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Abstract

Brain-inspired event-driven processors execute deep neu-
ral networks (DNNs) in a sparsity-aware manner. Specifi-
cally, if more zeros are induced in the activation maps, less
computation will be performed in the succeeding convolu-
tion layer. However, inducing activation sparsity in DNNs
remains a challenge. To address this, we propose a train-
ing approach STAR (Sparse Thresholded A ctivation under
partial-Regularization), which combines activation regu-
larization with thresholding, to overcome the barrier of a
single threshold- or regularization-based method in sparsity
improvement. More precisely, we employ the sparse penalty
on the near-zero activations to fit the activation learning
behaviour in accuracy recovery, followed by thresholding
to further suppress activations. Experimental results with
SOTA networks (ResNet50/MobileNetV2, SSD, YOLOX and
DeepLabV3+) on various datasets (Cifar-100, ImageNet,
KITTI, VOC2007 and CityScapes) show that STAR can re-
duce on average 54% more activations compared to ReLU
suppression. It outperforms the state-of-the-art by a sig-
nificant margin of 35% in activation suppression without
compromising accuracy loss. Additionally, a case study for
a commercially-available event-driven hardware architec-
ture, Neuronflow [29], demonstrates that the boosted acti-
vation sparsity in ResNet50 can be efficiently translated into
latency reduction by up to 2.78 %, FPS improvement by up
to 2.80%, and energy savings by up to 2.09x. STAR ele-
vates event-driven processors as a superior alternative to
GPUs for Edge computing.

1. Introduction

Deep neural networks (DNNs) have become ubiquitous in
Al applications as their related architectures have domi-
nated various Al challenges in the past decade. The great
success of DNNs in academia attracts considerable interest
from the industry. However, the general trend in Al research
has been to make deeper and more complicated DNNs to
achieve better performance [5,45]. This strongly defies the
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core requirements of industrial applications — low resource
consumption and high efficiency in power and latency — es-
pecially for deployment on edge platforms. Consequently,
various novel Al computing architectures have been pro-
posed in recent years to improve inference efficiency in
terms of power and latency. Among them, the event-driven
architecture is one of the most innovative paradigms for re-
ducing the latency and computational burden of DNNs by
mimicking the working mechanisms of the human brain.

A plethora of event-driven architectures have been proposed
by the academia, e.g., DYNAPs [28], SpiNNaker 2 [20], and
industry, e.g., TrueNorth [1], Akida [43], Loihi 1, 2 [8, 9],
Neuronflow [29], to overcome the unavoidable problem of
high latency and energy consumption on conventional pro-
cessors. Those architectures emulate the brain’s energy and
compute efficiency by executing the networks in an asyn-
chronous and parallel event-driven manner, which promotes
and simultaneously exploits sparse computations. Specifi-
cally, in event-driven processing, skipping one event elim-
inates the accompanying computations and memory ac-
cesses. With a fraction of events skipped, the overall com-
pute and memory-access requirements decrease proportion-
ally [48]. This reduction in compute and memory-access
can be directly transferred to latency and energy efficiency
on the silicon. Thus, an effective event suppression ap-
proach is essential to maximize the efficiency of event-
driven processing.

To suppress events, it is critical to understand the execu-
tion mechanism of DNNs on event-driven architectures. In
general, an activated neuron is equivalent to the genera-
tion of an event with a binary, integer, or floating-point
value. No event needs to be fired once the activation value is
zero. Therefore, inducing zeros in DNN’s activation is ben-
eficial for the event reduction in inference. Remarkably,
the majority of network architectures adopt ReLU [18] as
their activation function, which statistically suppresses half
of the network activations. This degree of activation spar-
sity improves the inference performance by roughly 2 times
through event-driven processing. However, it is still inad-
equate to thoroughly demonstrate the efficiency of event-
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Figure 1. Our proposed STAR improves the activation distribution of a sparsified model and further boosts its sparsity through thresholding.
The activation distributions from actual data are illustrated in Fig. 10 and Fig. 11 in Appendix B.2

driven architectures.

Previous studies on activation suppression have mostly
been conducted in two directions: threshold-based and
regularizer-based. Existing works on threshold-based sup-
pression [2, 27, 34] use hard thresholds solely in inference
to omit low-magnitude activation nodes. The increase of
threshold values can result in more sparsity, yet erode model
performance. To recover accuracy from aggressive suppres-
sion, we propose network retraining to adjust the weights to
higher thresholds. This is a simple heuristic from weight
suppression [46], and yet we prove that it also works well
in activation suppression.

Regularizer-based approaches, as another direction, have
drawn much attention in recent studies [17,24,48]. The idea
is to penalize the activations with a sparse regularizer so that
they are driven towards zero. However, the problem is that
increasing the weight of regularization loss in total training
loss can result in more zeros in activation while compromis-
ing accuracy [30,48]. We hypothesize that this substantial
decrease in accuracy is due to the fact that the excessive
sparse penalty disrupts the output distribution of activations
and inhibits the model from learning effective features, as
illustrated in Fig. 1-left. More precisely, existing suppres-
sion techniques (i.e., Li-regularizer) do the opposite to nor-
mal training in activation distribution learning. To improve
this, we consider applying the regularization on those small-
magnitude activations, named as partial-regularization, so
that the output distribution of high-magnitude activations
can be restored to the high-accuracy level, as portrayed
in Fig. 1-middle. More details of activation behaviour are
revealed in Sec. 2.

To compensate for the deficiencies of a single threshold- or
regularizer-based method in sparsity exploration, we pro-
pose STAR (Sparse Thresholded Activation under partial-
Regularization), which combines partial-regularization with
thresholding to significantly suppress the activations in
DNNs while maintaining accuracy (see Fig. [-right).
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STAR presents several significant advantages. Firstly, it
surpasses existing activation suppression techniques by a
considerable margin in achieving sparsity while maintain-
ing accuracy. Secondly, it employs a single power-of-2
threshold, simplifying hardware implementation and min-
imizing the efforts needed for threshold searching. Thirdly,
it ensures stable sparsity in activations across frames. Fur-
thermore, the method seamlessly integrates with other opti-
mization techniques, such as weight pruning [14] and quan-
tization [39], to further reduce the model size and MAC op-
erations. Finally, given its specific design for the benefits
of event-driven architectures, the use of STAR for event-
driven processors results in a notable reduction in latency
and energy consumption, leading to a substantially superior
power/throughput when compared to GPUs.

To demonstrate the generalization and efficiency of STAR,
we evaluate our approach on image classification using
ResNet [19] and MobileNetV2 [36]. Given the likelihood of
autonomous vehicles and surveillance systems being used
in real-world scenarios, we broaden the scope of our analy-
sis to semantic segmentation [6] and object recognition [15]
tasks, that have more sophisticated yet under-explored net-
work architectures.

In this paper, we bring four main contributions:

1. We introduce a novel mixed training approach STAR
to effectively suppress non-zero activations in DNNs.

2. We simplify the threshold searching and hardware
implementation by employing a power-of-2 global
threshold.

3. We reveal the efficiency of STAR on multiple neural
network architectures and popular vision applications.

4. We demonstrate the actual latency reduction, FPS
improvement, and power savings by implementing
STAR on a real-life event-driven processor GrAI-VIP
(see Appendix C).

The remainder of this paper is structured as follows. Sec. 2



investigates the activation behaviour during activation sup-
pression and accuracy recovery. Sec. 3 provides a detailed
description of our approach, STAR. Sec. 4 presents the ex-
perimental setup and results. Sec. 5 gives an overview of
the related work and the positive impact on the community.
Sec. 6 concludes the paper.

2. Motivation

Our motivation for this work is based on an empirical obser-
vation that the activation learning pattern has a significant
impact on the model’s accuracy and its activation density
throughout training. We study the activation pattern of a
ResNet18 model [19] by tracking the movements of the av-
erage and maximum of its non-zero activations under var-
ious training conditions, as illustrated in Fig. 2. The first
training phase (normal training) increases the maximum of
activations along with the epochs while maintaining its av-
erage at a high level. In the second training phase (L;-reg),
both average and maximum of activations decline consider-
ably due to the effect of L; penalty on the activation out-
puts. Finally, the third training phase (retrain) successfully
recovers the accuracy by retraining the weights without L
constraint. We have observed that a substantial improve-
ment in accuracy recovery is concomitant with an increase
in both the mean and maximum values of non-zero activa-
tions, rather than their overall quantity. We use the term
activation renaissance” to refer to this occurrence.

We observe two opposing phenomena when comparing the
results of the aforementioned experiments: 1) Improving
accuracy necessitates an increase in non-zero activation
values. 2) Suppressing activations requires the compres-
sion of activation values. Therefore, we deduce that this
conflict prevents the prior regularizer-based methods from
suppressing activations further while preserving accuracy
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Figure 2. The impact of accuracy recovery on the activation behav-
ior in normal training, regularizer-based training, and retraining on
the regularized model.
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by merely increasing the penalty. To address this prob-
lem, as explained in Fig. 1, we propose to apply a partial-
regularization, solely to the near-zero activations. This is
because low-magnitude activations are less important for
performance [2, 24], which can be forced towards zero and
masked out via thresholding. The removal of regulariza-
tion on the remaining activations, on the other hand, allows
them to grow and learn features similar to normal training.
To support our statement, we provide a thorough compari-
son of various sparsity penalties on activation suppression
in Fig. 4.

3. Method

In this section, we describe our activation suppression train-
ing method, STAR. The objective of STAR is to combine
regularizer-based training with thresholding such that the
percentage of non-zero activations can be maximally sup-
pressed while maintaining model accuracy. As visualized
in Fig. 3, the whole training procedure can be summarized
in four stages:

1. Standard baseline Training: Train an accurate model
for the target network and task;

2. Regularizer-based Training: Apply a layerwise sparse
penalty on the activation outputs of the pre-trained model
and suppress the activation for a number of epochs, then
reduce the learning rate and fine-tune the network until the
network’s accuracy is recovered;

3. Threshold-based Training: Add threshold nodes to the
regularized model graph and fine-tune the network using
partial-regularization on activation until the network’s ac-
curacy is recovered;

4. Repeat: step-3 for n thresholds, where n is typically less
than 3, and select the model paired with the threshold giving
the optimal trade-off between accuracy and sparsity.

3.1. Naturally-Arising Sparse Activations

We start by examining the natural sparsity of activation
maps in DNNs [19, 36]. Prior studies show that activa-
tion sparsity is linked with the ReLU non-linearity, defined
as ReLU(x) = max(x,0). It results in an average 62%
network-wide activation sparsity through standard network
training [32, 35] (see Fig. 3). However, many newly pro-
posed networks [15,21,36,41] apply non-zero activation
functions [11,26,33,36] to seek exceptional performance.
Unfortunately, these functions are less efficient on edge pro-
cessors due to issues with post-quantization, sparsity ex-
ploration, and complex exponent computations. Therefore,
they are commonly replaced by ReLU for hardware effi-
ciency [42]. We adopt the same strategy in our study and
introduce thresholding to sparsify the linear activation [36].



Compute load
|:|:| of convolution
Number of

CDnon—zero activations
Sparse activation

Dregularization penalty
Number of non-zero

D activations after

thresholding

H —_— forward

! 3] 0asues +h Or Aoy, W) 0oyt S~ c!st \\_‘// backward

i Regularizer-based Training da ow U 9a w, .

e Bt o e dunetion
output label

'
'

: Conv
' -

:
'
'
H
'
I - :
H H
H \ i
i o i
:
: - ! ~. J E
' 0] 9aoues ! 9partiatt 9%out, i ~. '
! +17; et —_ —  cost !
' Oaoues 0w, 0aoye; 0wy '
! function H
' :

where Tpartial,l = ”M(aout,lr t) © auut,l”l

Figure 3. The workflow of the STAR suppression method.

3.2. Regularized Sparse Activations

To induce more activation sparsity, we apply an L regular-
ization to the output of ReLUs during training, as illustrated
in the box “Regularizer-based Training” of Fig. 3. There-
fore, in the training phase, weight parameters w in the I
layer are updated by the gradients g;, back-propagated from
the loss J:
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where a,,,; represents the It layer activation outputs, 7 is
the activation regularization, and J; is the regularization co-
efficient used to balance sparsity exploration and accuracy
recovery in network learning, which can be determined by
grid-search [17,24] or adaptive-learning [48]. As a result,
the activation values are compressed towards zero (the black
arrow in ReLLU), resulting in relative compute reduction in
the next convolution layer (the black arrow in Conv). How-
ever, as explained in Sec. 2, excessive regularization on the
entire activation maps prevents the network from learning
effective feature distributions. Thus, Eq. (1) can be further
improved with our partial-regularization as follows:
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where
o 1 Qout,l € (Ot)
M(aouty,t) = {0 otherwise

As shown in Eq. (2) and Eq. (3), both forward and back-
ward passes of the regularization are masked out through
Eq. (4), if the activation values are above the threshold t.
This partial-regularization rpq,¢i4,; computes the penalty
solely for activations below ¢, allowing the remaining non-
regularized activations to adjust to the desired value.

“

It is worth mentioning that various sparse regularizers (e.g.,
Ly, Lo, L,, SCAD, Hoyer, Kullback-Leibler) have been
introduced in previous research [13, 17,24,30,31]. These
regularizers are capable of further enhancing the activation
sparsity through training while achieving very similar gains
in final sparsity as depicted in Fig. 4. Therefore, in this pa-
per, we focus on implementing the simple yet effective L,
regularizer as the regularization term for Eq. (3). To take
advantage of both the suppression ability of L, and the acti-
vation renaissance phenomenon, we propose a mixed-use of
full-L; and partial-L regularizers at different stages of the
training process. Specifically, we employ a full activation
penalty in the initial training stage to maximize the number
of zeros and then switch to partial-regularization in the sec-
ond stage for better accuracy recovery. This approach out-
performs all other methods in activation suppression. Due
to the page limits, more details of mentioned sparsity regu-
larizers can be found in Appendix A.1.



3.3. Finetuning with Activation Thresholds

As depicted in the box labeled as ’Threshold-based Train-
ing” in Fig. 3, thresholds are inserted right after the L; reg-
ularizer to suppress extra non-zero activations. Evidently,
simply increasing the threshold values without retraining
leads to significant accuracy degradation. Thus, we first ap-
ply alarge threshold ¢ to filter out a substantial percentage of
forward activations and then fine-tune the weights to adjust
to this threshold. As observed during activation learning, re-
training causes the activation values to grow over the thresh-
old for better accuracy recovery. To maintain the amount
of below-threshold activations, it is essential to incorpo-
rate partial-regularization and thresholding simultaneously
in this finetuning process. The algorithmic description can
be found in the appendix.

Besides, the authors of [24] claim that the forward and back-
ward information flow of a layer can be disrupted by a rela-
tively high activation threshold, thereby preventing the net-
work from learning. We mitigate this problem by using the
Straight Through Estimator (STE) [4] method for passing
the inhibited gradients by threshold onto the related weights
as an estimator, described in Eq. (5) and Eq. (6). This
threshold function solely filters forward events for high ac-
tivation sparsity and bypasses the threshold operator back-
ward for effective weight updates.

. 0] Qout,l € (_Oo7t>
T(aout,l) - {aout,l aout,l c [t,-'—oo) (5)
00w Goutt) _ [0 aous € (~00.0) )
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Moreover, searching for an optimal threshold is a time-
consuming endeavor. For a network with D layers and C'
channels, considering N threshold candidates, layer-wise
thresholding provides O(D x N) possibilities for threshold
combination, whereas channel-wise thresholding increases
this complexity to O(D x C x N). To simplify this process,
we suggest implementing a power-of-two as the threshold
(i.e., 2", n € Z). As the sparse penalty compels all activa-
tions towards zero, a power-of-two is efficient in achieving
fine-grained thresholding in the proximity of zero due to
its dense value distribution in that area, visualized in Fig. 8.
However, through our empirical analysis (see Appendix A.3
and Appendix B.3), we find that model-wise thresholding
can yield similar suppression performance as layer-wise
thresholding, providing a more hardware-friendly option for
our method. Consequently, the overall search effort can be
reduced to O(log2N'), making the compute logic less ex-
pensive and freeing up more memory for other purposes.

4. Evaluation

We describe the experimental setup and results to evalu-
ate our proposed method (STAR) for activation suppression.
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First, we show how the mixed approach capitalizes on the
benefits of full-regularization for activation suppression and
partial-regularization for accuracy recovery. Following that,
we conduct an ablation study to acquire a better knowledge
of the impact of each component in STAR. Furthermore, we
examine STAR across a wide range of networks to demon-
strate its benefits in activation suppression compared to the
state-of-the-art. Finally, we evaluate our optimized models
on a commercial event-driven edge processor. The perfor-
mance results demonstrate its efficiency in terms of latency
and energy savings for event-driven processing.

4.1. Experimental Setup

Models: The primary network investigated in our study is
ResNet [19] on Cifar-100 [23] and ImageNet [ 1 0], on which
we perform extensive trials for various activation suppres-
sion approaches to demonstrate the sustainability and ef-
fectiveness of our proposed strategy. We additionally ex-
amine lightweight architectures like MobileNetV2 [36] to
show the impact of our technique on networks of variable
complexity. Nonetheless, such a simple validation on image
classification is inadequate to achieve the objectives of so-
phisticated applications in industrial contexts. The general-
ization of our method is evidenced by the extension to other
application domains, such as object detection (SSD [25],
YOLOX [15] on KITTI [16] and VOC2007 [12]) and se-
mantic segmentation (DeepLabV3+ [6] on Cityscapes [7]).

Training: Due to page limitation, the detailed training in-
formation can be found in Appendix B.1.

Environment: Our method STAR is implemented in Ten-
sorFlow (TF). We build software tools in Python to auto-
mate the customized implementation and monitor the op-
timization training process. The optimization training and
model profiling are carried out on a single Nvidia GPU —
Quadro RTX 5000. After optimization, the trained models
are evaluated on GrAI-VIP [44], a commercially-available
event-driven DNN accelerator by GrAI Matter Labs. It is
a 12-nm taped-out chip with 144 SIMD-4 cores running at
650MHz. More details can be found in Appendix C.

4.2. Results on activation sparsity exploration
4.2.1 Comparison of various activation regularizers

We have experimented with various activation suppression
methods. For the regularizer-based training, we implement
the existing regularizers: L, Lo, Hoyer, and SCAD, and our
two-stage observation-inspired approach (Retrain w/o L1,
described in Sec. 2) for sparsification. For a mixed approach
combining regularization and thresholding, we employed
the L, regularizer in the first stage to suppress activations,
followed by fine-tuning with either Full-L, penalty (L1 w/
Thresh) or Partial-L, penalty (STAR) along with threshold-
ing in the second stage. The terms Full-L; and Partial-L



indicate the implementation of L; penalty on the entire and
partial activation maps, respectively.
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Figure 4. Accuracy-sparsity trade-offs of ResNet18 on Cifar-100
by applying various sparse regularizers w/ and w/o thresholding

As shown in Fig. 4, by comparing regularization-based
methods under 0% loss tolerance, Hoyer outperforms the
other regularizers in terms of sparsity gain because of its
higher diversity” in the activation values [24]. Retrain w/o
L, follows the idea of diversifying the activation distribu-
tion by first sparsifying with full-L; and later removing the
L1 penalty for fine-tuning, which has a better effect on accu-
racy recovery while maintaining the sparsity gains from L;.
It further boosts the activation sparsity achieved by Hoyer
from 67.86% to 80.07%.

Moreover, as we give more leeway on the acceptable drop
in accuracy (tol: 1%, tol: 2%), both L; and SCAD sur-
pass Hoyer in terms of suppression. Hoyer enforces ac-
tivation x to approach zero if z < %—lfl, while z moves
away from zero otherwise. It can potentially compromise
the model’s accuracy by distorting the natural distribution of
activations when pushing large activations away from their
original positions. Similarly, full-L, compresses large acti-
vations towards zero, resulting in reduced accuracy. As a re-
sult, the large-magnitude-preserving method SCAD outper-
forms L; when the penalty value increases for more spar-
sity. However, our two-stage approach, Retrain w/o L1,
consistently achieves more sparsity compared to any sin-
gle regularization-based method, particularly when the ac-
curacy drop tolerance is restricted.

4.2.2 Combined regularization and thresholding

The Pareto curves of two combination methods are pre-
sented in Fig. 4. The first one integrates the Full-Lq regu-
larization training with thresholding in the finetuning stage,
named Lq w/ Thresh while the second combination is the
STAR method. Simply combining L and thresholding (L
w/ Thresh) is able to outperform any single regularization-
based method in sparsity exploration with a significant mar-
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gin of 7.16% (the average boosted sparsity under 0 ~ 2%
tolerance), nevertheless, it surprisingly suppresses fewer ac-
tivations than non-threshold method Retrain w/o L1 while
the accuracy tolerance is low (< 1%). This observation
reveals the fact that L; w/ Thresh emphasizes much on ac-
tivation suppression while ignoring the importance of pre-
serving large magnitude for accuracy recovery. On the con-
trary, our method STAR inherits the suppression ability from
L1 w/ Thresh and improves its deficiencies by allowing the
growth of large activations in finetuning. The Pareto curve
of STAR reveals that our approach can consistently and sig-
nificantly improve sparsity gains beyond any existing meth-
ods, even when accounting for all accuracy drop tolerances.

4.2.3 Ablation studies

In order to estimate the impact of different components of
STAR, we conduct complementary experiments: 1) apply-
ing L, penalty on full activations (w/ full-L;), 2) adding
thresholds with or without retraining (w/ post-train thresh-
old, w/ threshold), 3) fine-tuning on the regularized model
from experiment 1 without penalty but with thresholding
(w/o L1, w/ threshold), 4) combining regularization with
thresholding (w/ full-L1, w/ threshold), 5) applying partial
regularization with thresholding (STAR).

Tab. 1 shows the results of these experiments with ResNet50
on ImageNet, in terms of top-1 accuracy obtained on the
validation set, its relative drop versus the baseline, activa-
tion density, activation reduction, MAC density and MAC
reduction. The first line of the table reports the num-
bers for the normal-trained ResNet50 with ReL.U sparsity,
w.r.t. our baseline. We consider two models to be at
the same accuracy level when their Aacc < 0.1% and
we compute the suppression improvement by (Act.pgse —
ACt-new)/ACt-base-

Regularization on activation: The line labeled as "w/ Full-
L, ” shows that regularization-based training can further re-
duce the number of activations and MACs by 1.53x and
1.25 %, respectively, on top of ReLU sparsity.

Threshold on activation: The line labeled as "w/ Post-train
threshold” shows a minor reduction of 8.34% in activation
density when simply applying a global threshold in post-
training. Furthermore, the line labeled as "w/ threshold”
illustrates that by increasing the threshold and retraining
the model, it becomes possible to suppress an additional
14.16% of activations at the same accuracy level. These
findings highlight the importance of finetuning with thresh-
olding to achieve optimal performance.

Regularization and threshold on activation: By compar-
ing "w/o Ly, w/ threshold” and "w/ Full-Ly, w/ threshold”,
we notice that applying L, and thresholding simultaneously
can preserve a majority of activations below the threshold



Table 1. Results and ablation studies of activation suppression with ResNet50 on ImageNet.

VAL Top-1 RELATIVE DROP(%)  ACTIVATION #REDUCTION  MAC #REDUCTION
METHOD % 1 o-B D % Actp D % MACH

ACCURACY (%) 00 x == ENSITY (%) Acty ENSITY (%) MACH
RES50-S [19] 76.64 0.00 48.94 1.00x 38.30 1.00x
W/ FULL-L+ 76.17 -0.61 32.00 (-16.94) 1.53x 30.53 (-18.41) 1.25x
W/ POST-TRAIN THRESHOLD 76.10 -0.70 40.60 (-8.34) 1.20x 31.09 (-17.85) 1.23x
W/ THRESHOLD 76.06 -0.76 34.84 (-14.10) 1.40x 26.05 (-22.89) 1.47x
AFTER L1 -REGULARIZED TRAINING
W/0 L1, W/ THRESHOLD 76.12 -0.68 24.79 (-7.21) 1.97x 24.39 (-6.14) 1.57x
W/ FULL-L7, W/ THRESHOLD 75.82 (-0.30) -1.07 19.62 (-12.38) 2.49x 23.19 (-7.34) 1.65x
W/ PARTIAL-L1, W/ THRESHOLD (STAR) 76.12 -0.68 19.01 (-12.99) 2.57x 22.11 (-8.42) 1.73x

as post-training thresholding (otherwise, the activation re-
naissance happens and the amount of non-zero activations
will increase a bit). However, as explained in Sec. 2, this
“indiscriminate” penalty probably damages the natural dis-
tribution of large activations, resulting in a 0.30% accuracy
decrease compared to "w/o Ly, w/ threshold”. Therefore,
by switching full-L, to partial-L,, STAR recovers the ac-
curacy loss that occurred by full-L, and improves the sup-
pression performance of "w/o L1, w/ threshold” by 23.31%.
This verifies our assumption that applying partial-L; can
drive low-magnitude activations to stay below the thresh-
old for more sparsity while allowing high-magnitude acti-
vations to increase for effective accuracy recovery.

In general, STAR results in a substantial 2.57 x boost in ac-
tivation suppression compared to the baseline, while incur-
ring only a 0.68% relative accuracy drop. Additionally, we
make an intriguing discovery that regularization and thresh-
olding contribute approximately equally to total activation
suppression, with regularization accounting for 16.94% and
thresholding for 12.99%. These sparsity gains are in close
proximity to the individual gains of 16.94% and 14.10% at-
tained by the two methods, which demonstrates the efficacy
of STAR in preserving the benefits of both techniques.

Table 2. Standard deviation of event-driven execution per frame.
”-BS” and ”-STAR” are the ReLU-sparsified model and the STAR-
sparsified model, respectively.

EVENT DENSITY [%] MAC DENSITY [%]

MODELS

MEAN STD MEAN STD
RES50-BS 49.70 1.68 38.33 0.90
RESS50-STAR 21.29 1.18 22.11 0.66
MNV2-BS 63.56 0.88 75.97 0.38
MNV2-STAR 41.78 0.89 69.95 0.35
YOLOX-BS 51.89 0.62 39.51 0.46
YOLOX-STAR 27.07 1.22 19.09 0.65
DEEPLABV3+-BS 49.32 0.53 34.69 0.27
DEEPLABV3+-STAR 19.42 0.66 19.71 0.22

4.2.4 Stability across frames

Furthermore, event-driven architectures are designed to
benefit from the sparsity of DNNs. A large diversity in the
input frames likely produces significantly varying activation
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patterns in the network, endangering the stability of event
volume and computational loads for per-frame executions.
However, Tab. 2 demonstrates that the standard deviation of
the recorded activation density and MAC density across the
validation frames is under 2% and 1% respectively, which
are surprisingly too low to produce any instabilities in infer-
ence time. Besides, this stability is not affected by datasets,
networks, or activation suppression.

Table 3. The speedups and energy-savings of DNN inference at
batch size 1 on GrAI-VIP related to the activation suppression.

ACTIVATION LATENCY ENERGY
MODEL

SUPPRESSION REDUCTION REDUCTION
RES50-STAR 2.50Xx 2.78X 2.09x
MNV2-STAR 1.92x 1.28x 1.35x
YOLOX-STAR 2.24X 2.12x 2.08x

4.2.5 Comparison to SOTA

In Fig. 5, STAR (red) achieves an average of 80% in to-
tal activation sparsity for a heavy-weight model and 65%
for a light-weight model with a small impact on accuracy
(< 1%). The comparison of L; and STAR shows that our
approach results in a significant increase in activation sup-
pression (sup) up to an average number of 35% relative to
an optimized version of the SOTA approach [17] on a wide
range of sophisticated networks. Notice that the above im-
provement is under the condition that the accuracy loss rel-
ative to the Tensorflow baseline is < 0.5%. With additional
tolerance (tol) on performance loss (i.e, 1 ~ 2%), the im-
provement can be further enlarged to an average of 45%,
which can be transferred to roughly 1.8 x more latency and
energy savings in event-driven processing.

4.3. Results on event-driven processor
4.3.1 End-to-end inference performance

Let us describe how well the explored activation sparsity
translates to actual latency, FPS, and energy improvement
in end-to-end inference on an event-driven hardware GrAl-
VIP. Tab. 3 presents that our suppression method can lead
to an average of 2.06x latency reduction and 1.84x en-
ergy savings in end-to-end inference on top of ReLU spar-
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Figure 5. Comparison on various networks, on validation accuracy v.s. activation sparsity with the state-of-the-art (SOTA) under different
loss tolerances (tol). Label up represents a relative improvement of activation suppression between SOTA and STAR.

sity across various networks. Most importantly, both re-
duction factors are roughly proportional to the suppression
factor, confirming that STAR can consistently improve the
latency and power efficiency of DNNs inference in event-
driven processing.

4.3.2 Comparison with edge GPU device

As shown in Fig. 6, we utilize Jetson’s performance as a
benchmark and find that GrAI-VIP exhibits slightly bet-
ter performance than Jetson Nano in most of the standard
trained networks when operating at a lower frequency of
650 MHz. However, with the help of STAR, GrAI-VIP
showcases a significant FPS boost of 2.86x on average
over Nano by leveraging activation sparsity in our sparsi-
fied models. Notably, the application of STAR improves
the FPS of ResNet50 from lower than Nano to twice that of
Nano while simultaneously reducing its energy consump-
tion by half. These findings highlight the effectiveness of
STAR and its critical role in boosting the performance of
event-driven processors.
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Figure 6. FPS comparisons between Jetson Nano and GrAI-VIP

5. Related Work

Modern network architectures [19, 36] widely apply ReLU
as the activation function, inducing ~ 50% inherent activa-
tion sparsity [35]. This sparsity can be leveraged by either
sparse matrix-dense matrix multiplication (SpMM) on the
conventional hardware [22, 24, 37] or data-flow combined
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event-driven convolution on those newly emerged neuro-
morphic systems [9, 29]. Especially for the later ones, the
inference latency and energy improve considerably as spar-
sity increases.

Therefore, to further explore activation sparsity, earlier
works [2,34] eliminate low-magnitude activations via static
thresholds in inference. Nevertheless, the sparsity gains are
limited due to accuracy concerns. Recently, regularization
methods have been applied to network training [17,24,30]
to increase sparsity in the activation maps. Interestingly, the
difference between these regularizers tends to be modest in
activation suppression. Some researchers [38] even claim
that it is challenging to attain over 70% activation sparsity
while maintaining accuracy loss within 2%. Instead of ex-
ploring new regularizers, [48] develops an adaptive train-
ing schedule to efficiently alter the regularization coefficient
for the optimal. Their sparsity improvement is consistent
across various applications but the increment remains small.
In contrast, STAR smoothly combines regularization and
thresholding in training and preserves the suppression ef-
fects of both techniques. The accumulated sparsity allows
STAR to outperform all the existing methods.

6. Conclusions

In this paper, we present STAR, a novel activation suppres-
sion training method designed to fulfill the booming needs
for sparsity exploration in event-driven processing. We dis-
cuss the limits of the existing approaches and propose STAR
based on an in-depth analysis of activation behaviour in
network learning. STAR combines partial-regularization
with thresholding to maximally suppress non-zero activa-
tions in DNNs while maintaining accuracy. Consequently,
STAR outperforms the SOTA on activation suppression by
a significant margin of 35% with negligible accuracy loss,
demonstrating its strong ability to induce activation spar-
sity. Moreover, the achieved activation sparsity can be ef-
fectively translated into latency reduction by up to 2.06x
and energy savings by up to 1.84 x on an event-driven pro-
cessor. These results confirm the effectiveness of STAR in
optimizing DNNss for efficient event-driven processing.
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