A. Supplementary Methodology
A.1. Sparsity Regularizers

In a dataflow hardware architecture with an event-driven
manner, illustrated in Fig. 7, a convolution is only initi-
ated when there’s an arrival event, which makes it effi-
cient for exploiting activation sparsity. In the previous stud-
ies [13,17,24,30], various sparsity regularizers are proposed
to reduce the activity of the network. Thus, we reproduce
them in our experiments and evaluate their capacity of gen-
erating sparse activation maps compared to ours.

Activation

D

Q
Q

g

Q
.

W

2340

Inamm=
Voo o0 o 0

Event-Driven Convolution

Standard Convolution

Figure 7. Event-Driven Convolution

A.1.1 L regularization

The L, norm, also known as the Frobenius norm, is the
square root of the sum of the squares of all the neuron values
in the output activation maps. Although the gradients of this
norm are effective for high values, they can become smaller
as the values get closer to zero. Here’s the formula:

Ly(z) =Y, Va2)

A.1.2 L regularization

The L1 norm, also referred to as the Manhattan Distance,
is the sum of all neuron absolute values in the output acti-
vation maps. The gradients of this norm are uniform with
respect to x;, meaning that high and low values are penal-
ized equally. This property makes L; norm a strong method
to induce sparsity. Thus, we implement it in the first train-
ing phase of STAR for an optimal suppression result. It is
defined as:

La(x) = 22 [| (®)

A.1.3 Hoyer regularization

The square Hoyer regularizer is an approximation of the L
norm which has the advantage of being scale invariant as for

the Ly norm and being differentiable almost-everywhere. It
is defined as :

H(z) = (3, @i)* (2, 23) ©)

Al4 SCAD

The SCAD (smoothly clipped absolute deviation) penalty
attempts to alleviate the bias issue caused by L; and L,
penalties on large regression values, while also retaining a
continuous penalty that encourages sparsity. It is defined as:

Qovt|a; | —x;2 —t2

SCAD(z;) = { 2lzilore

if t<|z <at

t2(a+1)/2 otherwise

(10)

A.1.5 Partial-7 regularization

During the finetuning phase of STAR, the partial-L; tech-
nique is proposed as a better alternative to the L; regu-
larizer. Unlike L; and other regularizers, partial-L; only
penalizes activations that are close to zero, while allow-
ing large-magnitude activations to grow and learn effec-
tive patterns. It’s worth noting that the concept of partial-
regularization is not limited to the L; regularizer, and its
advantages can be applied to other types of regularizers as
well.

partial Li(z) = Z | M (z;,t) © ;| (11
where
o 1 =z € (0’t>
M(zi,t) = {0 otherwise (12)
where
t=2"ne{-4,-3,-2.} (13)

The regularization methods of partial-L;, Hoyer, and
SCAD all aim to prevent high-magnitude activations from
shrinking to preserve accuracy. When dealing with large
values of z; where |z;| > a certain threshold, partial-L; re-
moves the penalty, Hoyer further increases the activations to
higher values, and SCAD applies a constant penalty. While
these methods share some similarities, each has unique
properties that make them suitable for different scenarios.

A.1.6 Loss function

To impose the activation sparsification, we define our loss
function as:

L=J(w,z)+ Y MNR(x) (14)
l

where J is the task loss for standard training,)\; is
the coefficient of sparsity regularization, z; is the ac-
tivations of layer ! in the neural network, and R €
{L1, Lo, partial — L1, Hoyer, SCAD} indicates the im-
plemented regularizer.

A.2. Power-of-two Activation Thresholds

As the regularization coefficient A is increased, the activa-
tion regularizer compresses more and more activations so
that they are distributed around zero, as depicted in Fig. 8.
The compactness of the power-of-two threshold for small
values and looseness for large values enables it to perform
fine-grained thresholding in the near-zero region.

4

2l

Activation Magnitude

} Fine-grained

Figure 8. The number and magnitude of activations under different
levels of regularization penalty.

0 Number of non-zero activations

A.3. Learnable Activation Thresholds

Naturally-learned activation sparsity varies greatly across
network layers, revealing the sensitivity of layers in activa-
tion suppression [35]. Thus, performing a more complex
threshold setting, i.e., layer- and channel-wise threshold-
ing, should give better results in suppression. However,
as mentioned in Sec. 3.3, the procedure of fine-grained
threshold tuning is very costly. To reduce the computa-
tional cost, we propose to make the network learn its dis-
tinct thresholds ¢ through an approximate threshold Rel.U:
Y = Gout O (SO (aout—t)), where ¢ is a learnable threshold
and o (.) is the sigmoid function. This activation function
and its gradient are visualized in Fig. 9. It is differentiable
everywhere in training with a fixed hyperparameter 5. [

is experimentally determined as 100, acting as a proxy to a
hard threshold in the inference.

> Z=By+oalx—t){1-By)
>
1
1

y=x0(B(x-t)

t t

X X
Forward Gradient

Figure 9. Learnable threshold activation and its gradient

A.4. Collaborative Optimization

To deploy the DNNS on hardware, especially for the edge
platforms, weight pruning [47] and weight quantization [40]
are highly sought-after since the on-chip memory is ex-
tremely constrained on embedded Al accelerators. Ap-
plying other optimizations with our activation suppression
method (STAR) can achieve the accumulated optimization
effect on the final model. The issue that arises when at-
tempting to chain these techniques together is that applying
one typically diminishes the gains of the preceding tech-
nique. For instance, performing activation suppression or
quantization-aware training on a weight-sparsified model
can deteriorate the achieved sparsity in model parameters.
To solve this problem, we propose to apply several opti-
mization methods simultaneously during the training, so
those constraints would continuously affect the model in
weight and feature learning.

B. Additional Experimental Results
B.1. Training

Our optimization experiments were conducted on the pre-
trained models obtained through standard training. To im-
plement STAR, we divided the training process into two
phases: the first phase involved regularization-based train-
ing for 20 epochs with a significant learning rate for sup-
pression, while the second phase involved fine-tuning un-
der partial-regularization with thresholding until loss con-
vergence. The hyperparameter settings for each model are
presented in Tab. 8. Notably, the regularization coefficient
remained constant for both full-L, and partial-L; methods,
and we applied the thresholds to all activations except the
outputs (e.g, softmax and sigmoid). Additionally, we elim-
inate other regularization techniques such as dropout and
weight decay during the optimization training, as STAR has
the same regularization effect.

baseline 11-regularized

Il non-zeros
Il zeros

Il non-zeros
Il zeros

0 5
value

10 0 5
value

10

hoyer-regularized STAR (ours)
Il non-zeros I zeros
10° 10°
Il zeros Il non-zeros
103 5103
o
v
10!
0 5 10

value value

Figure 10. llustration of the output distribution at layer-ReLU 5 of ResNet/ImageNet with various regularizers. The Y axis is log-scale.

baseline 11-regularized

Il non-zeros
Il zeros

Il non-zeros
I zeros

value

value

hoyer-regularized STAR (ours)

Il non-zeros
I zeros

Il non-zeros
I zeros

value value

Figure 11. llustration of the output distribution at layer-ReLU 30 of ResNet/ImageNet with various regularizers. The Y axis is log-scale.

B.2. Impact on Activation Learning Behaviour

We conduct the suppression experiments with different ac-
tivation regularization strategies, including L,, Hoyer and
our partial-Ly. As shown in Fig. 10 and Fig. 11, we com-
pare the output activation distribution with those regular-
izers at the shallow activation layer (ReLU-5) and the deep
activation layer (ReLU-30). We have the following observa-
tions: (1) The L;-regularized model has more compression
on the activation values, and induces more zeros than the
baseline. (2) The Hoyer-regularized model largely spreads
the distribution of activation values while providing a sim-
ilar number of zeros as the L-regularized model. (3) Our
STAR-sparsified model features the distribution of non-zero
activations substantially similar to the baseline, which ex-
plains its superior accuracy recovery relative to other regu-
larized models. On the other hand, the sub-figures (STAR)
reveal that our partial-regularization maintains a large num-
ber of zero and near-zero events in the accuracy recovery
stage, which are suppressed in the later thresholding to in-
crease sparsity. This makes STAR significantly outperform
the others in activation suppression.

It is worth noting that [24] claims the diversity” of event
distribution assists the Hoyer-regularized model to outper-
form the L;-regularized model in accuracy recovery. How-
ever, Hoyer-regularizer forces the activation x to move to-
wards 0 if z < %—lgfl, otherwise x moves away from 0. The
effect of pushing away those large activations from their

original positions can potentially hinder the model accuracy
by distorting the natural distribution of activations.

B.3. Layer-wise Learnable vs Model-wise Hard
Thresholding

In Tab. 7, we demonstrate that layerwise learnable thresh-
olding achieves slightly less suppression at the same accu-
racy level as the hard thresholding method. Further analysis
of the layerwise activation density in Fig. 12 reveals that
while most of the layers with learned thresholds have fewer
activations than those with hard thresholds, the learned
thresholds in the first few layers are explicitly lower than in
the latter layers, resulting in a higher percentage of non-zero
activations. Surprisingly, the first threshold is learned to be
negative, enabling practically full activations to pass. How-
ever, this can lead to increased computation in the next-layer
convolution and higher memory consumption for thresholds
and activation maps. Therefore, for similar performance,
model-wise hard thresholding is more friendly for hardware
deployment.

Table 4. Results of collaborative optimization on ResNet50

ACTIVATION SIZE MAC
STAR MP QAT VAL Acc SUPPRESSION REDUCT REDUCT
76.64% 2.01x 1.00x 2.61x

76.12% 5.26% 1.00x 4.52%

v v 75.16% 5.09% 3.92x 9.37x
v v 75.22% 5.05% 15.31x 9.16 x

80% mm bascline | 01
> Il |earnable
260% = hard
S
C
©40%
®
> 0.0
S20%
Il thresholds
|
0% 25 50 0 25 50
layer layer

Figure 12. Layerwise comparisons of activation density and
threshold value between hard thresholding and learnable thresh-
olding.

B.4. Integration with Other Optimization Methods

GrAI-VIP is an event-driven processor designed for edge
Al applications. Unlike the common Jetson Nano edge-
GPU platform, which has a large DRAM memory, GrAl-
VIP is equipped with only 36 MB of on-chip memory to
ensure efficient data transfer. To fit ResNet50 and evalu-
ate its performance on GrAI-VIP, we conducted collabora-
tive optimization, as described in Appendix A.4. The re-
sults of ResNet50 on ImageNet at each optimization stage
are shown in Tab. 4. Firstly, applying STAR resulted in
5.26 % activation suppression. Next, conducting magnitude-
based pruning (MP) with STAR simultaneously removed
75% of the network parameters while maintaining activa-
tion sparsity. Finally, performing quantization-aware train-
ing (QAT) together with STAR and pruning led to a total
reduction of 15.31x in model size. Overall, the final op-
timized model achieved a 9.16x reduction in MACs and a
15.31 x reduction in size with a 1.42% accuracy loss com-
pared to the dense model. This makes ResNet50 able to fit
in on-chip memory for both weights and activations. In ad-
dition, Tab. 5 shows that applying 80% weight pruning on
ResNet50 results in a smaller variation in accuracy drop for
STAR (from -0.52% to -0.68%) compared to L; regularizer
(from -0.47% to -0.74%), indicating that STAR is more ro-
bust in collaborating with other optimizations compared to
L, regularizer.

Table 5. Effect of pruning on activation suppression (ResNet50-
ImageNet)

ACTIVATION WEIGHT

METHOD ACCURACY (%) SPARSITY SPARSITY
BASELINE 76.64 51.06 0.00

Ly 76.17 (-0.47) 68.00 0.00
STAR 76.12 (-0.52) 81.00 0.00
PRUNED MODEL 75.84 51.00 79.04

L, 75.10 (-0.74) 68.26 79.04
STAR 75.16 (-0.68) 80.17 79.04

Table 6. Resources and Features of GrAI-VIP

RESOURCES/FEATURES GRAI-VIP

PROCESS TSMC 12FFC

SILICON AREA 7.6 X 7.6 mm?

TRANSISTORS 45G
MAX # NEURON CORES 144
MAX # NEURON 18 MILLIONS
MAX # SYNAPSES 48 MILLIONS
ON-CHIP MEMORY 36 MB

INFORMATION CODING GRADED SPIKE EVENTS (UP TO 16-BIT PAYLOAD)

PROCESSING TYPE 16-BITS FLOATING POINTS
2/4/8/16-BITS FLOATING POINTS

650 M H=z

SYNAPSES TYPE

FREQUENCY

C. Details of Event-Driven Processor GrAl-
VIP

Here, we provide a brief overview of the event-driven pro-
cessor GrAI-VIP, which is used in the experiments to gen-
erate the hardware performance of our sparsified models.
GrAI-VIP is a commercially-available event-driven neural-
network accelerator, based on the successor of Neuron-
Flow [3, 29], from GrAl Matter Labs. As illustrated in
Fig. 13, it is a 12-nm taped-out SoC with a 12 x 12 grid
of SIMD-4 event-driven cores. Each core is equipped with
2Mbits on-chip memory for the storage of both weights
and neuron states in an energy-efficient and performant
manner. Besides, each event-driven core is equipped with
a set of event-queues and vector units to boost performance
and energy efficiency.

Additionally, Tab. 6 provides a comprehensive description
of GrAI-VIP features and its hardware development Kkits
(HDK) are shown in Fig. 14 and Fig. 15. The host
board in Fig. 14, equipped with Intel Atom Quad Core, can
support the operating system Linux and the deep learning
framework Tensorflow to run DNNs.

Neuron Core
+ NoC Router
SRAM SRAM
Bank|0 % Bankil
)
%
SRAM SRAM
\ Bank 2 . Banki3

: 1I2xi2:Néur;or; C‘oré Melsh:

EDEAIARN core, 15PUSB 3:

Figure 13. Block diagram of the event-driven neural-network ac-
celerator (GrAl VIP). The zoom-in shows the high-level structure
of a neuron core.

Table 7. Comparison between layer-wise learnable thresholds and model-wise hard thresholds with ResNet50 on ImageNet.

VAL Top-1 RELATIVE DROP(%) ACTIVATION #REDUCTION

METHOD ACCURACY(%) 100 x €=E DENSITY (%) Actp

0 B > o Acto
RES50-S [19] 76.64 0.00 48.94 1.00x
W/O L1, W/ HARD THRESHOLD 76.67 +0.04 29.75 1.65x
W/0 L1, W/ TRAINABLE THRESHOLD 76.64 -0.00 30.63 1.60x
W/ PARTIAL-L1, W/ HARD THRESHOLD (STAR) 76.12 -0.68 19.01 2.57x
W/ PARTIAL-L1, W/ TRAINABLE THRESHOLD 76.06 -0.76 22.26 2.20x

Table 8. L, coefficient and global threshold settings for various networks during STAR activation suppression

NETWORK DATASET METHOD L, COEFFICIENT ~ THRESHOLD ACCURACY (%) ACTIVATION SPARSITY (%)
BASELINE 78.27 59.67
RESNET-18 CIFAR-100 STAR 3B-7 9—2 78.51 83.40
BASELINE 76.64 51.05
RESNET-50 IMAGENET STAR 357 272 76.12 80.99
o o BASELINE 72.03 39.38
MOBILENETV2 IMAGENET STAR 5B-7 93 71.17 70.88
BASELINE 75.51 52.00
MOBILENETV1-SSD KITTI STAR 1E-6 o=7 75.27 81.45
BASELINE 84.21 50.12
YOLOX-RELU VOC2007 STAR 487 275 83.85 68.30
BASELINE 65.60 38.82
MOBILENETV2-DEEPLABV3 ~ VOC2007 STAR 2E-7 9-1 65.08 63.33
o - ~ BASELINE 75.61 52.27
RESNETS50-DEEPLABV 3+ CITYSCAPE STAR 1E-8 92 75.97 76.31

|

- =
L =
= =
= =

anam
IRER]

.

"

Figure 14. Linux PC with GrAI VIP M.2 slot Figure 15. GVIP 80mm M.2 board

