
Content-Adaptive Downsampling in Convolutional Neural Networks
– Supplementary Material –

Robin Hesse1 Simone Schaub-Meyer1,2 Stefan Roth1,2

1Department of Computer Science, TU Darmstadt 2hessian.AI
{robin.hesse, simone.schaub, stefan.roth}@visinf.tu-darmstadt.de

A. Overview

This appendix provides additional explanations and ex-
perimental details for reproducibility purposes, which could
not be included in the main text due to space limitations.

B. Addendum to Extension to CNNs

In Sec. 3 of the main paper, we briefly discussed how
our method can be applied multiple times in succession to
extend it to CNNs. For a more detailed description and il-
lustration of this process, please refer to Fig. 9.

C. Experimental Details

In the following, we provide additional details to en-
sure reproducibility. All experiments have been conducted
using Python, PyTorch 1.11.0 [48], and a single NVIDIA
RTX A6000 (48GB) GPU or a single NVIDIA A100-SXM4
(40GB) GPU.

Implementation of different output strides. In all exper-
iments, we examine backbone models with varying output
strides. Fig. 8 illustrates how these different output strides
(OS) are realized. Fig. 8(a) shows a standard backbone us-
ing regular downsampling [17, 37] with the standard down-
sampling factor d=2. Part (b) shows how the backbone can
be modified to retain a lower output stride, i.e., higher res-
olution, by using dilated convolution [46]. Alternatively, it
can be modified to contain multiple output strides using our
novel adaptive downsampling scheme as shown in (c).

C.1. Oracle experiment: Feature resolution in se-
mantic segmentation

The experiments described in Sec. 4.1 of the main pa-
per have been conducted on the widely used Cityscapes
dataset [6] (freely available to academic and non-academic
entities for non-commercial purposes), containing 5 000 an-
notated street scene images. Our code is built on top of

0 0 1
1 0 1
1 1 0

OS = 8

Feature map

…
OS = 16 OS = 16

OS = 32 OS = 32
DS (2) DS (2)

(a)

(b)

(c)

OS = 16

Adaptive
DS (2)

DS
mask

OS = 16 OS =
16→32

OS = 16→32

OS = 16
Dilated

convolution

Regular
downsampling

Adaptive
downsampling

Figure 8. Illustration of different methods to handle the output
strides (OS) in CNNs. (a) A standard convolutional network pro-
gressively downsamples the feature map. The illustrated convolu-
tions, followed by uniform downsampling (DS), correspond con-
ceptionally to strided convolutions with a stride of 2. (b) The last
downsampling operation is substituted with a dilated convolution
to retain the same receptive field while increasing the feature map
resolution [46]. (c) The last downsampling operation is substi-
tuted with our novel adaptive downsampling and the dilation is
increased to retain the same receptive field. Our approach retains
high feature map resolution only where needed.

the publicly available DeepLabV3Plus-Pytorch GitHub
repository (MIT License).1

We examine different ResNet [17] backbones (50, 101,
and 152 layers), three established segmentation models
(FCN [26], DeepLabv3 [3], and DeepLabv3+ [4]), and
two extensions, i.e. Softpool [38] and deformable convo-
lution [7]. Following common practice, we initialize the
backbones with weights obtained from pre-training on the
ImageNet dataset [49]; they are publicly available in Py-
Torch [48]. We then fine-tune models with regular output
stride on the official Cityscapes [6] training split for 30k
iterations using a learning rate of 0.01 for the backbone,
a learning rate of 0.1 for the classifier, a batch size of 8,

1https://github.com/VainF/DeepLabV3Plus-Pytorch

1

https://github.com/VainF/DeepLabV3Plus-Pytorch

1 2 3 3 1 1 3 3

5 6 3 3 1 1 3 3

9 9 11 11 9 9 11 11

9 9 11 11 9 9 11 11

1 1 3 3 1 1 3 3

1 1 3 3 1 1 3 3

9 9 11 11 9 9 11 11

9 9 11 11 9 9 11 11

1 2 3 4 1 2 3 4

5 6 7 8 5 6 7 8

9 10 11 12 9 10 11 12

13 14 15 16 13 14 15 16

1 2 3 4 1 2 3 4

5 6 7 8 5 6 7 8

9 10 11 12 9 10 11 12

13 14 15 16 13 14 15 16

Feature map
Adaptive

DS
mask 1

Multi-resolution feature map 1

Adaptive
DS 1

X X 1 3

X X 9 11

1 3 1 3

9 11 9 11

X 1

1 0

Adaptive
DS

mask 2 X X 1 1

X X 1 1

1 1 1 3

1 1 9 11

1 2 3 3 1 1 1 1

5 6 3 3 1 1 1 1

9 9 11 11 1 1 1 1

9 9 11 11 1 1 1 1

1 1 1 1 1 1 3 3

1 1 1 1 1 1 3 3

1 1 1 1 9 9 11 11

1 1 1 1 9 9 11 11

0 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

Dense rep. of
low-res elements

Adaptive
DS 2

Multi-resolution feature map 2

Figure 9. Illustration of our adaptive downsampling applied two times in succession with a downsampling factor of d = 2. Starting on the
left, adaptive downsampling is applied a first time to a regular feature map to generate multi-resolution feature map 1. To perform adaptive
downsampling a second (k = 2) time, we only consider the dk × dk patches of multi-resolution feature map 1 that have previously been
completely downsampled, i.e., that are of lower effective resolution (green cells). The active elements of these patches are projected back
to their regular, dense representation (dense rep. of low-res elements) to apply adaptive downsampling a second time (‘X’ denotes areas
that cannot be represented at the current resolution as they have not been downsampled). The elements of the resulting feature map are
then again projected onto their corresponding location to generate multi-resolution feature map 2.

and an SGD optimizer with a weight decay of 1e−4 and a
momentum of 0.9. For the final models with regular and
adaptive downsampling, we fine-tune above models for an-
other 10k iterations with learning rates multiplied by 0.1.
The downsampling mask dilation sizes K for ResNet-{50,
101, 152} with DeepLabv3 are 33, 33, and 55, respectively.
For ResNet-101 with FCN, respectively DeepLabv3+, K
is chosen as 33. Finally, for ResNet-101 with DeepLabv3
and the extensions deformable convolution and SoftPool,
we use K = 55. SoftPool is used as in the original pa-
per [38]. Deformable convolution is only used in the last
block of the ResNet backbone and offsets are estimated us-
ing a single convolutional layer with a kernel size of 3 × 3
and without a bias.

To measure the theoretical number of multiply-
adds, we use the publicly available code in the
flops-counter.pytorch GitHub repository (MIT Li-
cense).2 To estimate the runtime in seconds, we use 10
warm-up iterations, followed by another 10 iterations where
we measure the average inference time of the backbone.
For a fair comparison between equally optimized imple-
mentations, we use the same implementation for our pro-
posed method and the baselines in the main paper. However,
in practice, over the years there have been major efforts
to highly optimize standard convolution in PyTorch [48].
To put our results into context with these optimizations, in
Tab. 2 we report inference times for our method, and base-
line methods with the default PyTorch implementations. As
even the PyTorch version has major impact on the inference
time of the baseline models, we report results for two ver-
sions, i.e., 1.7.1 and 1.11.0.

Given a reasonable downsampling mask, our proposed
method (OS=8→32) and implementation can outperform
the default PyTorch baseline with an output stride of 8 (sim-
ilar mIoU and 0.08s vs. 0.14s). For PyTorch 1.7.1, our im-

2https://github.com/sovrasov/flops-counter.pytorch

Table 2. Inference times for different implementations. We con-
sider the ResNet-101+DeepLabv3 [3, 17] setup from the oracle
experiment. We report mIoU, theoretical number of multiply-adds
(#MA), and min./max. inference times for our and the default Py-
Torch [48] implementation with two different PyTorch versions.

OS Impl. PyTorch
version

#MA Time(s) mIoU

16 Ours 1.7.1 4.2e11 0.08 0.7591
16 Ours 1.11.0 4.2e11 0.07 0.7591
16 Default 1.7.1 4.2e11 0.08 0.7591
16 Default 1.11.0 4.2e11 0.05 0.7591

8 Ours 1.7.1 1.4e12 0.26 0.7775
8 Ours 1.11.0 1.4e12 0.22 0.7775
8 Default 1.7.1 1.4e12 0.24 0.7775
8 Default 1.11.0 1.4e12 0.14 0.7775

8→32 Ours 1.7.1 6.7e11 0.09/0.18 0.7748
8→32 Ours 1.11.0 6.7e11 0.08/0.15 0.7748

plementation is even similarly efficient as the default imple-
mentation for the regular output strides (0.08s for OS=16
and 0.26 vs. 0.24 for OS=8). With version 1.11.0, PyTorch
became more optimized, and thus, the gap to our imple-
mentation increases for the regular output strides (0.07s vs.
0.05s for OS=16 and 0.22s vs. 0.14s for OS=8). While we
are not aware of the nature of the internal optimizations of
PyTorch, it is reasonable to assume that similar optimiza-
tions could be applied to our implementation.

C.2. Case study 1: Semantic segmentation

The experimental setup in Sec. 4.2 of the main paper fol-
lows the same setup as in Appendix C.1. All models are
trained from scratch for 30k iterations. We investigate a
ResNet-101 [17] backbone with the DeepLabv3 [3] seg-
mentation model for OS=16 and OS=8. The runtime and
theoretical number of multiply-adds are also measured as in
Appendix C.1.

https://github.com/sovrasov/flops-counter.pytorch

The downsampling masks for the edge detection setup
are estimated by applying a Sobel filter to the original im-
age, thresholding the result at 0.95, 0.35, respectively 0.15
to control the amount of invested resources, and dilating the
result with a square dilation kernel of size 11× 11.

To estimate the learned downsampling mask, we use a
shallow CNN of 4 layers with a kernel size of 3 × 3, with
128, 64, 64, and 2 channels, with ReLU activation func-
tions, and max pool with a stride of 2 after the first two
layers. The output is fed into a Gumbel-Softmax [20] to
obtain the final discretized downsampling mask. We train
the mask estimator with a learning rate of 0.001 end-to-end
together with the segmentation model. The two setups in
Fig. 4 of the main paper are obtained by setting γ, i.e., the
fraction of active elements in the downsampling mask, to
0.5 and 0.7.

C.3. Case study 2: Keypoint description

For the keypoint description experiment in Sec. 4.3 of
the main paper, we use the D2-Net descriptor [9]. Our
code is based on the official, publicly available D2-Net [9]
implementation (Clear BSD License).3 We initialize our
models with pre-trained weights that are also available in
the official D2-Net [9] repository and do not train or fine-
tune for any of the examined setups. We estimate the
downsampling masks by dilating keypoints obtained from
SIFT with filters of varying sizes for each downsampling
level. To sample points with different computational com-
plexity in Fig. 6 of the main paper, we use dilation sizes
of – from least to most multiply-adds – (0,0,0), (0,0,5),
(0,0,11), (0,0,21), (0,0,31), (0,19,35), (0,27,37), (19,41,41),
(25,51,51), (∞,∞,∞). Here, the entries in each triplet cor-
respond to the respective scale they operate on, i.e., the first
entry is the dilation size for the mask that retains elements
at a resolution of OS=1, the second for retaining elements
at a resolution of OS=2, and the third for retaining elements
at a resolution of OS=4. An entry of 0 means that the entire
feature map is downsampled while an entry of ∞ indicates
that the resolution of the entire feature map is retained. As
such, (0,0,0) corresponds to the regular output stride of 8,
while (∞,∞,∞) corresponds to the regular output stride of
1. The used HPatches dataset [1] (MIT License), to the best
of our knowledge, contains no personally identifiable infor-
mation except for one sequence of an image of a prominent
person that is already publicly available and not offensive.

3https://github.com/mihaidusmanu/d2-net

References
[48] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban
Desmaison, Luca Antiga, and Adam Lerer. Automatic differ-
entiation in PyTorch. In NIPS Autodiff Workshop, 2017. 1,
2

[49] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li
Fei-Fei. ImageNet large scale visual recognition challenge.
Int. J. Comput. Vision, 115(13):211–252, 2015. 1

https://github.com/mihaidusmanu/d2-net

	. Overview
	. Addendum to Extension to CNNs
	. Experimental Details
	. Oracle experiment: Feature resolution in semantic segmentation
	. Case study 1: Semantic segmentation
	. Case study 2: Keypoint description

