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Abstract

We present three multi-scale similarity learning archi-
tectures, or DeepSim networks. These models learn pixel-
level matching with a contrastive loss and are agnostic to
the geometry of the considered scene. We establish a mid-
dle ground between hybrid and end-to-end approaches by
learning to densely allocate all corresponding pixels of an
epipolar pair at once. Our features are learnt on large im-
age tiles to be expressive and capture the scene’s wider
context. We also demonstrate that curated sample min-
ing can enhance the overall robustness of the predicted
similarities and improve the performance on radiometri-
cally homogeneous areas. We run experiments on aerial
and satellite datasets. Our DeepSim-Nets outperform the
baseline hybrid approaches and generalize better to un-
seen scene geometries than end-to-end methods. Our flex-
ible architecture can be readily adopted in standard multi-
resolution image matching pipelines. The code is available
at https://github.com/DaliCHEBBI/DeepSimNets.

1. Introduction

The availability of high quality large-scale stereo bench-
mark datasets [2,14,21] prompted many neural network ar-
chitectures for stereo matching. These architectures can be
classified into two categories: hybrid and end-to-end. To
distinguish between matching and non-matching pixels, hy-
brid methods first extract features, then predict a similarity
using a classifier (also referred to as similarity learning). To
infer the optimal surface, the known semi-global matching
(SGM) follows [11]. Hybrid methods show good general-
ization properties to unseen scenes. However, they operate
on small patches which imposes convolutional neural net-
works (CNN) with limited expressivity.

End-to-end methods directly infer the surface from RGB
images instead. They employ large image patches and
deeper CNNs thus increase representations expressivity.
Most importantly, to leverage geometry and context-aware
disparities, end-to-end methods combine texture cues from
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Figure 1. Qualitative Results. We show two disparity maps
generated from unseen aerial (6cm) and satellite (WV-3, 30cm)
stereo-pairs. On satellite data, our DeepSim-Net (b) performs
best, while on aerial data the end-to-end PSMNet [3] (c) is best.
The normalized cross-correlation (NCC) [15] (d) underperforms
in both scenarios. On planar surfaces (⃝) DeepSim-Net yields
faithful reconstructions, whereas PSMNet adds residual artefacts.
On aerial data, PSMNet learns to interpolate in occluded areas
□, yet, it suppresses high-frequency details on satellite data and
mis-constructs buildings’ edges. Our DeepSim-Net recovers both
buildings boundaries and fine details □.

2D feature representations with shape cues captured within
3D CNNs. Their disadvantage is that they rely on posi-
tive and fixed disparity range cost volumes. In real world
scenarios, disparities can take any values, depending on the
geometry of the scene and the camera acquisition geometry.

In this paper, we revisit the self-supervised deep similar-
ity learning approach. To address the fixed disparity range
flaw of end-to-end methods, we decouple similarity learn-
ing from surface inference, thus our method is hybrid (see
Fig. 2). To enhance the expressivity of our features we no
longer consider the local neighborhood of a pixel (small
patch) but use contextually richer epipolar image pairs as
input, see Fig. 1. To our knowledge, the concept of deep
similarity for stereo matching has not been introduced so
far. Although counterintuitive, we show that an off-the-
shelf segmentation network such as U-Net [13, 18] can be
trained to learn similarity semantics, provided a proper sam-
ple mining scheme is adopted. Finally, to reduce the net-
work size we propose a hard-coded multi-scale feature ex-
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Figure 2. DeepSim-Nets. The feature extractor is one of the
three backbone variants: U-Net 32, U-Net Attention, MS-AFF
(see Fig. 3). Reference feature, positive feature and negative fea-
ture sets are generated by the sample mining block and serve both
representation and similarity learning tasks. The above architec-
ture is a building block of the multi-resolution pipeline in Fig. 6.

tractor (see Fig. 3) where specific non-weight sharing sub-
modules learn specific scale cues. Unlike U-Net skip con-
nection aggregation schemes, we employ an iterative atten-
tional feature pooling mechanism to combine multi-scale
features. Hence, we investigate the potential of implicit
(U-Net) and explicit (ours) multi-scale learning. Note that
multi-scale and multi-resolution are equivalent terms and
we use them interchangeably throughout the paper.

To summarize, our main contributions are: (i) a new deep
similarity learning architecture for stereo matching includ-
ing a lightweight deep CNN architecture for feature learn-
ing that leverages hard-coded multi-scale features; (ii) a cu-
rated sample mining scheme to enable training deep archi-
tectures for our specified task; and (iii) a hybrid cooperative
pipeline that benefits from the robustness of hand-crafted
similarity measures for lower resolutions and rich seman-
tics features for higher resolutions.

2. Related Works

Similarity learning. Similarity learning focuses on pre-
dicting pixels’ resemblance and leaves the spatial aggre-
gation on the cost volume to standard SGM [11, 15] or
global optimization [19]. During training, matching and
non-matching patches extracted from epipolar images are
fed to a CNN in a self-supervised fashion [4,23] or in a fully
supervised fashion [8, 22]. The task can be to either learn
embeddings [4] or the matching metric [22, 23] or both [8].
In [4] the authors propose a two-scale CNN architecture
that endows features with robustness leveraged at different
scales. MC-CNN [23] is the baseline for stereo-matching
contrastive learning and addresses both embedding and sim-
ilarity learning. Match-Net [8] adds more context by using
64×64 patches albeit a single descriptor is extracted for the
center pixel. Alternatively, multi-view patch features can be
used to learn similarity for multi-view stereo [9]. Others
perform random forest classification to fuse hand-crafted
similarity filled cost volumes [1]. Note that because similar-
ity learning is bound to small patches, thus has a restrained
receptive field, it is more susceptible to matching ambigu-
ities (i.e., henceforth referred to as locality constraint). To
reduce stereo correspondence ambiguity, the similarities are
backed by a regularization scheme that enforces surface reg-

ularity. An optimal regularization algorithm sets per-pixel
edge-aware penalties which preserves thin structures and
buildings outlines in the disparity map [11]. Among the
major merits of this hybrid scheme is the similarity which
remains unrelated to a specific matching geometry.

A different stream of work has been devoted to explicitly
incorporating semantic information into the stereo match-
ing task. Coupling 3D semantic segmentation with dispar-
ity estimation in multi-task learning can provide excellent
results, especially on diachronic images [16]. However,
coarse objects frontiers may lower the disparity map quality
in a strong supervised setting.
End-to-end disparity learning. Among the first fully
end-to-end stereo matching architectures is FlowNet [7]. To
learn and predict the optical flow images are fed to a CNN
either stacked on top of each other (e.g., FlowNetSimple)
or considered independent and followed by a hard-coded
correlation layer (e.g., FlowNetCorr). The more modern
GC-Net [12], DeepPruner [6] and PSMNet [3] generate
per-tile feature maps using a siamese CNN. Cost volume
is subsequently built. GC-Net introduced a differentiable
ArgMin (i.e., Soft-Argmin) that allows to train their net-
work end-to-end. PSMNet builds upon that and introduces
a deep 3D convolution Hourglass module to regularize the
cost volume. The novelty of DeepPruner [6] is in exploit-
ing the learnt representations to prune per-pixel disparity
range, thus being able to serve real-time applications. Al-
ternatively, SGM is revisited in GA-Nets [24] to leverage
a differentiable optimization loss, and learn pixel-specific
cost function parameters. Semi-global and local guided ag-
gregation (SGA, LGA) layers are combined to balance reg-
ularity with edge awareness respectively.

So far, similarity learning being almost always governed
by the locality constraint is not competitive with end-to-end
methods that leverage both geometry and context [12].

3. Method
We introduced DeepSim-Nets, a family of neural net-

work architectures that learn to predict similarity score
maps between tiles of pixels. Fig. 2 highlights DeepSim-
Net’s architecture consisting of a shared-backbone fea-
ture extractor, followed by a decision network that infers
a similarity measure. The feature extractor consists of
three variants: (1) U-Net 32; (2) U-Net Attention [13]
performing gated attention feature pooling to aggregate
encoder-decoder representations, and (3) our proposed ex-
plicit multi-scale feature learning module coupled with
an adapted attentional pooling module [5] (see Fig. 3).
Similarly to [23], we follow the self-supervised learning
paradigm. Traditionally, to retrieve context-aware and
discriminative similarity measures, stereo correspondences
were bound to a local-context support windows. However,
locality leads to similarity ambiguity, in particular on tex-
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Figure 3. Our Lightweight Feature Extractor. Explicit
Mutli-Scale self-Attentional Feature learning and Fusion (MS-
AFF). conv0 is a CNN with 3 3x3 convolutional blocks.
conv1,conv2,conv3 and conv4 are composed of 3 3x3 convolu-
tional residual blocks [10]. They do not share weights and handle
4 different resolution feature maps extracted by conv0. The re-
sulting embeddings are iteratively fused from lower to higher res-
olutions using stacked attentional fusion blocks M-AFF[1-3] (see
Fig. 4). The last conv consists of 3 3x3 convolutional blocks to
produce H×W ×F features.
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Figure 4. Attentional Multi-scale Feature Fusion (M-AFF). It
is a building block of our lightweight feature extractor MS-AFF
in Fig. 3. MS-CAM [5] learns to weight local and global embed-
dings contributions to the fused representations.⊕ is the addition
operator, ⊗ is the Hadamard multiplication operator.

tureless areas. To address this issue, we diverge from that
idea. More specifically, non-local pixel embeddings that
encapsulate similarity semantics are learnt by feeding large
epipolar pairs (768× 768) (i.e., tiles) to the proposed large
receptive field feature backbone variants. The tiles are ran-
domly cropped from the training stereo pairs.

A suitable sample mining scheme that not only consid-
ers a single pair of patches [4, 8, 23] but takes the whole
set of features at once is then implemented. Hence, we
allude to our sampling method as ensembling and outline
it in Sec. 3.3. Finally, we address the similarity learning
problem as a classification task where both matching and
non-matching feature pairs are encouraged to be apart from
each other. The same strategy is applied to the distributions
of matching and non-matching similarity metrics learnt by
the subsequent Multi-Layer-Perceptron (MLP) classifier.

3.1. Representation learning

The feature extractor takes a grayscale H×W image (i.e,
tile) and outputs H×W ×F feature map (see Fig. 2). We
compute similarity scores along the epipolar line between
a reference feature f l

x,y ∈ RF from the left epipolar pair
(i.e., left (l) tile) and a set of possible features drawn from
the right epipolar pair (i.e., right (r) tile) fr

x−i,y ∈ RF with
i ∈ [dmin, dmax] defining the disparity search space. (x, y)
are pixel locations. The normalized dot product ⟨., .⟩ be-

tween a pair of features is inherently a similarity measure as
it equals the cosine of the angle between them. Therefore,
by training the backbone feature extractor to yield high sim-
ilarity scores for matching feature pairs and low similarity
scores for mismatching ones, the network learns robust and
discriminative features that encapsulate similarity cues. It
follows that for a set of reference features X drawn from
the left tile, a set of matching features X+ and a set of non-
matching features X−, all generated from the right tile, our
triplet loss is:

L3 =
∑

(i,j)∈X

O(Si,j
− − Si,j

+ +m, 0), (1)

where (i, j) denote feature coordinates in the reference fea-
ture map, Si,j

− =
〈
X i,j

− ,X i,j
〉

, Si,j
+ =

〈
X i,j

+ ,X i,j
〉

are
cosine similarities between features; m is the separation
margin; and O is the element-wise max operator. We set
m empirically to 0.3 and keep it fixed for all experiments.

Attentional feature pooling. Combining multiple and
complementary types of features to obtain semantically
stronger representations has proven beneficial in many ap-
plication domains [5,13,17]. Similarly, two sets of spatially
consistent feature maps computed at different image scales
encapsulate complementary cues as their respective fictive
receptive fields differ. This observation was used in the U-
Net architecture [18] where low and high level features are
concatenated via long skip connections. Here, rather than
blindly concatenating the multi-scale features as does U-
Net , we introduce an aggregation strategy through a Multi-
Scale self-Attention Feature Fusion (MS-AFF). Thanks to
this explicit fusion we reduce the number of parameters by
a factor of 10.

MS-AFF’s key idea is presented in Fig. 3, where Lk is a
feature map of shape H

2k
× W

2k
×F denoted as local feature

map and Gk+1 is a more global feature of shape H
2k+1 ×

W
2k+1 ×F . Based on the multi-scale attention feature fusion
module (MS-CAM) [5] denoted by M, we refine the feature
map X k at scale k using the formula:

X k = M(Lk⊕Gk)⊗Lk+(1−M(Lk⊕Gk))⊗Gk, (2)

where Gk is a one level up-scaled version of Gk+1. By
extending this fusion concept to pyramidal features maps,
multiple attentional fusion blocks can be stacked on top of
each other moving from coarser low-level contextually rich
features to fine-grained high resolution features (see Fig. 4).
At each step, the result of the last aggregation is considered
as a global feature for the next fusion block.

3.2. Similarity learning

Our goal is to learn a powerful similarity function that
predicts the matching likelihood between two embeddings.
We believe that to describe complex relationships between
corresponding pixels, the baseline dot product is insuffi-
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cient. To that end, we feed the learnt representations to
an MLP module acting as the decision function. Super-
vision is accomplished by the binary cross entropy (BCE)
loss [23]. Following the previously introduced notation,
given the triplet of feature sets X ,X+ and X−, we formu-
late the per-tile BCE loss LBCE as:

LBCE = −
∑

(i,j)∈X

Yi,j
− log(1− Si,j

− ) + Yi,j
+ log(Si,j

+ ), (3)

where Si,j
− = Φ(C(X i,j

− ,X i,j)), Si,j
+ = Φ(C(X i,j

+ ,X i,j)).
C is the concatenation operator and Φ is the MLP that maps
features from RF×2 to R; Y+ and Y− are positive and neg-
ative sample definition masks, respectively. A sample defi-
nition mask is a binary mask that defines the matching fea-
tures locations included in the loss computation.

3.3. Sample mining

Ensembles approach. Our sampling technique is de-
signed to operate at a tile level, ensuring that the features
learned by the network are consistent across entire objects
(e.g., buildings, roads, etc.). Moreover, our approach in-
volves presenting an ensemble of samples in a single gra-
dient update, which not only adds more spatial context but
also prevents overfitting. Specifically, in one gradient step a
feature can appear as a positive match to one feature, and at
the same time as a negative match to several other features
(see Fig. 5). Patch-based shallow networks cannot capture
spatial relationships in large objects, unlike our method.

Sample Mining. The quality and density of the dataset
can impact the sample mining. For instance, coarse optical-
LiDAR registration may produce false pixel correspon-
dences, which can confuse positive and negative exam-
ples. To address this, we sample positive pixel examples
around ground truth back-projected LiDAR points and neg-
ative pixel examples slightly further away from the ground
truth. Additionally, we densify the LiDAR ground truth
data using Delaunay interpolation to match the image data
density, preserving high frequency changes and occlusion
constraints while being a purely geometric approach. Be-
cause contrastive learning [20] is highly sensitive to sample
mining, we carefully adjust the gap between positive and
negative samples to prevent the selection of easy negatives
throughout all training phases. We begin by extracting neg-
ative samples that are far from the positive ones and gradu-
ally tighten the classification difficulty by reducing the dis-
tance gap between positives and negatives. To sample posi-
tive and negative feature sets, we use the reference features
from the left tile X and a disparity ground truth map D as
follows (see Fig. 5): X+ = X ± (D + U[−α,α])

X− = X ± (D + U[β1,β2])
α < β1 < β2

 , (4)

(a) GT.
anchor positive

fi
'fi fi

' fi
'

negative

(b) Correspondences Sampling.

Reference ( ) Matching ( ) Non-matching ( )

(c) Triplet Feature Sets Generation.

Figure 5. Ensembles Sample Mining Toy Example. (a) Ground
truth (GT) disparities define matching pixels mappings (D). (b)
Let (fi, f

′
i ) be a feature pair labelled as positive. Negative fea-

ture pair is picked randomly along the epipolar line in the vicinity
of f

′
i . Note that f

′
i can have both matching (positive) and non-

matching (negative) states in the same gradient update. This en-
forces the matching uniqueness constraint while preventing over-
fitting. (c) At tile level, the feature map is warped based on ground
truth disparities (→), and denoted as the matching feature map
(X+). The non-matching feature map (X−) is obtained by warping
the feature (→) map using random disparity offsets (D+U[β1,β2]).

where U[−α,α] and U[β1,β2] are uniform distributions of
matching and non-matching sampled positions, respec-
tively; α denotes a symmetric interval around the ground
truth for positive samples whereas β1 and β2 are the nega-
tive sampling interval bounds.
Occlusion handling. As our main task is to learn dense
similarities by means of binary classification, occlusions
should be handled carefully since the correspondence prob-
lem is violated in these regions. In patch-based learning
approaches, it is addressed by training exclusively on sam-
ples extracted in non-occluded areas [4, 8, 23], while tra-
ditional correlation-based dense matching yields occlusion
masks by applying a hard threshold on the computed corre-
lation values [15]. This approach is effective if similarities
in occlusions remain low, which is true for NCC or census
similarity metrics. However, for our deep-learnt similarity,
resemblance is more than visual and is deduced from the
entire feature map structure. Hence, the model should be
explicitly told that some features do not have their corre-
sponding matches. We account for occlusion by labelling
sample features extracted from these regions as negatives.
By reformulating our training losses, the network is not in-
centivized to match features in occluded areas which we
accomplish by penalizing the inferred similarity measures
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during training. Put differently, the network is trained to
output low similarity scores in occlusion regions. Note that
our aim is to filter out occluded areas through similarity and
not to enhance the underlying surface regularity. Our new
losses are reformulated as follows:

L3All
= L3nocc

+ L3occ

=
∑

(i,j)∈Xnocc

O(Si,j
− − Si,j

+ +m, 0)

+
∑

(i,j)∈Xocc

O(Si,j
1− + Si,j

2−, 0) ,

(5)

where Si,j
1− =

〈
X i,j

1−,X i,j
occ

〉
and Si,j

2− =
〈
X i,j

2−,X i,j
occ

〉
are

cosine similarities between a reference feature X i,j
occ located

at occlusions and features X i,j
1− and X i,j

2− sampled from the
right feature map. The BCE loss is expressed accordingly:

LBCEAll
= LBCEnocc

+ LBCEocc

= −
∑

(i,j)∈Xnocc

Yi,j
− log(1− Si,j

− ) + Yi,j
+ log(Si,j

+ )

−
∑

(i,j)∈Xocc

Yi,j
−

(
log(1− Si,j

1−) + log(1− Si,j
2−)

)
,

(6)

3.4. Learning strategy
We apply the same sampling scheme to both the feature

backbone and the decision network training, alternating be-
tween the triplet and the BCE loss. We adopt a differential
learning strategy to train the whole model. More specifi-
cally, we set the initial learning rate to 0.001 and progres-
sively divide it by a factor of 10 for later (decoder), inter-
mediate (bottleneck) and earlier (encoder) backbone param-
eters. Following a coarse to fine training scheme, we set the
matching pixel locations sampling interval α to {1, 0} and
the non-matching pixel locations sampling intervals β1 and
β2 progressively to {2, 8}, {2, 6}, {1, 5} and {1, 4}, respec-
tively. This gradual tightening scheme allows to leverage
easy negatives at the beginning of training and helps the
network learn fast. Then, we track harder negatives by re-
ducing the distance to the ground truth locations. By doing
so, we incite that features or learned similarities are not only
distinctive far away from correct matches but also within
their vicinity.

All training scenarios are run for 50 epochs per each
sampling interval. Finally, we perform a last full tight con-
figuration training (i.e., backbone, MLP, α = 0, β1 = 1,
β2 = 4). To avoid overfitting, we train our model on tile
subsets that are randomly extracted in the course of training.
This guarantees that the model sees a quasi-different sample
of the dataset at each epoch. Note that all models have been
initially trained on non-occluded masked areas. The occlu-
sion sensitive loss functions (Eqs. (5) and (6)) were engaged
in the very final training.

4. Experiments
Implementation details. DeepSim-Nets predict similar-
ities which are used as input to a semi-global matching
in the post-processing. The goal is to reduce the under-
lying noise and penalize disparity jumps within a local
neighborhood of the cost structure. This regularization
is performed using MicMac’s SGM implementation [15].
To keep inference memory-friendly and fit for large scale
production pipelines, our architecture is integrated into a
multi-resolution iterative approach, also present in [15] (see
Fig. 6). This approach involves exploring n-scale images
drawn from the original full resolution image and generat-
ing multi-scale aggregated features through concatenation
or self-attention mechanism (see Sec. 3.1). Our learning
models are activated from scale 3. More explicitly, given
a full resolution epipolar pair of dimensions H × W , our
models are deployed from resolution H

4 × W
4 . We currently

train DeepSim-Nets on a mix of 8-bit and 16-bit single-
channel images because our focus is 3D reconstruction
and high-resolution satellite sensors are by design panchro-
matic. However, the network can easily be extended to more
channels.
Datasets. We perform training on the aerial dataset [21,25]
consisting of 30,841; 3164 and 607 pairs of epipolar im-
ages over Dublin, Enschede and Vaihingen, respectively.
All tiles sizes are set to 1024× 1024. A ground truth repro-
jected LiDAR disparity map is given for each epipolar pair.
Evaluation is performed on aerial stereo pairs (Ground Sam-
pling Distance GSD=8cm) over Toulouse, satellite stereo
pairs over Buenos Aires (WV-3, GSD=30 cm) and Mont-
pellier (Pléiades 1B, GSD=50 cm). The Toulouse dataset is
closely related to our training dataset, as they share similar
sensor characteristics and spatial resolutions. On the other
hand, the satellite stereo pairs with their specific acquisi-
tion geometry, spatial resolution and low signal-to-noise ra-
tio can be considered as out-of-distribution datasets. The
satellite datasets are therefore appropriate for benchmark-
ing the transferability of our method.
Metrics. Evaluation metrics for binary classifiers perfor-
mance assessment include accuracy, confusion matrix as
well as ROC curves, capturing recall at different decision
boundaries. Since we target sufficiently separable matching
and non-matching feature populations for the subsequent
regularization task, we do not privilege a certain thresh-
old. Instead, we estimate the joint probability distribution
by sampling matching and non-matching pixel locations at
different interval settings (see Fig. 8). A perfect classifier
yields matching similarities that are always greater that non-
matching ones. We compute joint probability area under the
diagonal, denoted as JP and the marginal distributions geo-
metric intersection area denoted as InterA (see Tab. 2). We
also provide n-pixel error histograms, 1-, 2- and 3-pixel er-
rors and compare our DeepSim-Nets with MC-CNN acrt
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Figure 6. Multi-Resolution Inference. We display a 3-scale iteration. Up to image resolutions H
8
× W

8
, NCC estimates coarse yet robust

disparity maps. Moving from resolutions H
4
× W

4
, the down-scaled stereo pairs are iteratively fed to the feature extractor taking one of

the three variants: U-Net 32,U-Net Attention, MS-AFF. We fill the flexible per-pixel disparity range cost structure either with raw cosine
of angles between embeddings (99K) or with the learnt MLP-based similarities. Then, we upscale the predicted disparity map serving as a
predictor for the next iteration.

Figure 7. Training dataset base-to-
height ratio distribution.

Table 1. Models param-
eters setting.

Model # of params. (×103)

MC-CNN [23] 148
MS-AFF(Ours) 965
U-Net 32 7,800
U-Net Attention 9,500
MLP 345

and PSMNet in Fig. 11 and Tab. 3. Note that PSMNet
was trained on a larger aerial dataset acquired on various
cities [21], including those used for training our models.

Ablations. Three modelling hypothesis are validated:
(1) no occlusion loss term contribution, (2) transferability
of our model trained on aerial images to a satellite configu-
ration, and (3) the contribution of the MLP-learnt similarity
compared to the baseline cosine feature-level similarity.

5. Results and discussion

Similarity learning. Joint probability maps computed on
unseen aerial data are visualised in Fig. 8. The most com-
pact distributions are produced by U-Net 32 and U-Net At-
tention, which are condensed near 1 for matching similari-
ties (abscissa) and 0 for non-matching ones (ordinate). The
MS-AFF distribution qualitatively follows the same trend,
but shows a small blob for similarities equal to 0.5, which
indicates that some positives and negatives are hard to clas-
sify. However, our MS-AFF model yields the highest JP for
all sampling scenarios (Tab. 2), indicating that the misclas-
sified samples population is negligible. When mixing near
and far negative samples (see Fig. 8 (row 3) & Tab. 2 (col.
3)), the variance of our proposed models’ joint distributions
increases but still outperforms local models by at least 4 %.

Local neighborhood models, including NCC 3×3, NCC
5 × 5, and MCC-CNN acrt, exhibit an increase in JP and
a decrease in InterA as the negative sampling intervals
increase, whereas our global ensemblistic models follow
the opposite tendency. This occurs because window-based
methods enhance the feature’s distinctiveness by moving
further away from correct matches, where local neighbor-
hood changes drastically and pixel classification becomes
easier. On the other hand, our DeepSim-Nets are designed

Table 2. Quantitative Evaluation. We evaluate Models’ similar-
ity classification performance on unseen aerial Toulouse dataset.
Our DeepSim-Nets outperform local methods: MC-CNN acrt,
NCC. Our lightweight MS-AFF yields the highest JP for all sam-
pling scenarios and performs marginally worse than U-Net 32 and
U-Net Attention on AUC and InterA.
Sample setting β1 = 1, β2 = 4 β1 = 2, β2 = 6 β1 = 2, β2 = 40

Aerial Test dataset, α = 0

Metrics (%) JP↑ InterA↓ AUC↑ JP↑ InterA↓ AUC↑ JP↑ InterA↓ AUC↑
Ours:
U-Net 32 + MLP 85.3 23.6 92.2 88.6 15.9 95.5 87.3 19.1 89.8
U-Net Att. + MLP 85.4 23.3 92.2 88.9 15.4 95.7 88.0 18.7 90.1
MS-AFF + MLP 86.4 23.6 91.4 89.6 15.7 95.2 88.0 18.4 89.6

MC-CNN acrt [23] 78.0 33.6 85.3 82.0 25.3 89.8 83.7 24.9 87.3
NCC (3×3) 71.2 76.7 – 74.8 59.1 – 77.0 45.4 –
NCC (5×5) 73.2 75.4 – 76.1 60.3 – 80.0 40.6 –

to be distinctive near correct matches, while on large unex-
plored negative sampling intervals, they may misclassify.
The ROC curves in Fig. 9 reveal that our models yield
higher recall rates compared to MC-CNN acrt. MS-AFF
performs marginally worse than U-Net 32 and U-Net At-
tention as the AUC demonstrates in Tab. 2. With the model
complexity kept in mind, our lightweight MS-AFF shows
decent classification results across all examined metrics.

DeepSim-Nets overcome local methods matching ambi-
guities near correct matches and leverage decent distinctive
similarities that are mandatory for the subsequent surface
reconstruction. Moreover, although not trained on large
negatives sampling offsets, salient matching similarities are
obtained when β1 = 2, β2 = 40. We also achieve pixel-
level separability as well as matching coherence for homo-
geneous areas.

By explicitly labeling correspondences computed over
occlusions as negative samples, we encourage dissimilarity
across these regions. This in turn facilitates occlusion de-
tection through simple thresholding of the similarity map.
Fig. 10 illustrates this behaviour with MS-AFF trained with-
out and with occlusion self-supervision.
Surface inference. We compare DeepSim-Nets’ dis-
parities against PSMNet and MC-CNN acrt on unseen
aerial close-to-distribution (Toulouse) and satellite out-of-
distribution stereo pairs (Montpelier, see Tab. 3). We also
study the impact of acquisition geometry on the dispar-
ity accuracy by looking at the base-to-height ratio ( BH ).
On Toulouse dataset, we show that our models outperform
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Figure 8. Classifiers Accuracy. From top to bottom, we enlarge
the negatives’ sampling interval defined by β1 and β2. We estimate
joint as well as marginal matching/non-matching similarity distri-
butions for the three variants of DeepSim-Nets, MC-CNN acrt and
NCC with 3 × 3 and 5 × 5 window sizes. For visualization pur-
poses, we normalize all joint distributions w.r.t the maximum dis-
tribution value in each row and display equalized thumbnails for
NCC distributions. These maps give us insights on the matching
and non-matching ”pixels” separability of our binary classifiers.
Our DeepSim-Nets (first 3 columns) accumulate almost all obser-
vations under the diagonal. MC-CNN acrt and NCC misclassify
and render high variance maps.

Figure 9. ROC Curve Analysis. We represent ROC curves for
three negatives sampling intervals (i.e scenarios) defined by offsets
β1 and β2 w.r.t ground truth locations (α = 0). Our ensemble
models yield the lowest False Positive Rates (FPR) for different
recall rates compared to MC-CNN acrt for all sampling scenarios.

left no occlusionocclusion

Figure 10. Contribution of The Occlusion Term. When the
occlusion-specific loss term is activated, similarity values drop
drastically in occluded regions □.

PSMNet and MC-CNN acrt in occlusion-free regions al-
most for all examined metrics (Fig. 11 & Tab. 3). Nonethe-
less, PSMNet recovers precisely buildings’ outlines while
our method may render poor edge shapes, especially near
occlusions (see Fig. 1). This said, PSMNet has the tendency
to smooth surfaces and occasionally add high frequency low
amplitude artefacts (see Fig. 1), while we faithfully repro-
duce rooftop details (see Fig. 12). For B

H = 0.2, U-Net At-
tention slightly outperforms U-Net 32 and MS-AFF on both

Table 3. Ablation Study. Accuracy assessment on aerial/satellite
unseen datasets. Statistics are calculated on difference maps
between models’ induced disparities and ground truth in
non-occluded areas. For the aerial Toulouse dataset, we examine
varying B

H
. For Montpellier, Pléiades 1B dataset, no B

H
selection

is done. µ is the mean absolute difference, σ is the standard devia-
tion, NMAD is the normalized median absolute deviation. D1, D2

and D3 are 1-, 2- and 3-pixel error rates (%) respectively.

Method B
H µ↓ σ↓ NMAD↓ D1↓ D2↓ D3↓

Toulouse aerial 8cm GSD dataset

| MS-AFF cos

0.2

0.42 0.98 0.12 7.10 3.43 2.40

S U-Net 32 cos 0.40 0.96 0.11 6.61 3.26 2.30

R U-Net -Attention cos 0.40 0.96 0.11 6.40 3.19 2.28

U MS-AFF+MLP 0.39 0.95 0.11 6.30 3.22 2.28

O U-Net 32+MLP 0.39 0.95 0.11 6.18 3.13 2.24
| U-Net -Attention+MLP 0.39 0.95 0.11 5.97 3.10 2.24
MC-CNN acrt [23] 0.52 1.14 0.14 9.88 5.23 3.60
PSMNet [3] 0.49 1.00 0.15 8.66 4.60 3.01

| MS-AFF cos

0.48

1.18 1.61 0.37 31.37 13.62 9.09

S U-Net 32 cos 1.19 1.58 0.38 32.66 13.38 8.67

R U-Net -Attention cos 1.18 1.58 0.38 32.34 13.23 8.60

U MS-AFF+MLP 1.27 1.49 0.40 39.24 14.60 8.65

O U-Net 32+MLP 1.28 1.50 0.42 40.35 14.75 8.44
| U-Net -Attention+MLP 1.27 1.50 0.42 39.56 14.77 8.41
MC-CNN acrt [23] 2.10 1.96 0.99 60.31 39.73 23.45
PSMNet [3] 1.34 1.65 0.44 39.10 16.68 10.42

| MS-AFF cos

All

0.70 1.30 0.21 15.97 7.15 4.85

S U-Net 32 cos 0.69 1.28 0.21 16,15 6.97 4.63

R U-Net -Attention cos 0.68 1.28 0.20 15,88 6.86 4.59

U MS-AFF+MLP 0.71 1.25 0.22 18.20 7.33 4.57

O U-Net 32+MLP 0.72 1.26 0.22 18.59 7.35 4.50
| U-Net -Attention+MLP 0.71 1.25 0.22 18.14 7.32 4.47
MC-CNN acrt [23] 1.09 1.66 0.29 29.12 17.65 10.74
PSMNet [3] 0.79 1.33 0.24 19.18 8.78 5.57

Montpellier Pléaides 1B 50 cm GSD satellite dataset

| MS-AFF cos

–

0.75 0.98 0.27 20.07 7.9 4.20

S U-Net 32 cos 0.75 1.00 0.27 19.94 7.86 4.18

R U-Net -Attention cos 0.75 0.97 0.28 20.27 7.70 3.98

U MS-AFF+MLP 1.27 1.26 0.50 45.31 17.56 8.72

O U-Net 32+MLP 1.17 1.22 0.46 39.84 15.82 7.81
| U-Net -Attention+MLP 1.20 1.26 0.49 40.87 17.13 8.56
MC-CNN acrt [23] 0.84 1.13 0.30 23.13 10.14 5.54
PSMNet [3] 1.02 1.18 0.40 32.27 13.78 7.00

Figure 11. Quantitative Results. Error histograms evaluated on
occlusion-free areas. Our models outperform PSMNet and MC-
CNN acrt for different B

H
settings.

feature-based cosine and MLP-based similarities. The MLP
decision module gain is about 0.5 % for all models. This
shows that feature modules provide sufficiently generic rep-
resentations, deployable for downstream tasks such as 3D
reconstruction. As larger B

H (i.e., 0.48) are not represented
in the training data (see Fig. 7), the performance of our mod-
els coupled with the MLP similarity deteriorates. PSMNet
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(a) Epipolar Pair. (b) Ours:MS-AFF. (c) Ours:U-Net 32. (d) Ours:U-Net Att. (e) MC-CNN acrt. (f) NCC5× 5. (g) PSMNet.

 0.5
1
2
3 
4

0
occ.

[px]

Figure 12. Disparity Predictions on Aerial Images. (top: colored and grey-shaded disparity maps, bottom: difference maps w.r.t ground
truth). Here, we evaluate the entire setting (feature extractor + MLP). Conversely to MC-CNN acrt and NCC, planar surfaces with poor
contextual information (big □) are recovered best by our models. Shadows are handled well by DeepSimNets and PSMNet (middle □).
PSMNet renders consistent reconstructions on buildings boundaries and near occlusions but ignores tiled roof patterns that are recovered
by almost all similarity-driven models (small □).

U-Net Attention+MLP PSMNetMS-AFF+MLP MC-CNN acrtleft epipolar

MS-AFF cos 

U-Net32+MLP

U-Net32 cos U-Net Attention cos NCC (multi)MC-CNN fastright epipolar

Figure 13. Disparity Predictions on Satellite Images. Grey-shaded disparity maps capturing the performance of tested methods on
unseen WV3 stereo pairs over Buenos Aires. While local neighborhood classifiers: MC-CNN(fast&acrt),NCC(multiple windows) fail to
reconstruct fine-grain building rooftops’ details □, our models recover such high frequency details. PSMNet acts as a low-pass filter. The
MLP-learnt similarities recover buildings’ outlines □ missed by raw-cosine (cos) similarities.

is slightly better compared to our best performing architec-
ture MS-AFF+MLP. As the MLP clearly specializes to seen
B
H , feature representations alone remain powerful and ex-
pressive: MS-AFF cosine outperforms PMSNet by 7.73 %
on D1. For B

H = 0.48, MS-AFF with or without MLP is
more robust to acquisition geometric changes than the rest
of the models. When no particular B

H configuration is priv-
ileged, cosine-based similarities are more advantageous in
presence of varying B

H .
On the unseen WV-3 stereo pairs, the DeepSim-Nets

reconstruct buildings’ details and boundaries more faith-
fully and with less regularization, whereas PSMNet out-
puts fuzzy buildings and erases fine details (Fig. 13). Local
methods (NCC, MC-CNN) produce noisy surfaces with dis-
parity jumps on repetitive rooftop patterns. On the unseen
Pléiades 1B stereo pairs, we evaluated our models and com-
pared them with the MC-CNN acrt trained using our sam-
pling scheme. Although our best-performing model was
U-Net 32+MLP, it was outperformed by the MC-CNN acrt
(see Tab. 3). Interestingly, deactivating the MLP improved
our model’s transferability and the accuracy of the disparity
maps. In contrast to PSMNet, which merged buildings and
their shadows into a single entity, our method accurately
classified shadows as ground features. Notably, our U-Net

32 cosine model showed a significant 3.19% improvement
in the D1 metric when compared to MC-CNN acrt.

6. Conclusion

In this study, we have presented several variants of
DeepSim-Nets for learning stereo-correspondence, which
outperform standard hybrid methods on all examined met-
rics. Our networks can allocate sets of pixels in epipolar
geometry and learn similarities simultaneously, overcoming
the locality constraint and leveraging more global, context-
aware, and transferable similarity cues. We have designed
a sample mining scheme that improves deep feature extrac-
tors and enables occlusion detection in our models through
contrastive training. Our flexible and lightweight MS-AFF
model is designed to fit large multi-scale iterative dense
matching pipelines, and generalizes well to unseen aerial
and satellite stereo pairs.
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Häusser, Caner Hazirbas, Vladimir Golkov, Patrick van der
Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learn-
ing optical flow with convolutional networks. In ICCV, 2015.
2

[8] Xufeng Han, Thomas Leung, Yangqing Jia, Rahul Suk-
thankar, and Alexander C. Berg. Match-net: Unifying fea-
ture and metric learning for patch-based matching. In CVPR,
2015. 2, 3, 4

[9] Wilfried Hartmann, Silvano Galliani, Michal Havlena, Kon-
rad Schindler, and Luc Van Gool. Learned multi-patch simi-
larity. In ICCV, 2017. 2

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 3

[11] Heiko Hirschmüller. Stereo processing by semiglobal match-
ing and mutual information. In IEEE TPAMI, 2008. 1, 2

[12] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter
Henry, Ryan Kennedy, Abraham Bachrach, and Adam Bry.
End-to-end learning of geometry and context for deep stereo
regression. In ICCV, 2017. 2

[13] Ozan Oktay, Jo Schlemper, Loı̈c Le Folgoc, Matthew C. H.
Lee, Mattias P. Heinrich, Kazunari Misawa, Kensaku Mori,
Steven G. McDonagh, Nils Y. Hammerla, Bernhard Kainz,
Ben Glocker, and Daniel Rueckert. Attention u-net: Learn-
ing where to look for the pancreas. 2018. 1, 2, 3

[14] Sonali Patil, Bharath Comandur, Tanmay Prakash, and
Avinash C. Kak. A new stereo benchmarking dataset for
satellite images. In arXiv, 2019. 1

[15] Marc Pierrot-Deseilligny and Nicolas Paparoditis. Multires-
olution and optimization-based image matching approach :
an application to surface reconstruction from SPOT6-HRS
stereo imagery. In ISPRS Archives, 2006. 1, 2, 4, 5

[16] Zhibo Rao, Mingyi He, Zhidong Zhu, Yuchao Dai, and Ren-
jie He. Bidirectional guided attention network for 3-d se-
mantic detection of remote sensing images. In IEEE GRSS,
2021. 2

[17] Damien Robert, Bruno Vallet, and Loic Landrieu. Learning
multi-view aggregation in the wild for large-scale 3d seman-
tic segmentation. In CVPR, 2022. 3

[18] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In Medical Image Computing and Computer-Assisted Inter-
vention – MICCAI, 2015. 1, 3

[19] Sebastien Roy and Ingemar J. Cox. A maximum-flow for-
mulation of the n-camera stereo correspondence problem. In
ICCV, 1998. 2

[20] Florian Schroff, Dmitry Kalenichenko, and James Philbin.
Facenet: A unified embedding for face recognition and clus-
tering. In CVPR, 2015. 4

[21] Tend Wu, Bruno Vallet, Marc Pierrot-Deseilligny, and
Ewelina Rupnik. A new stereo dense matching benchmark
dataset for deep learning. In ISPRS Annals, 2021. 1, 5, 6

[22] Sergey Zagoruyko and Nikos Komodakis. Learning to com-
pare image patches via convolutional neural networks. In
CVPR, 2015. 2

[23] Jure Zbontar and Yann LeCun. Stereo matching by training a
convolutional neural network to compare image patches. In
JMLR, 2016. 2, 3, 4, 6, 7

[24] Feihu Zhang, Victor Adrian Prisacariu, Ruigang Yang, and
Philip H. S. Torr. Ga-net: Guided aggregation net for end-to-
end stereo matching. In CVPR, 2019. 2

[25] Iman Zolanvari, Susana Ruano, Aakanksha Rana, Alan
Cummins, Aljosa Smolic, Rogerio Da Silva, and Morteza
Rahbar. Dublincity: Annotated lidar point cloud and its ap-
plications. 2019. 5

2105


