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Abstract

In 3D medical image segmentation, data collection and
annotation costs require significant human efforts. More-
over, obtaining training data is challenging due to privacy
constraints. Consequently, achieving efficient learning with
limited data is an urgent 3D medical image segmentation
issue. One approach to address this problem is using pre-
trained models, which have been widely researched. Re-
cently, self-supervised learning for 3D medical images has
gained popularity, but the data available for such learning
is also scarce, limiting the number of pre-training datasets.
In recent years, formula-driven supervised learning has
garnered attention. It can achieve high pre-training ef-
fects using only easily accessible synthetic data, making it
a promising alternative for pre-training datasets. Inspired
by this approach, we propose the Auto-generated Volumet-
ric Shapes Database (AVS-DB) for data-scarce 3D medical
image segmentation tasks. AVS-DB is automatically gener-
ated from a combination of dozens of 3D models based on
polygons and shape similarity ratio variations. Our exper-
iments show that AVS-DB pre-trained models significantly
outperform models trained from scratch and achieve com-
parable or better performance than existing self-supervised
learning methods we compared. AVS-DB can potentially
enhance 3D medical image segmentation models and ad-
dress limited data availability challenges.

1. Introduction
3D medical image segmentation is a critical task in medi-

cal analysis, with various applications such as surgical plan-
ning and measuring treatment effectiveness. However, col-
lecting 3D medical images is more expensive compared to
their 2D counterparts. Moreover, the process of annotating
segmentation masks is labor-intensive and time-consuming,
as it needs to be done for each individual slice. The strict
privacy regulations surrounding medical data further com-
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plicate data acquisition and sharing. Consequently, the pri-
mary challenge in 3D medical image segmentation lies in
achieving efficient learning with limited training data.

To address these issues, researchers have mainly fo-
cused on advancing model architectures and leveraging pre-
trained models. While convolutional neural networks was
prevalent in the past, recent studies have demonstrated that
transformer models can outperform them [8, 9, 21]. Given
the difficulties in obtaining supervised data, self-supervised
learning has become increasingly popular [7,15,16,22–24].
For instance, Chen et al. [4] successfully adapted the high-
performance Masked Image Modeling technique [10, 18],
originally developed for 2D images, to 3D images, leading
to significant improvements in accuracy. Tang et al. [17] in-
troduced a self-supervised learning approach that optimizes
inpainting, contrastive learning, and rotation tasks concur-
rently. By employing the SwinUNETR [8] model, they
achieved state-of-the-art results on the Multi Atlas Labeling
Beyond The Cranial Vault (BTCV) [3] and Medical Seg-
mentation Decathlon (MSD) [2] test leaderboards. In the
future, the methodology of pre-training transformer-based
models using self-supervised learning strategies is expected
to see continued progress. However, due to the challenges
in obtaining 3D medical images, self-supervised learning
—which typically depends on data volume for performance
improvement— faces limitations in capturing effective fea-
ture representations.

Meanwhile, in the field of image recognition, Formula-
Driven Supervised Learning (FDSL) has gained traction
due to its ability to automatically generate training data
based on predefined rules [11–13]. FDSL has proven to ac-
quire valuable feature representations for real-world recog-
nition tasks despite being without real-world data. Notably,
its effectiveness is most pronounced in Vision Transform-
ers [6], where it surpasses ImageNet [5] pre-training per-
formance in the 2D image domain using only synthetic
datasets. Kataoka et al. [11] have shown that dur-
ing the pre-training process, Vision Transformers focuses
on contour shapes, suggesting that Vision Transformers
learns fundamental feature representations through shape
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Figure 1. Overview of the automatic generation method for AVS-DB and its pre-training. The left side of the figure shows the process
of constructing AVS-DB. By combining rules defined in the xy-plane and the z-axis direction, we create 3D shapes as shown in (a), and then
arrange the 3D shapes as illustrated in (b). As indicated on the right side of the figure, we attempt to improve the accuracy in downstream
tasks by using AVS-DB for pre-training the segmentation model.

pre-training. We propose that incorporating 3D contextual
shapes in pre-training could further enhance the capabilities
of transformer-based models in 3D medical image analysis,
where data scarcity remains a significant challenge.

In this study, we construct a supervised dataset with 3D
shapes for the segmentation task, a major task in 3D med-
ical imaging. In the 3D medical image segmentation task,
challenges arise due to (i) the internal structures exhibiting
individual differences, and (ii) the human body having a
highly complex anatomical structure characterized by am-
biguous boundaries between different tissues and organs,
as well as occasional overlapping regions. Based on these
observations, we hypothesize that the following elements
are crucial in the 3D medical image segmentation task: (i)
3D shapes with intra-class diversity to represent the diverse
shape variations among individuals, and (ii) 3D models in
which 3D shapes are spatially arranged with overlapping
configurations.

To address these hypotheses, we propose the Auto-
generated Volumetric Shapes DataBase (AVS-DB). Build-
ing AVS-DB involves a two-step process: synthesizing 3D
shapes and arranging them spatially. For shape synthe-
sis, we independently establish rules for the xy plane and
z-axis direction and combine the two. During this stage,
we introduce various instance augmentations to ensure di-
versity within the same class of shapes. We then inten-
tionally arrange the synthesized shapes with overlaps in
3D space. Using AVS-DB, we pre-train a transformer-
based model and evaluate its performance on the benchmark
dataset for 3D medical image segmentation, BTCV, as well
as MSD (Task06 and Task09). Our results show that AVS-
DB improves performance by +0.4%, +2.01%, and +2.04%
over conventional self-supervised learning we compared for
BTCV and MSD (Task06 and Task09), respectively.

2. AVS-DB

3D medical images, primarily derived from Computed
Tomography (CT) or Magnetic Resonance Imaging (MRI),
consist of stacked 2D cross-sectional slices. These images
exhibit different properties in the cross-sectional planes
(xy-plane) and the perpendicular axis direction (z-axis).
Therefore, we propose AVS-DB, automatically constructed
by defining and combining rules for both the xy-plane
and z-axis. The AVS-DB creation involves generating 3D
shapes and arranging them as illustrated in Figure 1.

Generation of 3D shapes. We construct 3D shapes as
shown in Figure 1 by defining and combining rules for both
the cross-sectional direction (xy-plane) and the perpendic-
ular axis direction (z-axis). For the xy-plane, we determine
the number of vertices of the polygon by selecting a class.
For the z-axis, we set multiple classes based on the patterns
of similarity ratio changes along the z-axis direction. The
number of vertices pxy in the xy-plane is randomly sam-
pled from the set of vertices XY = {pi ∈ Z|1 ≤ i ≤ n},
where n represents the total number of vertex classes. We
construct a shape with pxy vertices as a cross-section. Af-
ter defining the cross-section parallel to the xy-plane, we
stack these shapes along the z-axis direction while changing
the similarity ratio according to a specific rule. As shown
in Figure 1, we set four rules: Concave-outside (similarity
ratio: increases→decrease), 2. Concave-inside (similarity
ratio: decrease→increase), 3. Constant, and 4. Linearly
changing along the z-axis (similarity ratio :constantly in-
crease / decrease).

By randomly selecting one of these rules, we construct
3D shapes by stacking cross-sectional shapes along the z-
axis. To represent the diversity within each class, we per-
form instance augmentation as follows: In the xy plane,
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any shape with the same number of vertices are considered
to be part of the same class. Along the z axis, we cap-
ture the intra-class variability by specifying values, such as
extrema or endpoints, within the range of the predefined
rules. We denote the set of generated shape instances as
S = {s1, s2, ..., sN}, where N is the total number of shape
instances created.
Arrangement of shapes. We arrange the generated shapes
S in 3D space, as shown in Figure 1(b). For AVS-DB, we
intentionally arrange the shapes to overlap. Let vi be the
volume of the shape si, and v′i be the volume of the com-
mon part between si and the regions already filled by other
shapes in the space. For each shape si, we randomly choose
a position where the ratio of v′i to vi is less than a constant
r, and place the shape si at that position.

Regarding the assignment of ground truth labels, we set
the pixel values filled by the arranged shapes to the class ID
assigned to that shape. In areas where shapes overlap, the
masks of smaller shapes overwrite those of larger shapes
during random placement.

3. Experiments

In this section, we first describe the detailed experimen-
tal settings in Sec 3.1. In Sec. 3.2, we conduct exploratory
experiments to investigate the important elements in con-
structing the AVS-DB. In Sec. 3.3 and Sec. 3.4, we compare
the pre-training effects of our models with self-supervised
learning on 3D medical images in downstream tasks. In
Sec. 3.5, we compare the accuracy of our method with ex-
isting FDSL adapted to 3D medical images.

3.1. Implementation Detail

Fine-tuning Datasets. To evaluate the effectiveness of pre-
training with AVS-DB, we use the Multi Atlas Labeling
Beyond The Cranial Vault (BTCV) [3] and the Medical
Segmentation Decathlon (MSD) [2] as a downstream task.
The BTCV consists of abdominal CT scans from 30 sub-
jects annotated for 13 internal organs. Following a previous
study [4], we divided the BTCV training data into train and
test sets (8:2 ratio) for offline evaluation. The MSD focuses
on segmentation tasks for ten tumors and internal organs.
Due to constraints of machine resources, we chose to evalu-
ate the segmentation performance on the lung (Task06) and
spleen (Task09), which have smaller amounts of data, in-
stead of evaluating all tasks. We divided the MSD (Task06
and Task09) similarly to BTCV and used the test set for of-
fline performance evaluation.
Architectures and Hyperparameters. We employed stan-
dard Transformer-based models for the architecture, specif-
ically UNETR [9] and SwinUNETR [8]. Unless otherwise
specified, we utilized SwinUNETR for all experiments. For
pre-training on the AVS-DB, we use 96× 96× 96 patches,

Table 1. Results of exploration experiments in AVS-DB.

(a) Effect of shape classes.

BTCV (Dice↑)

xy:4, z:2 80.29
xy:8, z:2 81.16
xy:8, z:4 80.80

(b) Effect of shape overlap.

BTCV (Dice↑)

w / o overlap 81.16
w overlap (0.7) 81.95

a batch size of 8, a learning rate of 0.0001, and a weight de-
cay of 0.00001, optimizing the Dice Loss. The number of
AVS-DB samples is set to 5,000, equivalent to the number
of 3D medical images used in existing research [17]. We
employ AdamW [14] with a Warmup Cosine Scheduler for
training. For fine-tuning, we adhere to the experimental set-
tings of [1] for BTCV. When pre-training involves only the
encoder, we use the encoder’s weights; otherwise, we use
both the encoder and decoder weights. All evaluations for
downstream tasks are conducted using the Dice Score.

3.2. Exploratory Experiments

We investigate the essential elements of AVS-DB pre-
training performance, focusing on (i) the number of shape
classes in the xy plane and z-axis direction and (ii) shape
overlap. We use 5,000 AVS-DB samples.
Shape Classes. We investigate the relationship between
the diversity of shape classes and the effectiveness of pre-
training. We vary the number of classes for both the xy
plane and z-axis directions. In Table 1, results show the
lowest Dice Score (80.29%) when both have few classes.
With a total of 16 classes, accuracy is 0.36% higher than
with 32 classes (80.8%). An increase in xy plane rules pos-
itively contributes to pre-training, while an increase in z-
axis direction rules has a negative impact. This suggests
that learning complex xy plane shapes improves accuracy,
while complex z-axis direction properties are not necessary.
Shape Overlap. Table 1 shows a 0.79% higher accuracy
when shapes overlap, indicating that overlap positively con-
tributes to pre-training. Overlapping shapes during pre-
training are supposed to increase the effectiveness in down-
stream tasks, especially in areas where organs are closely
packed, in contact, or overlap.

3.3. BTCV

Table 2 compares the accuracy of existing models pre-
trained on 3D medical images using BTCV as a down-
stream task. PT Data denotes the pre-training dataset, with
3D med indicating the use of 3D medical images for pre-
training. We selected two state-of-the-art SSL techniques
in the context of transformer-based models as our compari-
son targets. We reference the results from [4] and utilize the
pre-trained models from [17]. In order to conduct the fairest
possible comparison, we made every effort to unify condi-
tions such as test data, model architecture, and input size as
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Table 2. Comparison of accuracy on the BTCV. The table demonstrates the performance of different pre-training methods, including our
proposed method (AVS-DB), and their impact on model accuracy.Segmentation is performed on a total of 13 organs, including the spleen
(Spl), right and left kidneys (RKid, LKid), gallbladder (Gall), esophagus (Eso), liver (Liv), stomach (Sto), aorta (Aor), inferior vena cava
(IVC), portal and splenic veins (Veins), pancreas (Pan), and right and left adrenal glands (rad, lad).

Pre-train PT Data Network Avg. Spl RKid LKid Gall Eso Liv Sto Aor IVC Veins Pan rad lad

Scratch - UNETR 71.18 90.66 89.39 89.44 41.43 51.73 94.97 76.17 85.05 79.22 62.27 63.91 55.46 45.64
SSL [4] 3D med UNETR 75.75 95.20 95.45 93.78 51.94 52.32 98.75 79.95 87.76 82.67 66.05 68.90 60.76 51.26
FDSL AVS-DB UNETR 79.91 94.66 94.11 94.02 63.41 67.04 96.32 85.35 89.13 84.23 73.08 81.31 60.93 55.19

Scratch - SwinUNETR 78.31 92.34 93.19 93.76 55.90 61.25 94.03 77.00 87.52 80.44 74.20 76.07 68.80 63.60
SSL [17] 3D med SwinUNETR 81.56 95.27 93.17 92.98 63.63 73.96 96.21 79.32 89.99 83.30 76.10 82.26 69.00 65.12
FDSL AVS-DB SwinUNETR 81.95 95.65 94.37 94.37 61.03 75.48 96.68 83.32 89.11 85.58 75.23 84.18 67.91 62.41

Table 3. Comparison of segmentation accuracy on MSD. This
table presents accuracy results for lung and spleen segmentation
tasks on the MSD using AVS-DB pre-training.

Pre-train PT Data Task06:Lung Task09:Spleen

Scratch - 82.47 92.79
SSL [1] 3D med 83.30 92.80
FDSL AVS-DB 85.31 94.84

much as possible. Our proposed method outperforms not
only training from scratch but also SSL-based 3D medical
image pre-training. Comparing UNETR and SwinUNETR,
the accuracy improvement of FDSL (AVS-DB) over SSL is
more pronounced for UNETR. Chen et al. [4] used approx-
imately 800 3D medical images for pre-training UNETR,
while Tang et al. [17] used about 5,000 for SwinUNETR.
The number of pre-training 3D data may be a factor affect-
ing the results.

3.4. MSD

Table 3 shows the accuracy when using MSD (Task06
and Task09) as the downstream task. For SSL [1], we report
the results obtained by fine-tuning the publicly available
pre-trained weights. In Task06, we observed a 2.84% accu-
racy improvement compared to training from scratch and a
2.01% accuracy improvement compared to SSL. In Task09,
we observed a 2.05% accuracy improvement compared to
training from scratch and a 2.04% accuracy improvement
compared to SSL. In addition to the BTCV dataset, the su-
perior pre-training performance of AVS-DB demonstrates
its usefulness without depending on a specific dataset.

3.5. Comparison of AVS-DB and V-PCF

Table 4 compares pre-training performance between the
existing Point Cloud Fractal DataBase [20] method for
FDSL in 3D point cloud tasks and our proposed AVS-DB,
using BTCV and MSD as downstream tasks. Since Point
Cloud Fractal DataBase has a different data format than
3D images, we converted Point Cloud Fractal DataBase to

Table 4. Comparison of pre-training performance between AVS-
DB and V-PCF. Comparison of pre-training performance using
BTCV and MSD as downstream tasks.

PT Data BTCV MSD (Task06) MSD(Task09)

V-PCF 80.74 82.72 93.59
AVS-DB 81.95 85.31 94.84

a Voxelized Point Cloud Fractal DataBase (V-PCF) using
the voxelization method as described in [19] and used it
for pre-training classification tasks. Pre-training with AVS-
DB yielded higher accuracy in BTCV and MSD (Task06,
Task09) by 1.21%, 2.59%, and 1.25% compared to using
V-PCF. We believe that the sparse data structure of V-PCF
and the impact of the tasks imposed during pre-training are
the causes of the difference in pre-training effects between
AVS-DB and V-PCF.

4. Conclusion
In this paper, we demonstrated that by using our

proposed AVS-DB for pre-training, a improvement in
accuracy was achieved compared to training from scratch.
Furthermore, the accuracy improvement was found to be
on par with or better than self-supervised learning methods
we compared. AVS-DB enables more data-efficient 3D
medical image segmentation without relying on real-world
data, which is burdened with data collection costs and
privacy concerns. As future prospects, a deeper analysis of
AVS-DB and exploration of its applicability to a broader
range of tasks are necessary.
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