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Abstract

Low-Power Edge-AI capabilities are essential for on-
device extended reality (XR) applications to support the
vision of Metaverse. A critical requirement for emerging
AI applications is personalization and adaptability without
requiring retraining. Few-shot learning using embedding-
based computations present an attractive method for the
same. However, quantization-based optimizations to map
such computations are yet to be explored. In this work,
we present a fully binarized distance computing (BinDC)
framework to perform distance computations for few-shot
learning using only accumulation and logic operations
(XOR/XNOR). The proposed method leads to marginal loss
in accuracy of ≈ 4% (for 4-bits). This leads to savings in
memory (≈ 8×), energy (≈ 2.5-3×), power (≈ 2×) and
latency (≈ 1.1-1.5×) compared to a floating-point cosine
distance computation when using CPU-based computations
performed on an embedded platform. We further demon-
strate realization utilizing RRAM (resistive random access
memory) based IMC (in-memory computing) to further im-
prove EDP (energy delay product) (≈ 1000×) in compari-
son to the embedded CPU-based realization.

1. Introduction

Extended reality (XR), i.e., virtual, augmented, and
mixed reality have emerged as key enablers for future-ready
edge and mobile systems with the advent of Metaverse. XR-
devices can be used to enhance user-experience and enable
novel capabilities for a wide variety of applications such as
education, entertainment, defense, robotics, etc. With the
recent innovations in the field of AI (artificial intelligence),
XR applications have become more computationally inten-
sive [6]. Current generation of portable XR devices rely
on high-performance compute servers to perform bulk of
the computation due to limitations of power, compute and
memory capabilities of the edge-device. This approach suf-

fers from some major disadvantages such as (i) patchy and
non-seamless user experiences, (ii) data transfer/network
overheads, and (iii) user privacy and security concerns.

Most commonly used AI applications center around the
use of deep neural networks (DNN). Current large state-
of-the-art (SOTA) DNNs don’t scale to edge-computing
use-cases due to power-hungry floating point multiply-
accumulate (MAC) operations as well as memory bottle-
neck due to network size (> MB) [5]. Furthermore, con-
ventional DNNs demonstrate limited tolerance to variations
in inputs typically observed in case of edge-AI applica-
tions. Such networks are trained once (requiring long train-
ing times and high-power computational resources) and de-
ployed with the models updated rarely. Any update often
requires re-training from scratch or fine-tuning the DNN
over the entire training dataset, including the data the net-
work was previously trained on [7]. To address this, re-
cent focus in the AI community has shifted towards adapt-
able networks to be able to perform few-shot learning (FSL)
i.e. learning with limited samples. Two key approaches are
adopted for such networks: (a) Metric-based learning and
(b) Meta Learning. Metric-based learning typically uses a
frozen network and stores embeddings generated from fea-
ture extractor (FE) for performing classification/regression
at the last layer. In case of meta-learning, fine-tuning is per-
formed at the last layers requiring gradient computations
with floating-point precision. For this study, we focus on
utilizing metric-based FSL approach. While most metric-
based FSL approaches utilize cosine distance computation
in order to assess similarity between query vectors and
the support data this again leads to requirement for high-
precision computations [4, 15]. Utilizing pattern matching
with low-precision computations such as Hamming Dis-
tance (HD), Euclidean Distance, etc. can lead to signifi-
cant savings in energy at minor trade-offs in learning per-
formance. Similar studies have been attempted in the past
with focus on in-memory computing (IMC) [10, 12, 14, 18]
however the datasets utilized by such studies were compar-
atively smaller with focus on implementing complete net-
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Figure 1. Example images from datasets used in the study: (a)
miniImageNet [17], (b) ORBIT [4].

works at fixed precision thus limiting the scope for adapt-
ability.

In this study, we perform detailed analysis both from
algorithmic and implementation perspectives for our pro-
posed binarized distance computing (BinDC) based FSL
framework. To the best of our knowledge, this is the first
work that simultaneously tries to address algorithmic as-
pects, implementation on embedded platforms as well as
projections for IMC-based realization. Our key contribu-
tions and the novel aspects are:

1. Novel algorithm for performing BinDC utilizing
floating-precision data vectors (converted to binarized
representations) to perform matching for FSL applica-
tions.

2. Benchmarking of learning performance of the pro-
posed method on miniImageNet [17] and ORBIT [13]
datasets utilizing embeddings derived from prior
work [4, 15].

3. Benchmarking of CPU-based implementation for the
proposed method against cosine-based distance com-
putations utilizing floating-point precision on an em-
bedded platform to demonstrate savings in energy, la-
tency and power.

4. Estimating performance gain in terms of latency and
energy of proposed method when mapped to emerg-
ing NVM-based IMC platform as well as validation of
basic operation in context of RRAM (resistive random
access memory)-based IMC platform.

Table 1. Description of datasets used in the study.

Parameters Dataset
miniImageNet ORBIT

Categories 64 (train) / 20 (test) 486
Training 38400 2996 (videos)
Test 12000 826 (videos)

#Ways 5 Random#Shots

Figure 2. (a) Prototype learning representation in 2-D space. (b)
Feature extraction pipeline for image classification task. (c) Fea-
ture extraction and inference pipeline used for object classification
with videos.

2. Prior Art
2.1. Datasets for FSL

2.1.1 Image Classification

Image classification is the baseline task associated with
computer vision applications. In context edge-AI with fo-
cus on FSL, researchers have work with a variety of datasets
such as MNIST [11], OmniGlot [12], CIFAR100 [9] and
miniImageNet [17]. For the current study we focus on us-
ing the miniImageNet dataset. It contains 100 classes with
600 images in each class, which are built upon the Ima-
geNet dataset [2]. The 100 classes are divided into 64, 16,
and 20 for meta-training, meta-validation, and meta-testing,
respectively. Dataset samples from the same are shown
in Fig. 1(a). Prototypical network architectures shown in
Fig. 2(a,b) are typically utilized for this task and hence
selected as the baseline for the study. To assess embed-
dings during more advanced techniques, we also explore the
application of FEAT (few-shot embedding adaptation with
Transformer) [19] for performing image classification.

2.1.2 Object Recognition from videos

As a more challenging task to perform real-world FSL, the
ORBIT dataset was recently proposed [13]. It contains
3,822 videos of 486 objects collected by 67 users. Each user
is asked to collect videos with the target object in isolation
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which is referred as clean videos. Some videos also have
the target object mixed with multiple other objects. These
videos are referred as clutter videos. The goal of this to train
a teachable object recognizer such that the model is person-
alized for each user using their clean videos. The person-
alized model is then evaluated on the clutter videos [13].
In the concept of meta-learning scenario, the clean videos
are analogy as support set while the clutter videos are query
set. To attempt this task we utilize the network architec-
ture proposed by Li et al. [4], utilizing EfficientNet-BO [16]
and FEAT [19] based computation pipeline as shown in
Fig. 2(c).

2.2. Metric-based FSL

Prior work in the area of edge-computing for FSL has
been heavily focussed on utilizing metric-based learning
approaches. Metric-based methods rely on learning sim-
ilarity between samples and perform classification by uti-
lizing distance computations requiring low-computational
overheads thus improving efficiency for FSL. Metric-based
FSL has been realized using a variety of distance met-
rics such as L1-distance [11], cosine distance [17], Eu-
clidean distance [15]. For more complex tasks innovative
approaches utilizing transformer-based feature refinement
combined with cosine distance computations were proposed
[19]. Recent studies have successfully demonstrated uti-
lization of IMC-based computations at low precisions (typ-
ically binary) [8, 10, 12, 14, 18]. However, most of these
implementations focus on fixed-precision computations and
limited-size datasets with low scope for generalization to
wider datasets.

3. Proposed BinDC for FSL
Here, we propose a fully-binarized computational ap-

proach that not only reduces the storage requirement but
also simplifies computational requirements by computing
HD as the metric for similarity. Flow for the proposed
method is summarized in Algorithm 1. The proposed tech-
nique performs normalization of both support and query
data using min. and max. values from the support data.
For this two methods can be adopted: (a) Norm. (normal-
ization) method 1 where each feature channel uses the same
parameters, (b) Norm. method 2 where we utilize feature
channel-specific parameters for normalization. Post nor-
malization vectors qn and sn are derived. Based on pre-
cision settings, thermometric encoding [1] is performed by
first converting the normalized vectors to integer precision
and then extracting binarized representations (with number
of bits equal to original integer precision used during quan-
tization). Although a single data point is still represented by
multiple bits, it is important to note here that all the bits are
independent functionally and hence can be used for single-
bit (binary) computations. Feature matching is performed

Algorithm 1 Proposed BinDC method for FSL.
Require: Query vector QI, Support vector SI, Precision n,

Feature Extractor f
Ensure: Match Index m

Pre-processing:
qx = f(QI)
smin = min(SI)
smax = max(SI)
sn = SI−smin

smax−smin

qn = qx−smin

smax−smin

rn = 2n − 1
r = 2n

n
si = round(sn × rn)
qi = round(qn × rn)
for i=0; i<n; i=i++ do
sx[:][i] = si > (r × i+ r − 1)
qx[i] = qi > (r × i+ r − 1)

end for
Similarity Search:
for k=0; k<len(SI); k=k++ do
dx[k] = popcount(qx ⊕ sx[k])

end for
m = index(min(dx))

by computing HD between the binarized support and query
vectors with min. HD representing the perfect match. Con-
versely, it is possible to perform similar matching using
XNOR operation in place of XOR used for computing HD
in order to represent maximum response represent a match.
Learning capabilities of the proposed technique as well as
hardware benchmarking is explored in next sections.

4. Results and Discussion
4.1. Network Results

To validate the proposed method BinDC, we utilize two
datasets described in Tab. 1. In order to assess the impact
of choice of FSL model and backbone, t-SNE (t-distributed
stochastic neighbor embedding) based representations are
derived using samples from miniImageNet dataset as shown
in Fig. 3. As can be observed, the combination of Pro-
toNet (Prototypical Networks) with ResNet12 represents a
clean distribution which is further validated through assess-
ment of inference accuracies presented in Tab. 2. We next
analyzed the impact of proposed technique on the embed-
ding space. Results from t-SNE analysis using multiple
precisions with both normalization techniques discussed in
Sec. 3 are shown in Fig. 4. Inference accuracy achieved us-
ing proposed method with two variants of FSL models and
backbones across precisions utilizing both normalization
techniques is summarized in Tab. 2. It can be clearly ob-
served from the findings that ResNet12 and ProtoNet is the
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Figure 3. t-SNE based distributions of embeddings derived using
combination of ProtoNet with (a) ResNet12,(b) ResNet18 back-
bones and FEAT with (c) ResNet12,(d) ResNet18 backbones. Red
circles show class-wise confusion.

Figure 4. t-SNE based distributions of embeddings derived using
proposed binarized embeddings with precisions of (a) 2-bit, (b) 4-
bit, (c) 8-bit with normalization method 1. Corresponding results
with normalization method 2 (d-f). Red circles show class-wise
confusion.

best combination in terms of learning performance. Also
Norm. method 2 provides superior accuracy even at very
low precision (> 50% even with 2-bit) due to more channel-
specific scaling within the embedding. Based on these find-
ings, we then compared the learning performance across
two differents types of datasets as shown in Tab. 3. The
proposed method achieves comparable accuracy to baseline

Figure 5. Measurement based results on Jetson Xavier NX plat-
form (CPU-based) for the two workloads: (a,b) Inference latency,
(c,d) Inference energy and (e,f) Peak power. Dashed black line
shows the floating-point baseline utilizing cosine distance compu-
tations.

i.e. ‘cosine’ at 8-bit precision.

4.2. Benchmarking on Embedded Platforms

Based on inference results presented in Tabs. 2 and 3 it is
apparent that 8-bit precision with proposed BinDC method
is comparable to floating-point performance (within 2% for
miniImageNet). Next, we evaluate the benefits of the pro-
posed method from an implementation perspective on an
embedded platforms. For this we utlize Jetson Xavier NX.
Since logic operations are dominant in the proposed dis-
tance computation method, we make use of 4-CPU cores
available on the Jetson Xavier NX platform utilizing the
aarch64 instruction set. Workload for performing evalu-
ation utilizes 10k samples from the dataset. Embeddings
based on pre-trained networks in floating-point precision
along with class labels are used as inputs. For cosine
similarity, we utilize PyTorch framework while for BinDC
we utilize a combination of NumPy with JIT (just-in-time)
compilation to extract maximum efficiency in the imple-
menation. Measurement results from the experiment are
shown in Fig. 5. Latency and energy benefits (with reason-
able accuracy) are apparent at 4-bit precision (see Fig. 5(a-
d)). Power savings of upto ≈ 2× can also be observed (see
Fig. 5(e,f)) as a result of purely using integer precision and
logic operations.
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Table 2. Impact of normalization technique, FSL model and backbone on performance of proposed BinDC method for miniImageNet.

Distance Normalization Bits/data Computation Inference Accuracy (%)
Compute Method point precision ProtoNet FEAT
Method Res12 Res18 Res12 Res18

Cosine 32 Float32 78.07 76.65 77.03 76.32

BinDC

1 (Global)

2

Binary

25.41 24.44 53.66 47.88
4 68.23 55.19 41.06 22.88
8 76.05 71.92 64.06 46.41

16 77.56 75.37 69.84 63.05

2 (Channel-specific)

2 58.29 50.61 58.93 54.47
4 75.93 73.92 60.03 52.7
8 77.14 75.34 68.45 59.28

16 77.3 75.72 69.99 61.43

Figure 6. (a) Schematic of IMC-array showing mapping of binarized support vector bits and application of query inputs at the WL of
the array. (b) IBL as a function of computed HD. (c) Custom PCB used for performing experimental measurements with RRAM-based
memory array for IMC applications.

Table 3. Benchmarking learning results based on proposed method
against cosine distance at floating point precision for two work-
loads (Norm. method 2 for miniImageNet and Norm. method 1
for ORBIT).

Distance Precision Inference Accuracy (%)
Method miniImageNet ORBIT

Cosine Float 78.07 71.69

BinDC

2 58.29 39.18
4 75.93 59.84
8 76.69 65.71

16 77.63 69.14

4.3. IMC-based optimizations

While utilizing standard digital hardware with the pro-
posed method offers significant performance benefits, the
vector dimensions used for FSL (640 for miniImageNet
and 1280 for ORBIT) pose a limitation in terms of mem-
ory operations. Due to limited memory bandwidth, conven-
tional compute architectures have energy and latency over-
heads [10]. IMC-based optimizations have been shown to
lead to significant gains in terms of throughput and energy
efficiency [18]. As a result, we perform experimental char-
acterization of an RRAM-based IMC chip utilizing a cus-
tomized PCB to evaluate benefits compared to conventional
embedded hardware implementations.

The 8×8 1T-1R RRAM array used for experimental val-
idation of IMC is shown in Fig. 6(a). Support vectors (SI)
for performing FSL are stored in the form of RRAM device
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Table 4. Benchmarking of performance for BinDC-based FSL with 4-bit encoding using OxRAM-based IMC implementations.

Energy Device Technology miniImageNet ORBIT
Estimation Data Node Search Inference Search Inference

Method Reference (nm) Energy (nJ) time (µs) Energy (nJ) time (µs)

Experiment [10] 130 1.11 40 0.62 22.4

Simulated [12] 40 0.67 20 0.37 11.2
[3] 28 0.45 20 0.25 11.2

state along columns (‘0’ is encoded as top RRAM = HRS
(high resistance state), bottom RRAM = LRS (low resis-
tance state), while ‘1’ is encoded as top RRAM = LRS, bot-
tom RRAM = HRS). To realize XOR gate in hardware, a 2T-
2R bitcell (see Fig. 6b) is realized by selecting two consecu-
tive 1T-1R bitcells in the same column. Query Input vectors
(QI) are applied as binary inputs (‘0’,‘1’) in a differential
representation: ‘0’ → [0,1], and ‘1’ → [1,0] using a WL-
decoder circuit. To perform computation, SL is charged to
VREAD and QI is applied as input to corresponding 2T-2R
bitcell. Output is obtained in the form of current flowing
through corresponding BL (IBL). When there is a mis-
match between QI and SI for a given index, RRAM in HRS
is selected and negligible current flows. In case of a match,
RRAM in LRS is selected leading to higher IBL. Following
principles of KCL (Kirchoff’s Current Law), output current
of all XOR cells along a column can be integrated to com-
pute HD between QI and SI. IBL as a function of inverted
HD, between a 4-bit QI vector and a 4-bit SI vector is shown
in Fig. 6(c). Fig. 6(d) shows the custom experimental setup
and RRAM test chip used in the study. Programming sig-
nals are applied using high speed pulse measurement unit
(PMU) from semiconductor parameter analyzer (SPA). The
signals from PMU channels are multiplexed and applied to
different signal lines (WL,SL,BL) using the custom switch
board.

Tab. 4 presents benchmarking of FSL using the pro-
posed BinDC method with various RRAM technologies.
The technology used in the current work being at an older
prototype node exhibits high dissipation in terms of energy.
However, using more scaled devices from literature at ad-
vanced technology nodes such as 28nm, EDP (energy delay
product) savings of the order of 6300× were observed com-
pared to CPU profiling (14nm) shown inFig. 5.

5. Conclusion

In this work, we present a BinDC framework to perform
distance computations for few-shot learning using only ac-
cumulation and logic operations (XOR/XNOR). The pro-
posed method leads to marginal loss in accuracy of ≈ 4%
(for 4-bits). This leads to savings in memory (≈ 8×),
energy (≈ 2.5-3×), power (≈ 2×) and latency (≈ 1.1-

1.5×) compared to a floating-point cosine distance compu-
tation when using CPU-based computations performed on
an embedded platform. We further demonstrate realizations
utilizing RRAM (resistive random access memory) based
IMC (in-memory computing) to further improve EDP (≈
1000×) in comparison to the embedded CPU-based real-
ization. This can be further improved through technology
scaling to achieve EDP savings of 6300×.
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