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A. Derivation of the ELBO Objective
Assume the data D = {xn, yn}Nn=1 under the model

p(y|x,w) where w are the parameters of the network, x is
the input and y is the target. Assume that D is split into X =
{xn}Nn=1 and the associated targets for each input Y =
{yn}Nn=1. Given M members in the MIMMO NN which
are independent in the inputs and outputs we can write
the sum of the log-likelihood as

∑M
m=1 log p(Y |X,w) =∑M

m=1

∑N
n=1 log p(y

n
m|xn

m,w). This allows us to compute
the likelihood of the data for each member separately and
then sum them up [11].

Assuming now that we want to induce a prior and
a variational distribution over the depth of the members
as p(dm|{γi

m}Di=1) = Cat(dm|{γi
m}Di=1) independently

for each ensemble member m and a variational posterior
q(dm|{θim}Di=1) = Cat(dm|{θim}Di=1), where θ is a vector
of learnable parameters for each ensemble member m we
bound the log-likelihood of the data by the ELBO objective
as below:

L(D|w, θ) = log

D∑
i=1

p(Y |X,w, di)p(di|γi)

= log

D∑
i=1

p(Y |X,w, di)q(di|θi)p(d
i|γi)

q(di|θi)

≥ Eq(di|θi)

[
log

p(Y |X,w, di)p(di|γi)

q(di|θi)

]
≥ Eq(di|θi)

[
log p(Y |X,w, di)

]
−KL(q(di|θi)||p(di|γi)) + Constant

≥
M∑

m=1

N∑
n=1

D∑
i=1

log p(yin,m|xn,m,w, dim)θim

− α

M∑
m=1

D∑
i=1

θim log
θim
γi
m

The derivation starts by writing the joint log-likelihood
of the data under the model as a sum of individual log-
likelihoods for each member of the MIMMO NN. This
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Figure 5. Ablation study on test (upper row) and augmented (lower
row) set with varying α. The red points represent M = 2, the
green points represent M = 4 and the blue points represent M =
8. The circles represent α = 0.0, the squares represent α = 1.0,
the down triangles represent α = 100.0, the up triangles represent
α = 10000.0, the diamonds represent α = 45000.0, the stars rep-
resent α = 100000.0 and the crosses represent α = 1000000.0.

assumes that the members are independent given the in-
puts and outputs. Given the categorical prior and a varia-
tional posterior over the depth of each member, the varia-
tional posterior enters the equation as multiplication with
respect to 1. The derivation then applies Jensen’s inequal-
ity to lower bound the log-likelihood giving the ELBO ob-
jective. It consists of two terms: an expected conditional
log-likelihood and a KL divergence between the variational
posterior and the prior and a constant with respect to the
prior distribution. The expected conditional log-likelihood
is computed by taking an expectation over the variational
posterior for each member each data point and each depth.
The KL divergence is computed analytically assuming cat-
egorical distributions. By default it is a reverse KL diver-
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Figure 6. Ablation study on test (upper row) and augmented (lower
row) set with a varying number of layers and width. The red points
represent M = 2, the green points represent M = 4 and the blue
points represent M = 8. The circles represent (1, 2, 3, 1) layers
per residual block and 1 width multiplier, the squares represent (2,
4, 6, 2) layers and 1 width multiplier, the down triangles represent
(1, 2, 3, 1) layers and 2 width multiplier, and the up triangles rep-
resent (2, 4, 6, 2) layers and 2 width multiplier.

gence, but given that KL divergence is not symmetric, we
consider experimenting with the forward KL divergence as
future work. The α controls the strength of regularization.

B. Experimental Settings
We conducted experiments on the CIFAR-100 dataset

with a WideResNet architecture [32] with 4 blocks with
(1,2,3,1) layers, (1,2,2,2) strides and (16, 32, 64, 128) chan-
nels, expansion 4, groups 1, base width 32 and multiplier 2.
The three early-exits for DUN, EE or MIMMO where added
exactly after the series of 1, 2 and 3 blocks respectively. No
data augmentation was used, or weight regularization and a
regular net was able to quickly overfit the data for any ex-
periment. No data augmentation was used such that there is
no linkage to the data augmentations during the out of train-
ing distribution data tests. Batch repetition was always set
to 2, batch size to 64 and we used the Adam optimizer, with
a cosine learning rate schedule until the end of training for
all experiments. The initial learning rate was set to 0.005.
We run for 100 epochs. Input repetition probability was
set to 0.25. We warm-started the networks with 5 epochs
where the depth parameters were fixed to the prior. All the
methods used the same main hyperparameters and we note
the differences below. We hand-tuned the main defining pa-
rameters to the best of our ability on the 10% of the training
data as validation set. Monte Carlo Dropout: For Monte

Carlo Dropout we used 10 samples, dropout inserted before
every convolution or linear layer with a dropout probability
of 0.15. DataMUX: We used a 3 × 3 convolution with 1
padding and 1 stride, followed by ReLU activation. DUN:
We set α = 1 in objective (1) and of course M = 1. We also
used 5 warm-starting epochs during which the depth param-
eter was fixed to the prior for fairness. EE: We set the alpha
parameter to weight the early-exit losses to 1.0, gamma to
0.3 and beta to 0.0. MixMo: We set initial probability to
0.5, r = 3.0 and α = 2.0 for the Dirichlet distribution. The
input repetition probability was set to 0.0.

All tasks were classifications with a cross-entropy loss
and softmax activation on the output layer. We tested out-
of-distribution calibration performance on a set of 5 differ-
ent augmentations with 5 varying levels of severity: random
horizontal or vertical translation [0.1, 0.2, 0.3, 0.4, 0.5], ro-
tation [0, 45, 90, 135, 180], brightness [0.9, 0.7, 0.5, 0.3,
0.1], contrast [0.9, 0.7, 0.5, 0.3, 0.1] and amble [0.9, 0.8,
0.7, 0.6, 0.5]. To summarize the performance we compute
the mean and the standard deviation across all augmenta-
tions and levels giving two numbers for each method. To
benchmark the algorithmic performance, we looked at the
negative log-likelihood, expected calibration error [10] with
15 bins, Brier score and accuracy. From the hardware per-
spective, we looked at the number of FLOPs and parame-
ters.

B.1. Feature Reuse Between Members

We adopt the method of [26] to investigate feature reuse
between different members depending on M . Namely we
probe the weights in the first convolution and the output
classifier and we compute the L1 norm of the features that
are associated with a given member and normalize it by the
maximum value of the L1 norm for a given member. The
overlap between the F features of the M members is com-

puted as the average overlap = 1
M

∑M
m=1

F f
m,min

F f
m,max

, where

F f
min is the minimum L1 norm of the features of the f th

feature map and F f
max is the maximum L1 norm of the fea-

tures of the f th feature map across all M members.

C. Measuring the Effect of α,M , Depth, Width

C.1. Measuring the Effect of α,M

We observe the algorithmic performance of changing α
and M in detail in Fig. 5. Increasing α forces the network
to put more weight on all the exits. As illustrated in the Fig-
ure, the performance significantly improves by changing α
logarithmically for every M . In particular, all the algorith-
mic metrics improve as α increases, namely the negative
log-likelihood, expected calibration error, Brier score and
accuracy. In terms of the augmentations, the performance is
also improved through changing α. Note that, the strength



Method Accuracy [0-1] NLL [nats] ECE [0-1] Brier Score [0-1, ×10−3] FLOPs [M] Params [M]

Base 0.52 ± 0.01 3.94 ± 0.08 0.36 ± 0.01 7.93 ± 0.11 109.85 1.76
Ensemble 0.56 ± 0.00 2.87 ± 0.03 0.20 ± 0.00 6.33 ± 0.04 219.7 3.51

MC Dropout 0.54 ± 0.00 1.92 ± 0.01 0.15 ± 0.00 6.02 ± 0.02 1104.6 1.76
DUN 0.55 ± 0.00 3.74 ± 0.04 0.35 ± 0.00 7.55 ± 0.02 172.17 1.99
EE 0.56 ± 0.01 1.74 ± 0.01 0.15 ± 0.00 5.77 ± 0.06 110.46 2.24

MIMO 0.47 ± 0.00 3.53 ± 0.16 0.22 ± 0.00 7.51 ± 0.08 110.35 1.81
DataMux 0.44 ± 0.01 3.64 ± 0.10 0.23 ± 0.00 7.77 ± 0.04 110.53 1.81
MixMo 0.53 ± 0.01 2.06 ± 0.10 0.17 ± 0.00 6.25 ± 0.15 110.35 1.81

MIMMO γ 0.62 ± 0.01 1.50 ± 0.03 0.16 ± 0.00 5.20 ± 0.08 172.82 2.04
MIMMO 0.61 ± 0.01 1.50 ± 0.01 0.14 ± 0.00 5.22 ± 0.05 172.82 2.04

Base 0.24 ± 0.16 8.50 ± 3.34 0.58 ± 0.14 12.70 ± 2.92 109.85 1.76
Ensemble 0.27 ± 0.18 7.05 ± 3.28 0.37 ± 0.14 10.53 ± 2.76 219.7 3.51

MC Dropout 0.23 ± 0.17 4.75 ± 2.06 0.24 ± 0.09 9.47 ± 1.96 1104.6 1.76
DUN 0.28 ± 0.17 7.85 ± 3.20 0.55 ± 0.14 12.10 ± 2.95 172.17 1.99
EE 0.29 ± 0.17 4.60 ± 2.60 0.24 ± 0.10 9.07 ± 2.19 110.46 2.24

MIMO 0.21 ± 0.15 7.85 ± 3.20 0.39 ± 0.13 11.26 ± 2.38 110.35 1.81
DataMux 0.20 ± 0.14 7.67 ± 3.00 0.38 ± 0.11 11.20 ± 2.10 110.53 1.81
MixMo 0.27 ± 0.17 4.67 ± 2.24 0.28 ± 0.11 9.51 ± 2.26 110.35 1.81

MIMMO γ 0.32 ± 0.19 3.57 ± 1.75 0.18 ± 0.05 8.28 ± 1.94 172.82 2.04
MIMMO 0.31 ± 0.19 3.64 ± 1.81 0.21 ± 0.07 8.48 ± 2.11 172.82 2.04

Table 1. Results on CIFAR-100 for M = 2. The results separated by the horizontal bar signify the results with respect to the augmented test
dataset with a range of 5 data augmentations across 5 different levels of intensity. The base is a pointwise single network, Ensemble [16],
MC Dropout [8], DUN [1], EE [22], MIMO [11], DataMux [20], MIMMO γ does not optimize θ and MIMMO.

of the regularisation is also affected by the overall size of
the training set N , meaning that for a smaller training set,
the regularisation will be stronger by default without the
need to increase α. It is important to add that as seen in
the Figures, different α values are suited for different M .
In case of α = 1000000, which was the maximum value in
our experiments, the depth probabilities stayed around 0.25
and this was not optimal for any M . In summary, α is a hy-
perparameter that is worth tuning for the best performance.

C.2. Measuring the Effect of Depth, Width and M

Next, we examine the impact on the performance when
we alter the depth and width of the network, while keep-
ing α = 1. We changed the depth by having (1, 2, 3, 1)
or (2, 4, 6, 2) layers per residual block and we changed
the width by having (16, 32, 64, 128) channels or (32, 64,
128, 256) channels per residual block and report the results
in Fig. 6. We observe that the performance changes rather
significantly as the network gets deeper and wider, espe-
cially in the case of M = 2, 8. The results indicate that
the width multiplier has a rather same effect as the number
of layers. If the number of layers is increased and width is
doubled we observe the best algorithmic performance. As
seen from the augmentation results, the changes in the per-
formance when changing the depth and width are significant
especially if the network is both widened and deepened.

D. Detailed Results

In this Section, we present the numerical results of the
experiments shown in Fig. 4 for M = 2 in Tab. 1, for M =
4 in Tab. 2 and for M = 8 in Tab. 3. The results separated
by the horizontal bar in the Tables signify the results with
respect to the augmented test dataset. The results in bold
represent the best results for each metric.

MIMMO, optimized or unoptimized, is the best perform-
ing method in terms of algorithmic metrics with a negli-
gible hardware cost in comparison to the ensemble. This
is observed not only on the test dataset but also the aug-
mented test dataset across all M . Only when M = 8 and
the ensemble is used, the ensemble outperforms MIMMO
in terms of the algorithmic metrics, but MIMMO is able to
remain relatively close, especially in terms of calibration or
even better than the ensemble when considering negative
log-likelihood.

Nevertheless, as it can be seen when comparing
MIMMO and MIMMO γ, changing the α is not enough
in terms of hyperparameter optimization to achieve the best
results. We hypothesize that this effect can be for two rea-
sons: (i) overfitting to the training set and (ii) the priors for
the depth probabilities should be specified per-member for
different M .

First, we have observed that even with high α values,



Method Accuracy [0-1] NLL [nats] ECE [0-1] Brier Score [0-1, ×10−3] FLOPs [M] Params [M]

Base 0.52 ± 0.01 3.94 ± 0.08 0.36 ± 0.01 7.93 ± 0.11 109.85 1.76
Ensemble 0.60 ± 0.00 2.22 ± 0.02 0.15 ± 0.00 5.53 ± 0.03 439.4 7.02

MC Dropout 0.54 ± 0.00 1.92 ± 0.01 0.15 ± 0.00 6.02 ± 0.02 1104.6 1.76
DUN 0.55 ± 0.00 3.74 ± 0.04 0.35 ± 0.00 7.55 ± 0.02 172.17 1.99
EE 0.56 ± 0.01 1.74 ± 0.01 0.15 ± 0.00 5.77 ± 0.06 110.46 2.24

MIMO 0.48 ± 0.02 2.90 ± 0.15 0.27 ± 0.00 7.49 ± 0.23 111.33 1.91
DataMux 0.47 ± 0.00 3.06 ± 0.07 0.28 ± 0.01 7.72 ± 0.07 111.70 1.91
MixMo 0.45 ± 0.00 2.25 ± 0.10 0.17 ± 0.02 7.16 ± 0.19 111.33 1.91

MIMMO γ 0.60 ± 0.00 1.54 ± 0.02 0.16 ± 0.00 6.02 ± 0.02 174.11 2.15
MIMMO 0.60 ± 0.01 1.48 ± 0.05 0.14 ± 0.00 5.24 ± 0.12 174.11 2.15

Base 0.24 ± 0.16 8.50 ± 3.34 0.58 ± 0.14 12.70 ± 2.92 109.85 1.76
Ensemble 0.29 ± 0.19 6.03 ± 3.09 0.28 ± 0.13 9.47 ± 2.67 439.4 7.02

MC Dropout 0.23 ± 0.17 4.75 ± 2.06 0.24 ± 0.09 9.47 ± 1.96 1104.6 1.76
DUN 0.28 ± 0.17 7.85 ± 3.20 0.55 ± 0.14 12.10 ± 2.95 172.17 1.99
EE 0.29 ± 0.17 4.60 ± 2.60 0.24 ± 0.10 9.07 ± 2.19 110.46 2.24

MIMO 0.23 ± 0.15 6.27 ± 2.62 0.42 ± 0.11 11.10 ± 2.27 111.33 1.91
DataMux 0.22 ± 0.14 6.44 ± 2.61 0.44 ± 0.12 11.38 ± 2.34 111.70 1.91
MixMo 0.22 ± 0.14 3.74 ± 1.11 0.17 ± 0.05 9.11 ± 1.22 111.33 1.91

MIMMO γ 0.31 ± 0.19 3.45 ± 1.60 0.18 ± 0.05 8.31 ± 1.87 174.11 2.15
MIMMO 0.30 ± 0.18 3.70 ± 1.80 0.21 ± 0.07 8.60 ± 2.10 174.11 2.15

Table 2. Results on CIFAR-100 for M = 4. The results separated by the horizontal bar signify the results with respect to the augmented test
dataset with a range of 5 data augmentations across 5 different levels of intensity. The base is a pointwise single network, Ensemble [16],
MC Dropout [8], DUN [1], EE [22], MIMO [11], DataMux [20], MIMMO γ does not optimize θ and MIMMO.

the depth probabilities appear to overfit to the training set
and the performance on the test set is not optimal. As M
increases, the overfitting seems less pronounced and opti-
mizing the θ parameters leads to better performance on the
test set and augmentations across all metrics.

Second, as observed in Fig. 2, different members could
choose completely different depths across different levels
and this effect was more pronounced for larger M . For
M = 2 we observed that the learnt depth distributions were
very similar for both members. This leads us to believe
that the priors could be set in such a way that each mem-
ber should choose a different depth, but focus on the differ-
ent levels of the network, for example, member 1 will have
the highest weight at depth 3 and member 2 will have the
highest weight at depth 4.

In summary for a practical consideration, due to in-
creasing M the members in the network have smaller per-
member capacity and it is more difficult to overfit to the
training set and also important to tune the depth probabili-
ties per-member. However, if M is smaller, the practitioner
could regularize the output layer via the early exits with-
out the need to optimize the θ parameters to achieve good
performance. In addition to different tasks and NN archi-
tectures we aim to investigate the depth learning process
depending on M and the priors in future work.



Method Accuracy [0-1] NLL [nats] ECE [0-1] Brier Score [0-1, ×10−3] FLOPs [M] Params [M]

Base 0.52 ± 0.01 3.94 ± 0.08 0.36 ± 0.01 7.93 ± 0.11 109.85 1.76
Ensemble 0.62 ± 0.00 1.82 ± 0.02 0.14 ± 0.00 5.06 ± 0.02 878.8 14.05

MC Dropout 0.54 ± 0.00 1.92 ± 0.01 0.15 ± 0.00 6.02 ± 0.02 1104.6 1.76
DUN 0.55 ± 0.00 3.74 ± 0.04 0.35 ± 0.00 7.55 ± 0.02 172.17 1.99
EE 0.56 ± 0.01 1.74 ± 0.01 0.15 ± 0.00 5.77 ± 0.06 110.46 2.24

MIMO 0.47 ± 0.02 3.38 ± 0.16 0.33 ± 0.01 8.03 ± 0.26 113.31 2.12
DataMux 0.42 ± 0.00 4.12 ± 0.07 0.38 ± 0.00 8.98 ± 0.06 114.05 2.12
MixMo 0.29 ± 0.11 3.21 ± 0.41 0.19 ± 0.07 8.88 ± 0.47 113.31 2.12

MIMMO γ 0.60 ± 0.00 1.56 ± 0.01 0.15 ± 0.00 5.39 ± 0.03 176.70 2.35
MIMMO 0.60 ± 0.00 1.53 ± 0.01 0.15 ± 0.00 5.33 ± 0.01 176.70 2.35

Base 0.24 ± 0.16 8.50 ± 3.34 0.58 ± 0.14 12.70 ± 2.92 109.85 1.76
Ensemble 0.31 ± 0.20 5.24 ± 2.89 0.24 ± 0.13 8.90 ± 2.67 878.8 14.05

MC Dropout 0.23 ± 0.17 4.75 ± 2.06 0.24 ± 0.09 9.47 ± 1.96 1104.6 1.76
DUN 0.28 ± 0.17 7.85 ± 3.20 0.55 ± 0.14 12.10 ± 2.95 172.17 1.99
EE 0.29 ± 0.17 4.60 ± 2.60 0.24 ± 0.10 9.07 ± 2.19 110.46 2.24

MIMO 0.22 ± 0.15 7.08 ± 2.76 0.49 ± 0.11 11.87 ± 2.35 113.31 2.12
DataMux 0.19 ± 0.13 7.95 ± 2.84 0.54 ± 0.11 12.57 ± 2.19 114.05 2.12
MixMo 0.14 ± 0.09 3.96 ± 0.47 0.10 ± 0.05 9.52 ± 0.34 113.31 2.12

MIMMO γ 0.30 ± 0.19 3.62 ± 1.74 0.19 ± 0.06 8.47 ± 1.95 176.70 2.35
MIMMO 0.31 ± 0.18 3.56 ± 1.69 0.20 ± 0.07 8.49 ± 2.02 176.70 2.35

Table 3. Results on CIFAR-100 for M = 8. The results separated by the horizontal bar signify the results with respect to the augmented test
dataset with a range of 5 data augmentations across 5 different levels of intensity. The base is a pointwise single network, Ensemble [16],
MC Dropout [8], DUN [1], EE [22], MIMO [11], DataMux [20], MIMMO γ does not optimize θ and MIMMO.


