigi(F(x)),

where r(k+1) = x(k) − ρΦT(Φx(k) − y) and ρ is the step-
size. The above problem can be rewritten as

min
x

p∑
i=1

(
αi

2ρ
∥x− r(k+1)∥22 + αigi(F(x))

)
. (3)

Zhang & Ghanem showed that a data-driven analysis
transform improves the reconstruction of natural images
from the compressed measurements [45]. Based on this
observation, F is chosen to be a combination of two lin-
ear convolutional operators, without bias terms, separated
by a rectified linear unit (ReLU) [54]. F can be formu-
lated in matrix form as F(x) = Bmax(Ax,0), where A
and B correspond to the two convolutional operators, and
max(·,0) denotes the ReLU. The convolutional operators
A and B use nf filters of size 3×3 and 3×3×nf , respec-
tively.

Zhang et al. showed that, in the context of inverse prob-
lems in imaging, it is reasonable to assume that the ele-
ments of (x(k+1) − r(k+1)) are independent normal dis-
tributed random variables with zero mean and variance σ2

[55]. Let r(k+1) and F(r(k+1)) denote the mean values
of x and F(x), respectively. The following approximation
holds [45]:

∥F(x)−F(r(k+1))∥22 ≈ β∥x− r(k+1)∥22, (4)

where β depends only on the parameters of F . Incorpo-
rating the approximation in Eq. (4) into Eq. (3), we obtain

(merging ρ and β into the parameters of the regularizers):

x(k+1) =argmin
x

p∑
i=1

αi∥F(x)−F(r(k+1))∥22

+

p∑
i=1

αigi(F(x)).
(5)

The solution to the above problem relies on proximal-
averaging and is given by

x(k+1) = F̃

(
p∑

i=1

αiPi(F(r(k+1)))

)
, (6)

where F̃ is the adjoint of F such that F̃(F(x)) = x. The
optimization steps for minimizing the problem in Eq. (2) are
listed in Algorithm 1.

4.2. Proximal Averaging Network (PAN)

Unfolding the iterations of PAISA (Algorithm 1) results
in a feedforward neural network, which we refer to as the
proximal averaging network (PAN). A single PAN layer is
represented by

x(k) = F̃ (k)

(
p∑

i=1

αiPi(F (k)(r(k)))

)
. (7)

The parameters corresponding to the sparsity pro-
moting regularizers and the analysis transform
{λ(k)

1 , λ
(k)
2 , λ

(k)
3 , a(k), γ(k),F (k), F̃ (k)} are all learn-

able subject to the conditions λ(k)
i > 0, γ(k) > 1, a(k) > 2

for each layer k of the network.

4.3. Loss Function

The loss function comprises two terms. The first term
captures the mean-squared error between the ground truth
xi and the reconstructed image x

(nl)
i , where nl denotes the

number of layers in the network. The second term seeks to
enforce invertibility of the sparsifying transform F across
the layers. The loss function L proposed in [45] is used in
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Figure 3. Structure of a layer in the Q-PAN. Quantized weights (WQ
i ) are obtained from their full precision copy (WR

i ) via quantization
operator Q(·). The intermediate reconstruction x(k) is processed through convolution filters {WQ

i }, ReLU transform, proximal operators
{Pi} to give x(k+1).

Algorithm 1: Proximal-Averaged Iterative Shrink-
age Algorithm (PAISA)

1 Input: x, K, λ1, λ2, λ3, γ, a
2 Initialize x0, k = 0
3 while k ≤ K − 1 do
4 xk = F̃(

∑p
i=1 αiPi(F(rk)))

5 k ← k + 1

our training:

L =
1

N

nb∑
i=1

∥x(nl)
i − xi∥22

+ γ
1

N

nb∑
i=1

nl∑
k=1

∥F̃ (k)(F (k)(xi))− xi∥22,
(8)

where nb is the number of training patches extracted from
the images in the dataset, n is the size of each training patch,
nl is the number of layers of the network, N = nbn, and γ
determines the trade-off between the two terms under con-
sideration. γ is fixed at 0.01 in our experiments.

4.4. PAISA+ Update

The residuals (defined as the difference between the
ground truth and its prediction) of natural images and videos
are compressible [56, 57]. The residual learning framework
named ResNet [58] explicitly formulates the layers of the

network to learn residual functions with reference to the
layer inputs. Drawing inspiration from ResNet and ISTA-
Net+, we propose PAISA+, whose iterations are unfolded
to yield PAN+, which learns a residual function for the up-
date xk+1, instead of learning it directly as done in PAN.

The update step is: x(k+1) = r(k+1)+w(k+1)+e(k+1),
where w(k+1) is the residual and e(k+1) is the error, as rec-
ommended in ISTA-Net+ [45]. The residual w(k+1) con-
tains the high-frequency component of x(k+1) missing from
r(k+1). It can be extracted from x(k+1) by an affine trans-
formation R i.e., w(k+1) = R(x(k+1)) = G(D(x(k+1))),
where D has nf filters (of size 3 × 3) and G has one fil-
ter (of size 3× 3× nf ).

To obtain a closed-form solution, we model F = H◦D,
whereH is composed of two convolutional operatorsD and
G separated by a ReLU. Substituting F in Eq. (5) byH◦D
gives

x(k+1) = argmin
x

1

2
∥H(D(x))−H(D(r(k+1)))∥22

+

p∑
i=1

αigi(H(D(x))).
(9)

Following the same strategy as in PAISA, we define H̃, the
adjoint ofH to be symmetric. The PAISA+ update is:

x(k+1) = r(k+1)

+ G
(
H̃
( p∑

i=1

αiPi(H(D(r(k+1))))

))
.

(10)
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The iterations of PAISA+ are unfolded into the layers of a
neural network, henceforth referred to as PAN+. The pa-
rameters in all the layers of the model are learnable, i.e.,
all convolutional operators H, H̃, D, G are learned in each
layer of the network, along with parameters involved in the
proximal operators Pi. A layer of PAN+ is given by the
input-output equation:

x(k) = r(k)

+ G(k)
(
H̃(k)

( p∑
i=1

αiPi(H(k)(D(k)(r(k))))

))
.

(11)

The learnable parameters in this case are
{λ(k)

1 , λ
(k)
2 , λ

(k)
3 , a(k), γ(k),H(k), H̃(k),D(k),G(k)} subject

to the conditions λ
(k)
i > 0, γ(k) > 1, a(k) > 2 for each

layer k of the network.

5. Quantized Deep-Unrolled Compressive
Sensing Networks

We now consider the effect of quantization of weights in
the network. We consider K bit quantization of the weights.
We work with two versions of the filter weights – the un-
quantized version and the quantized version. In the forward
pass of Q-PAN, the full precision weights are mapped to
the quantization levels, which are determined in a minimum
mean-square error sense based on the weights obtained in
the backpropagation update. The gradients of the loss func-
tion are computed with respect to the quantized weights.
The weight updates happen on the full-precision version.
The training strategy for Q-PAN models has been captured
in Algorithm 2. The non-linear sparsifying transform
F in Eq. (2) is modeled using a convolution network. In
Q-PAN, a learnable quantization scheme maps the filter
weights to lower-precision weights resulting in a quantized
transform FQ. The sparsifying transform (FQ) is repre-
sented by conjunction of quantized convolution filters with
ReLU. The update x at (k+1)th iteration with the quantized
transform is given by

xk+1 = argmin
x

J(x), (12)

where

J(x) =

p∑
i=1

αi

2ρ
∥x− r(k+1)∥22 +

p∑
i=1

αigi(FQ(x)),

ρ is the step-size and r(k+1) = x(k) − ρΦT (Φx(k) − y).
FQ could be expressed in matrix form as FQ(x) =
BQ max(AQx,0), where AQ and BQ correspond to the
convolutional operators with quantized weights. Following

the procedure outlined in Section 4, the structure of a layer
in Q-PAN is modelled as follows:

x = F̃Q

(
p∑

i=1

αiPi(FQ(r))

)
, (13)

where the learnable parameters are {λi, a, γ,FQ, F̃Q} sub-
ject to the conditions λi > 0, γ > 1, a > 2. The Q-PAN
architecture is depicted visually in Figure 2. Similarly, each
layer of the Q-PAN+ model is given by:

x = r + GQ(H̃Q(

p∑
i=1

αiPi(HQ(DQ(r))))). (14)

The weights of Q-PAN+ are also quantized to K-bits.
The loss function with weight quantization in the learning
framework is given by

LQ =
1

N

nb∑
i=1

∥xnl
i − xi∥22

+ γ
1

N

nb∑
i=1

nl∑
k=1

∥F̃ (k)
Q (F (k)

Q (xi))− xi∥22.
(15)

Once the training is completed, only the quantized version
of the weights is retained for inference. The architecture of
one layer of Q-PAN is depicted in Fig. 3.

Algorithm 2: Training strategy for QPAN

1 Input: x, Φ, y Output: x∗

2 while y,x in training data do
3 while WQ,W in FQ,F do
4 WQ ← Q(W)
5 end
6 while W̃Q,W̃ in F̃Q, F̃ do
7 W̃Q ← Q(W̃)
8 end
9 while k = 1 : nl do

10 d(k+1) = x(k) − ρΦT(Φx(k) − y)

11 x(k) = F̃ (k)
Q

(∑p
i=1 αiPi(F (k)

Q (d(k+1)))
)

12 end
13 Compute LQ per Eq. (15)
14 while W, W̃ in F , F̃ do
15 W← ADAM(W, ∇WLQ |W=WQ

)
W̃← ADAM(W̃, ∇WLQ |W=W̃Q

)
16 end
17 end

6. Experimental Results and Discussion
We validate the performance of our networks, PAN,

PAN+ and their quantized counterparts, namely, Q-PAN
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Table 2. Comparison between quantized and unquantized networks over average PSNR [dB] , SSIM values on Set11 and BSD68 datasets
for different compression ratios.

1-BIT 3-BIT

CS RATIO TEST SET ISTA-NET+ PAN+ (3R) Q-PAN+ (3R) Q-PAN+ (3R)

10% SET11 26.64, 0.8036 26.90, 0.8164 25.15, 0.7481 26.38, 0.7997
10% BSD68 25.33, 0.6996 25.48, 0.7073 24.69, 0.6690 25.27, 0.6957
4% SET11 21.31, 0.6240 21.83, 0.6359 20.95, 0.5715 21.47, 0.6106
4% BSD68 22.17, 0.5569 22.49, 0.5639 21.96, 0.5351 22.28, 0.5537
1% SET11 17.34, 0.4131 17.43, 0.4126 17.46,0.4064 17.49, 0.4112
1% BSD68 19.17, 0.4198 19.21, 0.4195 19.15,0.4172 19.21, 0.4191

and Q-PAN+ on natural image recovery and MR image
reconstruction from compressed measurements. The re-
sults corresponding to PAN+ and Q-PAN+ are reported
here. Due to space constraints, the results corresponding
to PAN and Q-PAN are reported in the Supplementary Doc-
ument. For performance assessment and comparison, we
use peak signal-to-noise ratio (PSNR) and structural sim-
ilarity index metric (SSIM) [59]. Several CS techniques
[37, 38, 41, 43, 60] are shown to be under-performing in
comparison to ISTA-Net and ISTA-Net+ [45]. Therefore
we compare the proposed PAN+ and Q-PAN+ models with
ISTA-Net+ and quantized ISTA-Net+ (Q-ISTA-Net+) in
the context of compressed image reconstruction.

To ensure fair comparison, we use the same set of

Figure 4. Comparative performance of Quantized ISTA-Net+, Q-
PAN+ (2R) and Q-PAN+ (3R) on Set11 dataset for CS Ratio = 10
with varying quantization bits

images as recommended in [45] to train our models. The
loss function, number of layers in the networks, the size
and number of filters learned in the sparsifying function F
are maintained the same for all the networks under consid-
eration. The compressed measurements y are computed as
y = Φx, where Φ ∈ Rm×n and m varies depending on the
compressive sensing (CS) ratio. The measurement matrix
Φ is obtained by orthonormalizing the rows of a random

Gaussian matrix. In training our models, we set the batch
size nb to 64, and the number of layers nl as 9. In the trans-
form F , nf = 32 filters of size 3× 3 are learned in the first
convolutional operation. The second convolutional operator
learns nf = 32 filters each of size 3× 3× 32.

The training data consists of 88,912 cropped image
patches each of size 33 × 33. We trained the network
models considering CS ratios of 1%, 4% and 10% . The
training and inference is carried out on a workstation with
dual Intel® Xeon® Silver 4110 processors and RTX2080Ti
GPU. The models are trained for 100 epochs and take ap-
proximately 9 hours. The PAN+ (2R), Q-PAN+ (2R) mod-
els employ two regularizers, namely the ℓ1 penalty and the
MC penalty. The convex combination weights are fixed as
α1 = α2 = 1

2 . The PAN+ (3R), Q-PAN+ (3R) models ad-
ditionally use the SCAD penalty alongside ℓ1 and the MCP
with α1 = α2 = α3 = 1

3 . The models are tested on
the widely used Set11 [41] and BSD68 [61] datasets, which
contain 11 and 68 grayscale images respectively. We report
the average PSNR and SSIM over the test images in Table 2.
To compare the effect of quantization on various models,
we trained quantized versions of ISTA-Net+ also. The vari-
ation of PSNR with the change in quantization bit-width is
captured in Figure 4. We observe that Q-PAN+ (3R) out-
performs Q-ISTA-Net+ consistently across different quan-
tizations. The CS reconstructions by the proposed models
are shown in Figs. 5 and 6 for visual inspection. From the
zoomed-in figure (cf. Fig. 5), one can infer that the PAN+

(3R) model preserves the structure of the ground truth bet-
ter, in comparison to the benchmark reconstructions. From
the reconstruction error images (cf. Fig. 6) from the 1-bit
quantized models, one can observe that the Q-PAN+ (3R)
model contains fewer artefacts in its reconstruction.

6.1. MR image reconstruction

We evaluate the effectiveness of PAN+ and Q-PAN+

models on the CS MRI problem. The MR image reconstruc-
tion methods sample data in the Fourier space and adopt the
CS theory to reconstruct images. During the reconstruc-
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Figure 5. Reconstruction results for Flintstones image based on 10% compressed measurements.

Figure 6. Foreman (Set11) image reconstruction for CS ratio 10%
by the proposed 1-bit Quantized models. The bottom row visu-
alizes the absolute difference between the ground truth and the
reconstructed images. The numbers indicate the PSNR, SSIM val-
ues.

Table 3. Comparison of average PSNR [dB] / SSIM on MRI im-
ages for different compression ratios.

1-BIT

CS RATIO ISTA-NET+ PAN+ (3R) Q-PAN+ (3R)

20% 38.73, 0.9490 38.90, 0.9505 38.17, 0.9400
30% 40.89, 0.9637 41.02, 0.9640 40.36, 0.9579
40% 42.52, 0.9729 42.71, 0.9729 42.41, 0.9699
50% 44.09, 0.9797 44.29, 0.9800 43.84, 0.9769

tion, the sensing matrix is obtained through a combination
of under-sampling matrix P and a discrete Fourier Trans-
form matrix F as in Φ = PF. We use the same training and
testing brain medical images as in [45], and train models
with nl = 11 layers for CS ratios of 20%, 30%, 40%, 50%.
The comparison between ISTA-Net+, PAN+ (3R), and 1-
bit Q-PAN+ (3R) techniques is summarized in Table 3. The
experimental results shows that PAN+ outperforms ISTA-

Net+ for all the compression ratios under consideration.
Even when extremely quantized 1-bit representations are
used, one can observe that the reconstruction performance
degradation is at most 0.56 dB.

7. Conclusion
We proposed a multi-penalty formulation for the prob-

lem of compressed image reconstruction to learn data-
driven analysis prior and developed proximal-averaged iter-
ative shrinkage algorithm for solving it. We then unfolded
the iterations to otain a neural network architecture. Mak-
ing use of the knowledge that natural images are compress-
ible in the residual domain, the enhanced network PAN+ is
proposed. We then incorporated a novel learnable quanti-
zation strategy into the unfolded networks and showed that
the performance degradation even considering the extreme
case of 1-bit quantization is less than 1 dB compared with
the full precision case. The performance is also superior to
the quantized version of ISTA-NET+. The results present
strong evidence that unfolded proximal-averaging networks
with a quantizer incorporated into the loop in the learning
stage offers competitive performance compared with the
full-precision case. This makes a strong case for deploy-
ment of such networks on low-precision hardware.
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